freertos.c 181 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * File Name : freertos.c
  5. * Description : Code for freertos applications
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  10. * All rights reserved.</center></h2>
  11. *
  12. * This software component is licensed by ST under Ultimate Liberty license
  13. * SLA0044, the "License"; You may not use this file except in compliance with
  14. * the License. You may obtain a copy of the License at:
  15. * www.st.com/SLA0044
  16. *
  17. ******************************************************************************
  18. */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "FreeRTOS.h"
  22. #include "task.h"
  23. #include "main.h"
  24. #include "cmsis_os.h"
  25. /* Private includes ----------------------------------------------------------*/
  26. /* USER CODE BEGIN Includes */
  27. #include <stdlib.h>
  28. #include "adc.h"
  29. #include "crc.h"
  30. #include "flash_if.h"
  31. #include "sine.h"
  32. #include "usart.h"
  33. #include "tim.h"
  34. #include "can.h"
  35. #include "math.h"
  36. /* USER CODE END Includes */
  37. /* Private typedef -----------------------------------------------------------*/
  38. /* USER CODE BEGIN PTD */
  39. /* USER CODE END PTD */
  40. /* Private define ------------------------------------------------------------*/
  41. /* USER CODE BEGIN PD */
  42. #define PROTOCOL_HEAD 0xaa
  43. #define PROTOCOL_ADDR (nBoard_Addr) // 0x01:AUX PWR 0x02: FAN BD 0x03:RLY BD 0xff:Any
  44. #define PROTOCOL_ADDR_BROADCAST 0xff
  45. #define PROTOCOL_MESSAGE_QUERY_FW_VER 0x01
  46. #define PROTOCOL_MESSAGE_QUERY_HW_VER 0x02
  47. #define PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE 0x03
  48. #define PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE 0x04
  49. #define PROTOCOL_MESSAGE_QUERY_FAN_SPEED 0x05
  50. #define PROTOCOL_MESSAGE_QUERY_TEMPERATURE 0x06
  51. #define PROTOCOL_MESSAGE_QUERY_AUX_POWER_VOLTAGE 0x07
  52. #define PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE 0x09
  53. #define PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS 0x0A
  54. #define PROTOCOL_MESSAGE_QUERY_ALARM_LOG 0x22
  55. #define PROTOCOL_MESSAGE_QUERY_SN 0x23
  56. #define PROTOCOL_MESSAGE_QUERY_MODEL_NAME 0x24
  57. #define PROTOCOL_MESSAGE_QUERY_PARAMETER 0x25
  58. #define PROTOCOL_MESSAGE_QUERY_ALARM_CODE 0x29
  59. #define PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN 0x38
  60. #define PROTOCOL_MESSAGE_QUERY_OUTPUT_RELAY_OUTPUT_STATUS 0x3A
  61. #define PROTOCOL_MESSAGE_QUERY_BRIDGE_RELAY_OUTPUT_STATUS 0x3B
  62. #define PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS 0x3C
  63. #define PROTOCOL_MESSAGE_CONFIG_FAN_SPEED 0x81
  64. #define PROTOCOL_MESSAGE_CONFIG_SN 0x82
  65. #define PROTOCOL_MESSAGE_CONFIG_MODEL_NAME 0x83
  66. #define PROTOCOL_MESSAGE_CONFIG_PARAMETER 0x84
  67. #define PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT 0x86
  68. #define PROTOCOL_MESSAGE_CONFIG_GFD_VALUE 0x8B
  69. #define PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST 0x92
  70. #define PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT 0x98
  71. #define PROTOCOL_MESSAGE_CONFIG_BRIDGE_RELAY_OUTPUT 0x99
  72. #define PROTOCOL_MESSAGE_CONFIG_GFD_MODE 0x9F
  73. #define PROTOCOL_MESSAGE_UPGRADE_START 0xe0
  74. #define PROTOCOL_MESSAGE_UPGRADE_ABOARD 0xe1
  75. #define PROTOCOL_MESSAGE_UPGRADE_TRANS 0xe2
  76. #define PROTOCOL_MESSAGE_UPGRADE_STOP 0xe3
  77. #define USER_MESSAGE_QUERY_SENSE_GFD 0xF1
  78. #define USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE 0xF2
  79. #define Multi_Relay_Delay_Time 200 //unit:ms
  80. #define WeldingCMDDelay 10 //unit:100ms
  81. #define BridgeBoard (nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3 || nBoard_Addr == MainBridge4)
  82. /* USER CODE END PD */
  83. /* Private macro -------------------------------------------------------------*/
  84. /* USER CODE BEGIN PM */
  85. /* USER CODE END PM */
  86. /* Private variables ---------------------------------------------------------*/
  87. /* USER CODE BEGIN Variables */
  88. // RB v4.0
  89. // const uint32_t mem_def_data[20]={0xaf00984, 0x89807f9, 0x64005d5, 0xaf00989, 0x8980802, \
  90. // 0x64005da, 0xaf00986, 0x8980800, 0x64005db, 0x251c2516,
  91. // 0x5dc05e5, 0x251c250f,0x5dc05dd, 0x128e12c0, 0x3b604ae,
  92. // 0x128e1284, 0x3b604a4, 0, 0, 0 };
  93. // RB v4.0 (base on the situation of removing diode condition.)
  94. //L1~L3 SMR1~SMR6 GFD-L~FGD-R
  95. const uint32_t mem_def_data[27] = {0x0AEF0A2B, 0x08960800, 0x063F05D4, //L1 3 point
  96. 0x0AEF0A29, 0x089607FF, 0x063F05D3, //L2 3 point
  97. 0x0AEF0A29, 0x08960802, 0x063F05D5, //L3 3 point
  98. 0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR1,SMR2 DCV 2 point
  99. 0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR3,SMR4 DCV 2 point
  100. 0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR5,SMR6 DCV 2 point
  101. 0x128E13E4, 0x03B604CF, 0x128E139D, 0x03B604D0, //LGFD,RGFD 2 point
  102. 0x251C2505, 0x05DC05DD //DC IN 2 point
  103. };
  104. __IO uint32_t flashdestination;
  105. __IO uint32_t newdestination;
  106. //uint8_t test;
  107. uint8_t test[8];
  108. uint8_t CSRHB_VER;
  109. /* USER CODE END Variables */
  110. osThreadId defaultTaskHandle;
  111. osThreadId uart1TaskHandle;
  112. osThreadId adc1TaskHandle;
  113. osThreadId adc2TaskHandle;
  114. osThreadId adc3TaskHandle;
  115. osThreadId gpioTaskHandle;
  116. osThreadId memoryTaskHandle;
  117. osThreadId InkeyTaskHandle;
  118. osThreadId gfd_left_TaskHandle;
  119. osThreadId gfd_right_TaskHandle;
  120. osThreadId sf_test_TaskHandle;
  121. osThreadId _ledTask_Handle;
  122. osThreadId CANTaskHandle;
  123. /* Private function prototypes -----------------------------------------------*/
  124. /* USER CODE BEGIN FunctionPrototypes */
  125. void CSRHB_Ver_Check(void);
  126. uint8_t isValidCheckSum(void);
  127. void CLC_Corr_Gain_Par(uint16_t SpecData_H, uint16_t SpecData_L, uint16_t MCUData_H, uint16_t MCUData_L, float *GainA, float *GainB);
  128. uint16_t acVolCalWithGain(uint16_t orgValue, uint8_t phase);
  129. void nTestIO(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
  130. void nTestIO1(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
  131. void nTestEXT_INT(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, uint8_t *flag, uint8_t nItem);
  132. void nTestIO_2(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin,
  133. GPIO_TypeDef *GPIO_out2_port, uint16_t GPIO_out2_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
  134. void IOdebug(void);
  135. void CalcuteGFDMaxMinValue(uint8_t gunindex);
  136. void SetGfdMode(void);
  137. void UartCMDtest(void);
  138. /* USER CODE END FunctionPrototypes */
  139. void StartDefaultTask(void const * argument);
  140. void Uart1Task(void const * argument);
  141. void Adc1Task(void const * argument);
  142. void Adc2Task(void const * argument);
  143. void Adc3Task(void const * argument);
  144. void GpioTask(void const * argument);
  145. void MemoryTask(void const * argument);
  146. void Inkey_Task(void const * argument);
  147. void Gfd_Left_Task(void const * argument);
  148. void Gfd_Right_Task(void const * argument);
  149. void SF_Test_Task(void const * argument);
  150. void LedTask(void const * argument);
  151. void canTask(void const * argument);
  152. void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */
  153. /* GetIdleTaskMemory prototype (linked to static allocation support) */
  154. void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize );
  155. /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */
  156. static StaticTask_t xIdleTaskTCBBuffer;
  157. static StackType_t xIdleStack[configMINIMAL_STACK_SIZE];
  158. void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize)
  159. {
  160. *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer;
  161. *ppxIdleTaskStackBuffer = &xIdleStack[0];
  162. *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
  163. /* place for user code */
  164. }
  165. /* USER CODE END GET_IDLE_TASK_MEMORY */
  166. /**
  167. * @brief FreeRTOS initialization
  168. * @param None
  169. * @retval None
  170. */
  171. void MX_FREERTOS_Init(void) {
  172. /* USER CODE BEGIN Init */
  173. // Version info configuration
  174. memset(&Module_Info.Soft_Ver_Ptr[0], 0x00, ARRAY_SIZE(Module_Info.Soft_Ver_Ptr));
  175. memset(&Module_Info.Hard_Ver_Ptr[0], 0x00, ARRAY_SIZE(Module_Info.Hard_Ver_Ptr));
  176. sprintf((char *)Module_Info.Soft_Ver_Ptr, "T1.03.R3");
  177. if(nBoard_Addr == MainRelay1){
  178. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_1 ");
  179. }else if(nBoard_Addr == MainRelay2){
  180. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_2 ");
  181. }else if(nBoard_Addr == GunRelay){
  182. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_G ");
  183. }else if(nBoard_Addr == MainBridge1){
  184. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_1 ");
  185. }else if(nBoard_Addr == MainBridge2){
  186. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_2 ");
  187. }else if(nBoard_Addr == MainBridge3){
  188. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_3 ");
  189. }else if(nBoard_Addr == MainBridge4){
  190. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_4 ");
  191. }else{
  192. sprintf((char *)Module_Info.Hard_Ver_Ptr, "Undefine");
  193. }
  194. /* USER CODE END Init */
  195. /* USER CODE BEGIN RTOS_MUTEX */
  196. /* add mutexes, ... */
  197. /* USER CODE END RTOS_MUTEX */
  198. /* USER CODE BEGIN RTOS_SEMAPHORES */
  199. /* add semaphores, ... */
  200. /* USER CODE END RTOS_SEMAPHORES */
  201. /* USER CODE BEGIN RTOS_TIMERS */
  202. /* start timers, add new ones, ... */
  203. /* USER CODE END RTOS_TIMERS */
  204. /* USER CODE BEGIN RTOS_QUEUES */
  205. /* add queues, ... */
  206. /* USER CODE END RTOS_QUEUES */
  207. /* Create the thread(s) */
  208. /* definition and creation of defaultTask */
  209. osThreadDef(defaultTask, StartDefaultTask, osPriorityIdle, 0, 128);
  210. defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
  211. /* definition and creation of uart1Task */
  212. osThreadDef(uart1Task, Uart1Task, osPriorityAboveNormal, 0, 1024);
  213. uart1TaskHandle = osThreadCreate(osThread(uart1Task), NULL);
  214. /* definition and creation of adc1Task */
  215. osThreadDef(adc1Task, Adc1Task, osPriorityNormal, 0, 512);
  216. adc1TaskHandle = osThreadCreate(osThread(adc1Task), NULL);
  217. /* definition and creation of adc2Task */
  218. osThreadDef(adc2Task, Adc2Task, osPriorityNormal, 0, 1024);
  219. adc2TaskHandle = osThreadCreate(osThread(adc2Task), NULL);
  220. /* definition and creation of adc3Task */
  221. osThreadDef(adc3Task, Adc3Task, osPriorityNormal, 0, 256);
  222. adc3TaskHandle = osThreadCreate(osThread(adc3Task), NULL);
  223. /* definition and creation of gpioTask */
  224. osThreadDef(gpioTask, GpioTask, osPriorityNormal, 0, 256);
  225. gpioTaskHandle = osThreadCreate(osThread(gpioTask), NULL);
  226. /* definition and creation of memoryTask */
  227. osThreadDef(memoryTask, MemoryTask, osPriorityIdle, 0, 256);
  228. memoryTaskHandle = osThreadCreate(osThread(memoryTask), NULL);
  229. /* definition and creation of InkeyTask */
  230. // osThreadDef(InkeyTask, Inkey_Task, osPriorityAboveNormal, 0, 128);
  231. // InkeyTaskHandle = osThreadCreate(osThread(InkeyTask), NULL);
  232. /* definition and creation of gfd_left_Task */
  233. osThreadDef(gfd_left_Task, Gfd_Left_Task, osPriorityAboveNormal, 0, 256);
  234. gfd_left_TaskHandle = osThreadCreate(osThread(gfd_left_Task), NULL);
  235. /* definition and creation of gfd_right_Task */
  236. osThreadDef(gfd_right_Task, Gfd_Right_Task, osPriorityAboveNormal, 0, 256);
  237. gfd_right_TaskHandle = osThreadCreate(osThread(gfd_right_Task), NULL);
  238. /* definition and creation of sf_test_Task */
  239. osThreadDef(sf_test_Task, SF_Test_Task, osPriorityNormal, 0, 128);
  240. sf_test_TaskHandle = osThreadCreate(osThread(sf_test_Task), NULL);
  241. /* definition and creation of _ledTask_ */
  242. osThreadDef(_ledTask_, LedTask, osPriorityIdle, 0, 128);
  243. _ledTask_Handle = osThreadCreate(osThread(_ledTask_), NULL);
  244. /* definition and creation of CANTask */
  245. osThreadDef(CANTask, canTask, osPriorityAboveNormal, 0, 256);
  246. CANTaskHandle = osThreadCreate(osThread(CANTask), NULL);
  247. /* USER CODE BEGIN RTOS_THREADS */
  248. /* add threads, ... */
  249. /* USER CODE END RTOS_THREADS */
  250. }
  251. /* USER CODE BEGIN Header_StartDefaultTask */
  252. /**
  253. * @brief Function implementing the defaultTask thread.
  254. * @param argument: Not used
  255. * @retval None
  256. */
  257. /* USER CODE END Header_StartDefaultTask */
  258. void StartDefaultTask(void const * argument)
  259. {
  260. /* USER CODE BEGIN StartDefaultTask */
  261. /* Infinite loop */
  262. printf("FW Ver:%s\n\r", Module_Info.Soft_Ver_Ptr);
  263. printf("PCB Define:%s\n\r", Module_Info.Hard_Ver_Ptr);
  264. CSRHB_Ver_Check();
  265. Gfd.IsolationVoltage = 5000;
  266. printf("Initial IsolationVoltage:%dV\n\r",Gfd.IsolationVoltage/10);
  267. for (;;)
  268. {
  269. if (bRelayFeedback == 1)
  270. {
  271. bRelayFeedback = 0;
  272. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  273. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  274. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  275. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  276. }
  277. #if (DEBUG_PRINTF == 1)
  278. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  279. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  280. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  281. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  282. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  283. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  284. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  285. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  286. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  287. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  288. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  289. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  290. printf("Relay Set = %014llx \n\r",Module_Info.Relay_IO.All);
  291. printf("Relay Status = %014llx \n\r\n\r",Module_Info.Relay_Status.All);
  292. printf("Dip_Switch = %d \n\r", Module_Info.gfd_chk[1].R_GFD_v);
  293. printf(" ADC1 = %d ADC2 = %d ADC3 = %d ADC4 = %d ADC5 = %d \n\r", adc_value.ADC1_IN0.value,
  294. adc_value.ADC1_IN1.value,adc_value.ADC1_IN2.value,adc_value.ADC1_IN3.value,adc_value.ADC1_IN4.value);
  295. printf(" ADC6 = %d ADC7 = %d ADC8 = %d ADC9 = %d \n\r", adc_value.ADC1_IN5.value,
  296. adc_value.ADC1_IN6.value,adc_value.ADC1_IN7.value,adc_value.ADC1_IN8.value);
  297. printf("SMR6 = %d \n\r",Module_Info.SMR6_Relay_V);
  298. printf(" CT1 = %d , CT2 = %d , ADC_1 = %f, ADC_2 = %f \n\r", Module_Info.SMR1_Relay_C,
  299. Module_Info.SMR2_Relay_C, c_vadc[0], c_vadc[1]); // 100A = 1000
  300. vTaskDelay(2000 / portTICK_RATE_MS);
  301. #else
  302. osDelay(1);
  303. #endif
  304. }
  305. /* USER CODE END StartDefaultTask */
  306. }
  307. /* USER CODE BEGIN Header_Uart1Task */
  308. /**
  309. * @brief Function implementing the uart1Task thread.
  310. * @param argument: Not used
  311. * @retval None
  312. */
  313. /* USER CODE END Header_Uart1Task */
  314. void Uart1Task(void const * argument)
  315. {
  316. /* USER CODE BEGIN Uart1Task */
  317. /* Infinite loop */
  318. uint8_t tx[UART_BUFFER_SIZE];
  319. uint8_t tx_len;
  320. uint8_t chksum = 0;
  321. uint8_t endFlag[4] = {0x55, 0xaa, 0x55, 0xaa};
  322. uint32_t flash, crc32;
  323. uint16_t temp;
  324. uint16_t nSMR1_Sense, nSMR2_Sense, nSMR3_Sense,nSMR4_Sense,nSMR5_Sense,nSMR6_Sense,nVer165, SMR1_Gfd_Sense, SMR2_Gfd_Sense;
  325. // uint16_t delay = 100;
  326. for (;;)
  327. {
  328. UartCMDtest();
  329. if (uart_recv_end_flag == 1)
  330. {
  331. // printf(" %x %x %x %x %x %x\n\r", uart_rx_buffer[0],uart_rx_buffer[1],uart_rx_buffer[2],uart_rx_buffer[3],uart_rx_buffer[4],uart_rx_buffer[5]);
  332. chksum = 0;
  333. if ((uart_rx_buffer[2] == PROTOCOL_ADDR) || (uart_rx_buffer[2] == PROTOCOL_ADDR_BROADCAST))
  334. {
  335. if (isValidCheckSum() == ON)
  336. {
  337. switch (uart_rx_buffer[3])
  338. {
  339. case USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE:
  340. tx_len = 35;
  341. tx[0] = 0xaa;
  342. tx[1] = PROTOCOL_ADDR;
  343. tx[2] = uart_rx_buffer[1];
  344. tx[3] = USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE;
  345. tx[4] = 28;
  346. tx[5] = 0;
  347. tx[6] = ((Module_Info.SMR1_Relay_C >> 0) & 0xff);
  348. tx[7] = ((Module_Info.SMR1_Relay_C >> 8) & 0xff);
  349. tx[8] = ((Module_Info.SMR2_Relay_C >> 0) & 0xff);
  350. tx[9] = ((Module_Info.SMR2_Relay_C >> 8) & 0xff);
  351. tx[10] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  352. tx[11] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  353. tx[12] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  354. tx[13] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  355. tx[14] = ((Module_Info.SMR3_Relay_V >> 0) & 0xff);
  356. tx[15] = ((Module_Info.SMR3_Relay_V >> 8) & 0xff);
  357. tx[16] = ((Module_Info.SMR4_Relay_V >> 0) & 0xff);
  358. tx[17] = ((Module_Info.SMR4_Relay_V >> 8) & 0xff);
  359. tx[18] = ((Module_Info.SMR5_Relay_V >> 0) & 0xff);
  360. tx[19] = ((Module_Info.SMR5_Relay_V >> 8) & 0xff);
  361. tx[20] = ((Module_Info.SMR6_Relay_V >> 0) & 0xff);
  362. tx[21] = ((Module_Info.SMR6_Relay_V >> 8) & 0xff);
  363. nSMR1_Sense = (uint16_t)adc_value.ADC1_IN0.value;
  364. nSMR2_Sense = (uint16_t)adc_value.ADC1_IN2.value;
  365. nSMR3_Sense = (uint16_t)adc_value.ADC1_IN5.value;
  366. nSMR4_Sense = (uint16_t)adc_value.ADC1_IN6.value;
  367. nSMR5_Sense = (uint16_t)adc_value.ADC1_IN7.value;
  368. nSMR6_Sense = (uint16_t)adc_value.ADC1_IN8.value;
  369. tx[22] = ((nSMR1_Sense >> 0) & 0xff);
  370. tx[23] = ((nSMR1_Sense >> 8) & 0xff);
  371. tx[24] = ((nSMR2_Sense >> 0) & 0xff);
  372. tx[25] = ((nSMR2_Sense >> 8) & 0xff);
  373. tx[26] = ((nSMR3_Sense >> 0) & 0xff);
  374. tx[27] = ((nSMR3_Sense >> 8) & 0xff);
  375. tx[28] = ((nSMR4_Sense >> 0) & 0xff);
  376. tx[29] = ((nSMR4_Sense >> 8) & 0xff);
  377. tx[30] = ((nSMR5_Sense >> 0) & 0xff);
  378. tx[31] = ((nSMR5_Sense >> 8) & 0xff);
  379. tx[32] = ((nSMR6_Sense >> 0) & 0xff);
  380. tx[33] = ((nSMR6_Sense >> 8) & 0xff);
  381. //tx[18] = ((Module_Info.BAT_Voltage >> 0) & 0xff);
  382. //tx[19] = ((Module_Info.BAT_Voltage >> 8) & 0xff);
  383. //tx[20] = ((nBat1_Sense >> 0) & 0xff);
  384. //tx[21] = ((nBat1_Sense >> 8) & 0xff);
  385. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  386. {
  387. chksum ^= tx[6 + idx];
  388. }
  389. tx[34] = chksum;
  390. break;
  391. case USER_MESSAGE_QUERY_SENSE_GFD:
  392. tx_len = 29;
  393. tx[0] = 0xaa;
  394. tx[1] = PROTOCOL_ADDR;
  395. tx[2] = uart_rx_buffer[1];
  396. tx[3] = USER_MESSAGE_QUERY_SENSE_GFD;
  397. tx[4] = 22;
  398. tx[5] = 0x00;
  399. if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
  400. {
  401. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  402. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 8) & 0xff);
  403. tx[8] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 0) & 0xff);
  404. tx[9] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 8) & 0xff);
  405. tx[11] = Module_Info.gfd_chk[0].Rfd_State_Fail;
  406. }
  407. else
  408. {
  409. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  410. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 8) & 0xff);
  411. tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  412. tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  413. tx[11] = Module_Info.gfd_chk[0].Rfd_State;
  414. }
  415. tx[10] = Module_Info.gfd_chk[0].bResult_Gfd;
  416. if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
  417. {
  418. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  419. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 8) & 0xff);
  420. tx[14] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 0) & 0xff);
  421. tx[15] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 8) & 0xff);
  422. tx[17] = Module_Info.gfd_chk[1].Rfd_State_Fail;
  423. }
  424. else
  425. {
  426. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  427. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 8) & 0xff);
  428. tx[14] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  429. tx[15] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  430. tx[17] = Module_Info.gfd_chk[1].Rfd_State;
  431. }
  432. tx[16] = Module_Info.gfd_chk[1].bResult_Gfd;
  433. // Verf_165
  434. nVer165 = (uint16_t)(Module_Info.Vref_165 * 100.0);
  435. tx[18] = ((nVer165 >> 0) & 0xff);
  436. tx[19] = ((nVer165 >> 8) & 0xff);
  437. SMR1_Gfd_Sense = (uint16_t)(Module_Info.SMR_Gfd_Sense[0] * 100.0);
  438. SMR2_Gfd_Sense = (uint16_t)(Module_Info.SMR_Gfd_Sense[1] * 100.0);
  439. // SMR1_Gfd_Diff = (uint16_t)(Module_Info.SMR_Gfd_Diff[0] * 100.0);
  440. // SMR2_Gfd_Diff = (uint16_t)(Module_Info.SMR_Gfd_Diff[1] * 100.0);
  441. tx[20] = ((SMR1_Gfd_Sense >> 0) & 0xff);
  442. tx[21] = ((SMR1_Gfd_Sense >> 8) & 0xff);
  443. tx[22] = ((SMR2_Gfd_Sense >> 0) & 0xff);
  444. tx[23] = ((SMR2_Gfd_Sense >> 8) & 0xff);
  445. // tx[24] = ((SMR1_Gfd_Diff >> 0) & 0xff);
  446. // tx[25] = ((SMR1_Gfd_Diff >> 8) & 0xff);
  447. // tx[26] = ((SMR2_Gfd_Diff >> 0) & 0xff);
  448. // tx[27] = ((SMR2_Gfd_Diff >> 8) & 0xff);
  449. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  450. {
  451. chksum ^= tx[6 + idx];
  452. }
  453. tx[28] = chksum;
  454. break;
  455. case PROTOCOL_MESSAGE_QUERY_FW_VER:
  456. tx_len = 15;
  457. tx[0] = 0xaa;
  458. tx[1] = PROTOCOL_ADDR;
  459. tx[2] = uart_rx_buffer[1];
  460. tx[3] = PROTOCOL_MESSAGE_QUERY_FW_VER;
  461. tx[4] = 0x08;
  462. tx[5] = 0x00;
  463. for (int idx = 0; idx < 8; idx++)
  464. tx[(6 + idx)] = Module_Info.Soft_Ver_Ptr[idx];
  465. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  466. chksum ^= tx[(6 + idx)];
  467. tx[14] = chksum;
  468. break;
  469. case PROTOCOL_MESSAGE_QUERY_HW_VER:
  470. tx_len = 15;
  471. tx[0] = 0xaa;
  472. tx[1] = PROTOCOL_ADDR;
  473. tx[2] = uart_rx_buffer[1];
  474. tx[3] = PROTOCOL_MESSAGE_QUERY_HW_VER;
  475. tx[4] = 0x08;
  476. tx[5] = 0x00;
  477. for (int idx = 0; idx < 8; idx++)
  478. tx[(6 + idx)] = Module_Info.Hard_Ver_Ptr[idx];
  479. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  480. chksum ^= tx[(6 + idx)];
  481. tx[14] = chksum;
  482. break;
  483. case PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE:
  484. tx_len = 14;
  485. tx[0] = 0xaa;
  486. tx[1] = PROTOCOL_ADDR;
  487. tx[2] = uart_rx_buffer[1];
  488. tx[3] = PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE;
  489. tx[4] = 0x07;
  490. tx[5] = 0x00;
  491. tx[6] = 0;
  492. tx[7] = ((AC_Sine[0].Vrms_AVG >> 0) & 0xff);
  493. tx[8] = ((AC_Sine[0].Vrms_AVG >> 8) & 0xff);
  494. tx[9] = ((AC_Sine[1].Vrms_AVG >> 0) & 0xff);
  495. tx[10] = ((AC_Sine[1].Vrms_AVG >> 8) & 0xff);
  496. tx[11] = ((AC_Sine[2].Vrms_AVG >> 0) & 0xff);
  497. tx[12] = ((AC_Sine[2].Vrms_AVG >> 8) & 0xff);
  498. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  499. chksum ^= tx[6 + idx];
  500. tx[13] = chksum;
  501. break;
  502. case PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN:
  503. tx_len = 11;
  504. tx[0] = 0xaa;
  505. tx[1] = PROTOCOL_ADDR;
  506. tx[2] = uart_rx_buffer[1];
  507. tx[3] = PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN;
  508. tx[4] = 0x04;
  509. tx[5] = 0x00;
  510. tx[6] = ((Module_Info.BAT_Voltage>>0) & 0xff);
  511. tx[7] = ((Module_Info.BAT_Voltage>>8) & 0xff);
  512. tx[8] = tx[9] = 0;
  513. for(int idx=0;idx<(tx[4] | (tx[5]<<8));idx++)
  514. {
  515. chksum ^= tx[6 + idx];
  516. }
  517. tx[10] = chksum;
  518. break;
  519. case PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE:
  520. tx_len = 23;
  521. tx[0] = 0xaa;
  522. tx[1] = PROTOCOL_ADDR;
  523. tx[2] = uart_rx_buffer[1];
  524. tx[3] = PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE;
  525. tx[4] = 16;
  526. tx[5] = 0x00;
  527. tx[6] = ((Module_Info.SMR1_Relay_C >> 0) & 0xff);
  528. tx[7] = ((Module_Info.SMR1_Relay_C >> 8) & 0xff);
  529. tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  530. tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  531. tx[10] = ((Module_Info.SMR2_Relay_C >> 0) & 0xff);
  532. tx[11] = ((Module_Info.SMR2_Relay_C >> 8) & 0xff);
  533. tx[12] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  534. tx[13] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  535. tx[14] = ((Module_Info.SMR3_Relay_V >> 0) & 0xff);
  536. tx[15] = ((Module_Info.SMR3_Relay_V >> 8) & 0xff);
  537. tx[16] = ((Module_Info.SMR4_Relay_V >> 0) & 0xff);
  538. tx[17] = ((Module_Info.SMR4_Relay_V >> 8) & 0xff);
  539. tx[18] = ((Module_Info.SMR5_Relay_V >> 0) & 0xff);
  540. tx[19] = ((Module_Info.SMR5_Relay_V >> 8) & 0xff);
  541. tx[20] = ((Module_Info.SMR6_Relay_V >> 0) & 0xff);
  542. tx[21] = ((Module_Info.SMR6_Relay_V >> 8) & 0xff);
  543. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  544. {
  545. chksum ^= tx[6 + idx];
  546. }
  547. tx[22] = chksum;
  548. break;
  549. case PROTOCOL_MESSAGE_QUERY_OUTPUT_RELAY_OUTPUT_STATUS:
  550. tx_len = 14;
  551. tx[0] = 0xaa;
  552. tx[1] = PROTOCOL_ADDR;
  553. tx[2] = uart_rx_buffer[1];
  554. tx[3] = uart_rx_buffer[3];
  555. tx[4] = 7;
  556. tx[5] = 0;
  557. // Read Relay Feedback Pins ......
  558. Module_Info.Relay_Status.flags.AC_Contactor = ~HAL_GPIO_ReadPin(AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin);
  559. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  560. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  561. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  562. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  563. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  564. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  565. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  566. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  567. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  568. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  569. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  570. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  571. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  572. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  573. tx[6] = (Module_Info.Relay_Status.All & 0xff);
  574. tx[7] = (Module_Info.Relay_Status.All >> 8) & 0xff;
  575. tx[8] = (Module_Info.Relay_Status.All >> 16) & 0xff;
  576. tx[9] = (Module_Info.Relay_Status.All >> 24) & 0xff;
  577. tx[10] = (Module_Info.Relay_Status.All >> 32) & 0xff;
  578. tx[11] = (Module_Info.Relay_Status.All >> 40) & 0xff;
  579. tx[12] = (Module_Info.Relay_Status.All >> 48) & 0xff;
  580. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  581. {
  582. chksum ^= tx[6 + idx];
  583. }
  584. tx[13] = chksum;
  585. break;
  586. case PROTOCOL_MESSAGE_QUERY_BRIDGE_RELAY_OUTPUT_STATUS:
  587. tx_len = 13;
  588. tx[0] = 0xaa;
  589. tx[1] = PROTOCOL_ADDR;
  590. tx[2] = uart_rx_buffer[1];
  591. tx[3] = uart_rx_buffer[3];
  592. tx[4] = 6;
  593. tx[5] = 0;
  594. // Read Relay Feedback Pins ......
  595. Module_Info.Relay_Status.flags.AC_Contactor = ~HAL_GPIO_ReadPin(AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin);
  596. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  597. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  598. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  599. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  600. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  601. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  602. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  603. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  604. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  605. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  606. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  607. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  608. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  609. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  610. tx[6] = (Module_Info.Relay_Status.All & 0xff);
  611. tx[7] = (Module_Info.Relay_Status.All >> 8) & 0xff;
  612. tx[8] = (Module_Info.Relay_Status.All >> 16) & 0xff;
  613. tx[9] = (Module_Info.Relay_Status.All >> 24) & 0xff;
  614. tx[10] = (Module_Info.Relay_Status.All >> 32) & 0xff;
  615. tx[11] = (Module_Info.Relay_Status.All >> 40) & 0xff;
  616. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  617. {
  618. chksum ^= tx[6 + idx];
  619. }
  620. tx[12] = chksum;
  621. break;
  622. case PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE:
  623. tx_len = 19;
  624. tx[0] = 0xaa;
  625. tx[1] = PROTOCOL_ADDR;
  626. tx[2] = uart_rx_buffer[1];
  627. tx[3] = PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE;
  628. tx[4] = 12;
  629. tx[5] = 0x00;
  630. if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
  631. {
  632. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  633. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 8) & 0xff);
  634. tx[8] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 0) & 0xff);
  635. tx[9] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 8) & 0xff);
  636. tx[11] = Module_Info.gfd_chk[0].Rfd_State_Fail;
  637. }
  638. else
  639. {
  640. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  641. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 8) & 0xff);
  642. tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  643. tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  644. tx[11] = Module_Info.gfd_chk[0].Rfd_State;
  645. }
  646. tx[10] = Module_Info.gfd_chk[0].bResult_Gfd;
  647. if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
  648. {
  649. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  650. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 8) & 0xff);
  651. tx[14] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 0) & 0xff);
  652. tx[15] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 8) & 0xff);
  653. tx[17] = Module_Info.gfd_chk[1].Rfd_State_Fail;
  654. }
  655. else
  656. {
  657. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  658. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 8) & 0xff);
  659. tx[14] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  660. tx[15] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  661. tx[17] = Module_Info.gfd_chk[1].Rfd_State;
  662. }
  663. tx[16] = Module_Info.gfd_chk[1].bResult_Gfd;
  664. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  665. {
  666. chksum ^= tx[6 + idx];
  667. }
  668. tx[18] = chksum;
  669. break;
  670. case PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS:
  671. tx_len = 8;
  672. tx[0] = 0xaa;
  673. tx[1] = PROTOCOL_ADDR;
  674. tx[2] = uart_rx_buffer[1];
  675. tx[3] = PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS;
  676. tx[4] = 1;
  677. tx[5] = 0;
  678. tx[6] = Module_Info.Gpio_status.All;
  679. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  680. {
  681. chksum ^= tx[6 + idx];
  682. }
  683. tx[7] = chksum;
  684. break;
  685. case PROTOCOL_MESSAGE_QUERY_SN:
  686. tx_len = 27;
  687. tx[0] = 0xaa;
  688. tx[1] = PROTOCOL_ADDR;
  689. tx[2] = uart_rx_buffer[1];
  690. tx[3] = PROTOCOL_MESSAGE_QUERY_SN;
  691. tx[4] = 0x14;
  692. tx[5] = 0x00;
  693. memcpy(&tx[6], Module_Info.SN, 20);
  694. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  695. {
  696. chksum ^= tx[6 + idx];
  697. }
  698. tx[26] = chksum;
  699. break;
  700. case PROTOCOL_MESSAGE_QUERY_ALARM_CODE:
  701. tx_len = 13;
  702. tx[0] = 0xaa;
  703. tx[1] = PROTOCOL_ADDR;
  704. tx[2] = uart_rx_buffer[1];
  705. tx[3] = PROTOCOL_MESSAGE_QUERY_ALARM_CODE;
  706. tx[4] = 6;
  707. tx[5] = 0;
  708. // === Data ===
  709. tx[6] = 0;
  710. tx[7] = 0;
  711. tx[8] = 0;
  712. tx[9] = (Module_Info.Alarm_CSU.All) & 0xff;
  713. tx[10] = (Module_Info.Alarm_CSU.All >> 8) & 0xff;
  714. tx[11] = 0;
  715. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  716. {
  717. chksum ^= tx[6 + idx];
  718. }
  719. tx[12] = chksum;
  720. break;
  721. case PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS:
  722. tx_len = 13;
  723. tx[0] = 0xaa;
  724. tx[1] = PROTOCOL_ADDR;
  725. tx[2] = uart_rx_buffer[1];
  726. tx[3] = PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS;
  727. tx[4] = 6;
  728. tx[5] = 0;
  729. tx[6] = sf_t.SF_Config.SF_test_status;
  730. tx[7] = sf_t.SF_Config.data.value & 0xff;
  731. tx[8] = (sf_t.SF_Config.data.value >> 8) & 0xff;
  732. tx[9] = (sf_t.SF_Config.data.value >> 16) & 0xff;
  733. tx[10] = (sf_t.SF_Config.data.value >> 24) & 0xff;
  734. tx[11] = (sf_t.SF_Config.data.value >> 32) & 0xff;
  735. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  736. {
  737. chksum ^= tx[6 + idx];
  738. }
  739. tx[12] = chksum;
  740. break;
  741. case PROTOCOL_MESSAGE_QUERY_PARAMETER:
  742. tx_len = 11;
  743. tx[0] = 0xaa;
  744. tx[1] = PROTOCOL_ADDR;
  745. tx[2] = uart_rx_buffer[1];
  746. tx[3] = PROTOCOL_MESSAGE_QUERY_PARAMETER;
  747. tx[4] = 4;
  748. tx[5] = 0;
  749. tx[6] = uart_rx_buffer[6];
  750. tx[7] = uart_rx_buffer[7];
  751. // === Data ===
  752. switch (uart_rx_buffer[6])
  753. {
  754. case Input_L1_AC_voltage:
  755. switch (uart_rx_buffer[7])
  756. {
  757. case 1: // METER_DATA , MCU_DATA
  758. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] & 0xff;
  759. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] >> 8) & 0xff;
  760. break;
  761. case 2:
  762. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] & 0xff;
  763. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] >> 8) & 0xff;
  764. break;
  765. case 3:
  766. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] & 0xff;
  767. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] >> 8) & 0xff;
  768. break;
  769. default:
  770. tx[8] = 0;
  771. tx[9] = 0;
  772. break;
  773. }
  774. break;
  775. case Input_L2_AC_voltage:
  776. switch (uart_rx_buffer[7])
  777. {
  778. case 1:
  779. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] & 0xff;
  780. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] >> 8) & 0xff;
  781. break;
  782. case 2:
  783. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] & 0xff;
  784. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] >> 8) & 0xff;
  785. break;
  786. case 3:
  787. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] & 0xff;
  788. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] >> 8) & 0xff;
  789. break;
  790. default:
  791. break;
  792. }
  793. break;
  794. case Input_L3_AC_voltage:
  795. switch (uart_rx_buffer[7])
  796. {
  797. case 1:
  798. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] & 0xff;
  799. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] >> 8) & 0xff;
  800. break;
  801. case 2:
  802. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] & 0xff;
  803. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] >> 8) & 0xff;
  804. break;
  805. case 3:
  806. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] & 0xff;
  807. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] >> 8) & 0xff;
  808. break;
  809. default:
  810. break;
  811. }
  812. break;
  813. case SMR1_output_voltage:
  814. switch (uart_rx_buffer[7])
  815. {
  816. case 1:
  817. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] & 0xff;
  818. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] >> 8) & 0xff;
  819. break;
  820. case 2:
  821. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] & 0xff;
  822. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] >> 8) & 0xff;
  823. break;
  824. default:
  825. break;
  826. }
  827. break;
  828. case SMR2_output_voltage:
  829. switch (uart_rx_buffer[7])
  830. {
  831. case 1:
  832. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] & 0xff;
  833. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] >> 8) & 0xff;
  834. break;
  835. case 2:
  836. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] & 0xff;
  837. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] >> 8) & 0xff;
  838. break;
  839. default:
  840. break;
  841. }
  842. break;
  843. case SMR3_output_voltage:
  844. switch (uart_rx_buffer[7])
  845. {
  846. case 1:
  847. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] & 0xff;
  848. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] >> 8) & 0xff;
  849. break;
  850. case 2:
  851. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] & 0xff;
  852. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] >> 8) & 0xff;
  853. break;
  854. default:
  855. break;
  856. }
  857. break;
  858. case SMR4_output_voltage:
  859. switch (uart_rx_buffer[7])
  860. {
  861. case 1:
  862. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] & 0xff;
  863. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] >> 8) & 0xff;
  864. break;
  865. case 2:
  866. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] & 0xff;
  867. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] >> 8) & 0xff;
  868. break;
  869. default:
  870. break;
  871. }
  872. break;
  873. case SMR5_output_voltage:
  874. switch (uart_rx_buffer[7])
  875. {
  876. case 1:
  877. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] & 0xff;
  878. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] >> 8) & 0xff;
  879. break;
  880. case 2:
  881. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] & 0xff;
  882. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] >> 8) & 0xff;
  883. break;
  884. default:
  885. break;
  886. }
  887. break;
  888. case SMR6_output_voltage:
  889. switch (uart_rx_buffer[7])
  890. {
  891. case 1:
  892. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] & 0xff;
  893. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] >> 8) & 0xff;
  894. break;
  895. case 2:
  896. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] & 0xff;
  897. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] >> 8) & 0xff;
  898. break;
  899. default:
  900. break;
  901. }
  902. break;
  903. case GFD_Resister_Left:
  904. switch (uart_rx_buffer[7])
  905. {
  906. case 1:
  907. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] & 0xff;
  908. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] >> 8) & 0xff;
  909. break;
  910. case 2:
  911. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] & 0xff;
  912. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] >> 8) & 0xff;
  913. break;
  914. default:
  915. break;
  916. }
  917. break;
  918. case GFD_Resister_Right:
  919. switch (uart_rx_buffer[7])
  920. {
  921. case 1:
  922. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] & 0xff;
  923. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] >> 8) & 0xff;
  924. break;
  925. case 2:
  926. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] & 0xff;
  927. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] >> 8) & 0xff;
  928. break;
  929. default:
  930. break;
  931. }
  932. break;
  933. default:
  934. break;
  935. }
  936. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  937. {
  938. chksum ^= tx[(6 + idx)];
  939. }
  940. tx[10] = chksum;
  941. break;
  942. /*--------------------------------------------
  943. Config message
  944. --------------------------------------------*/
  945. case PROTOCOL_MESSAGE_CONFIG_MODEL_NAME:
  946. nGun = 0;
  947. for (int i=7; i<=9; i++){
  948. if(uart_rx_buffer[(6+i)] != '0')
  949. nGun += 1;
  950. }
  951. for (int i = 0;i<14;i++){
  952. ModelName[i] = uart_rx_buffer[(6+i)];
  953. }
  954. ModelName[14] = 0;
  955. if(memcmp(ModelName,Module_Info.memory.Module_Config.data.item.Modelname,14) != 0){
  956. memcpy(Module_Info.memory.Module_Config.data.item.Modelname,ModelName,14);
  957. Module_Info.memory.Module_Config.op_bits.update = ON;
  958. Module_Info.memory.Module_Config.op_bits.modelname = ON;
  959. }
  960. tx_len = 8;
  961. tx[0] = 0xaa;
  962. tx[1] = PROTOCOL_ADDR;
  963. tx[2] = uart_rx_buffer[1];
  964. tx[3] = PROTOCOL_MESSAGE_CONFIG_MODEL_NAME;
  965. tx[4] = 0x01;
  966. tx[5] = 0x00;
  967. tx[6] = 0x01;
  968. tx[7] = 0x01;
  969. break;
  970. case PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT:
  971. Module_Info.Relay_IO.All = (((uint64_t)uart_rx_buffer[12] << 48) | ((uint64_t)uart_rx_buffer[11] << 40) | ((uint64_t)uart_rx_buffer[10]<< 32) |
  972. ((uint64_t)uart_rx_buffer[9] << 24) | ((uint64_t)uart_rx_buffer[8] << 16) | ((uint64_t)uart_rx_buffer[7]<< 8) |
  973. ((uint64_t)uart_rx_buffer[6] )) ;
  974. tx_len = 8;
  975. tx[0] = 0xaa;
  976. tx[1] = PROTOCOL_ADDR;
  977. tx[2] = uart_rx_buffer[1];
  978. tx[3] = uart_rx_buffer[3];
  979. tx[4] = 0x01;
  980. tx[5] = 0x00;
  981. tx[6] = 0x01;
  982. tx[7] = 0x01;
  983. OpFlag.bRelay_Config_Change = ON;
  984. break;
  985. case PROTOCOL_MESSAGE_CONFIG_BRIDGE_RELAY_OUTPUT:
  986. Module_Info.Relay_IO.All = (((uint64_t)uart_rx_buffer[11] << 40) | ((uint64_t)uart_rx_buffer[10] << 32) | ((uint64_t)uart_rx_buffer[9]<< 24) |
  987. ((uint64_t)uart_rx_buffer[8] << 16) | ((uint64_t)uart_rx_buffer[7] << 8) | ((uint64_t)uart_rx_buffer[6]));
  988. tx_len = 8;
  989. tx[0] = 0xaa;
  990. tx[1] = PROTOCOL_ADDR;
  991. tx[2] = uart_rx_buffer[1];
  992. tx[3] = uart_rx_buffer[3];
  993. tx[4] = 0x01;
  994. tx[5] = 0x00;
  995. tx[6] = 0x01;
  996. tx[7] = 0x01;
  997. OpFlag.bRelay_Config_Change = ON;
  998. break;
  999. case PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT:
  1000. Module_Info.Gpio_status.All = uart_rx_buffer[6];
  1001. tx_len = 8;
  1002. tx[0] = 0xaa;
  1003. tx[1] = PROTOCOL_ADDR;
  1004. tx[2] = uart_rx_buffer[1];
  1005. tx[3] = PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT;
  1006. tx[4] = 0x01;
  1007. tx[5] = 0x00;
  1008. tx[6] = 0x01;
  1009. tx[7] = 0x01;
  1010. break;
  1011. case PROTOCOL_MESSAGE_CONFIG_SN:
  1012. for (int idx = 0; idx < ((uart_rx_buffer[4] | uart_rx_buffer[5] << 8) >> 1); idx++)
  1013. Module_Info.SN[idx] = uart_rx_buffer[(idx + 6)];
  1014. tx_len = 8;
  1015. tx[0] = 0xaa;
  1016. tx[1] = PROTOCOL_ADDR;
  1017. tx[2] = uart_rx_buffer[1];
  1018. tx[3] = PROTOCOL_MESSAGE_CONFIG_SN;
  1019. tx[4] = 0x01;
  1020. tx[5] = 0x00;
  1021. tx[6] = 0x01;
  1022. tx[7] = 0x01;
  1023. break;
  1024. case PROTOCOL_MESSAGE_CONFIG_GFD_VALUE:
  1025. tx_len = 8;
  1026. tx[0] = 0xaa;
  1027. tx[1] = PROTOCOL_ADDR;
  1028. tx[2] = uart_rx_buffer[1];
  1029. tx[3] = PROTOCOL_MESSAGE_CONFIG_GFD_VALUE;
  1030. tx[4] = 0x01;
  1031. tx[5] = 0x00;
  1032. tx[6] = 0x01;
  1033. switch (uart_rx_buffer[6])
  1034. {
  1035. case 0: // Left gun
  1036. Module_Info.gfd_chk[0].Csu_State = uart_rx_buffer[7];
  1037. tx[7] = 0x01;
  1038. break;
  1039. case 1: // Right gun
  1040. Module_Info.gfd_chk[1].Csu_State = uart_rx_buffer[7];
  1041. tx[7] = 0x01;
  1042. break;
  1043. default:
  1044. Module_Info.gfd_chk[0].Csu_State = 0;
  1045. Module_Info.gfd_chk[1].Csu_State = 0;
  1046. tx[7] = 0x00;
  1047. break;
  1048. }
  1049. break;
  1050. case PROTOCOL_MESSAGE_CONFIG_GFD_MODE:
  1051. tx_len = 8;
  1052. tx[0] = 0xaa;
  1053. tx[1] = PROTOCOL_ADDR;
  1054. tx[2] = uart_rx_buffer[1];
  1055. tx[3] = PROTOCOL_MESSAGE_CONFIG_GFD_MODE;
  1056. tx[4] = 0x01;
  1057. tx[5] = 0x00;
  1058. tx[6] = 0x01;
  1059. switch(uart_rx_buffer[6])
  1060. {
  1061. case 0: // Left gun
  1062. Gfd.GfdMode[0] = uart_rx_buffer[7];
  1063. tx[7] = 0x01;
  1064. if(Gfd.GfdOldMode[0] != Gfd.GfdMode[0]){
  1065. Gfd.GfdOldMode[0] = Gfd.GfdMode[0];
  1066. if(Gfd.GfdMode[0] !=0){
  1067. printf("Set SMR1 GFD Mode : %s\n\r", Gfd.GfdMode[0] == GFD_BALANCE ? "Balance" : "Unbalance");
  1068. }else{
  1069. printf("Set SMR1 GFD Mode : OFF\n\r");
  1070. }
  1071. }
  1072. break;
  1073. case 1: // Right gun
  1074. Gfd.GfdMode[1] = uart_rx_buffer[7];
  1075. tx[7] = 0x01;
  1076. if(Gfd.GfdOldMode[1] != Gfd.GfdMode[1]){
  1077. Gfd.GfdOldMode[1] = Gfd.GfdMode[1];
  1078. if(Gfd.GfdMode[1] !=0){
  1079. printf("Set SMR2 GFD Mode : %s\n\r", Gfd.GfdMode[1] == GFD_BALANCE ? "Balance" : "Unbalance");
  1080. }else{
  1081. printf("Set SMR2 GFD Mode : OFF\n\r");
  1082. }
  1083. }
  1084. break;
  1085. default:
  1086. Module_Info.gfd_chk[0].Csu_State = 0;
  1087. Module_Info.gfd_chk[1].Csu_State = 0;
  1088. tx[7] = 0x00;
  1089. break;
  1090. }
  1091. break;
  1092. case PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST:
  1093. tx_len = 8;
  1094. tx[0] = 0xaa;
  1095. tx[1] = PROTOCOL_ADDR;
  1096. tx[2] = uart_rx_buffer[1];
  1097. tx[3] = PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST;
  1098. tx[4] = 1;
  1099. tx[5] = 0;
  1100. tx[6] = sf_t.SF_Config.SF_Act = 1;
  1101. tx[7] = 1;
  1102. sf_t.SF_Config.SF_State = 0;
  1103. sf_t.SF_Config.data.value = 0;
  1104. sf_t.SF_Config.SF_test_status = 2; // Unknow
  1105. break;
  1106. case PROTOCOL_MESSAGE_CONFIG_PARAMETER:
  1107. tx_len = 8;
  1108. tx[0] = 0xaa;
  1109. tx[1] = PROTOCOL_ADDR;
  1110. tx[2] = uart_rx_buffer[1];
  1111. tx[3] = PROTOCOL_MESSAGE_CONFIG_PARAMETER;
  1112. tx[4] = 0x01;
  1113. tx[5] = 0x00;
  1114. tx[6] = 0x01;
  1115. // Default the result.
  1116. tx[7] = 0x01;
  1117. temp = uart_rx_buffer[8] | (uart_rx_buffer[9] << 8);
  1118. switch (uart_rx_buffer[6])
  1119. {
  1120. case Input_L1_AC_voltage:
  1121. switch (uart_rx_buffer[7])
  1122. {
  1123. case 1:
  1124. Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] = temp;
  1125. Module_Info.memory.Module_Config.data.item.Correction_Volt[0][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
  1126. break;
  1127. case 2:
  1128. Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] = temp;
  1129. Module_Info.memory.Module_Config.data.item.Correction_Volt[1][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
  1130. break;
  1131. case 3:
  1132. Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] = temp;
  1133. Module_Info.memory.Module_Config.data.item.Correction_Volt[2][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
  1134. break;
  1135. case 10:
  1136. Module_Info.memory.Module_Config.op_bits.read = ON;
  1137. break;
  1138. default:
  1139. break;
  1140. }
  1141. break;
  1142. case Input_L2_AC_voltage:
  1143. switch (uart_rx_buffer[7])
  1144. {
  1145. case 1:
  1146. Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] = temp;
  1147. Module_Info.memory.Module_Config.data.item.Correction_Volt[3][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
  1148. break;
  1149. case 2:
  1150. Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] = temp;
  1151. Module_Info.memory.Module_Config.data.item.Correction_Volt[4][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
  1152. break;
  1153. case 3:
  1154. Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] = temp;
  1155. Module_Info.memory.Module_Config.data.item.Correction_Volt[5][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
  1156. break;
  1157. default:
  1158. break;
  1159. }
  1160. break;
  1161. case Input_L3_AC_voltage:
  1162. switch (uart_rx_buffer[7])
  1163. {
  1164. case 1:
  1165. Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] = temp;
  1166. Module_Info.memory.Module_Config.data.item.Correction_Volt[6][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
  1167. break;
  1168. case 2:
  1169. Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] = temp;
  1170. Module_Info.memory.Module_Config.data.item.Correction_Volt[7][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
  1171. break;
  1172. case 3:
  1173. Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] = temp;
  1174. Module_Info.memory.Module_Config.data.item.Correction_Volt[8][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
  1175. break;
  1176. default:
  1177. break;
  1178. }
  1179. break;
  1180. case SMR1_output_voltage:
  1181. switch (uart_rx_buffer[7])
  1182. {
  1183. case 1:
  1184. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] = temp;
  1185. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN0.value * vsense1 / 10.0);
  1186. break;
  1187. case 2:
  1188. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] = temp;
  1189. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN0.value * vsense1 / 10.0);
  1190. break;
  1191. // reset coefficient to orginal.
  1192. case 9:
  1193. Module_Info.DCVcoeff[0].gain_volt = 1;
  1194. Module_Info.DCVcoeff[0].offset_volt = 0;
  1195. break;
  1196. case 10:
  1197. Module_Info.memory.Module_Config.op_bits.read = ON;
  1198. break;
  1199. default:
  1200. break;
  1201. }
  1202. break;
  1203. case SMR2_output_voltage:
  1204. switch (uart_rx_buffer[7])
  1205. {
  1206. case 1:
  1207. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] = temp;
  1208. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN2.value * vsense1 / 10.0);
  1209. break;
  1210. case 2:
  1211. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] = temp;
  1212. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN2.value * vsense1 / 10.0);
  1213. break;
  1214. // reset coefficient to orginal.
  1215. case 9:
  1216. Module_Info.DCVcoeff[1].gain_volt = 1;
  1217. Module_Info.DCVcoeff[1].offset_volt = 0;
  1218. break;
  1219. case 10:
  1220. Module_Info.memory.Module_Config.op_bits.read = ON;
  1221. break;
  1222. default:
  1223. break;
  1224. }
  1225. break;
  1226. case SMR3_output_voltage:
  1227. switch (uart_rx_buffer[7])
  1228. {
  1229. case 1:
  1230. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] = temp;
  1231. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN5.value * vsense1 / 10.0);
  1232. break;
  1233. case 2:
  1234. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] = temp;
  1235. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN5.value * vsense1 / 10.0);
  1236. break;
  1237. // reset coefficient to orginal.
  1238. case 9:
  1239. Module_Info.DCVcoeff[2].gain_volt = 1;
  1240. Module_Info.DCVcoeff[2].offset_volt = 0;
  1241. break;
  1242. case 10:
  1243. Module_Info.memory.Module_Config.op_bits.read = ON;
  1244. break;
  1245. default:
  1246. break;
  1247. }
  1248. break;
  1249. case SMR4_output_voltage:
  1250. switch (uart_rx_buffer[7])
  1251. {
  1252. case 1:
  1253. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] = temp;
  1254. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN6.value * vsense1 / 10.0);
  1255. break;
  1256. case 2:
  1257. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] = temp;
  1258. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN6.value * vsense1 / 10.0);
  1259. break;
  1260. // reset coefficient to orginal.
  1261. case 9:
  1262. Module_Info.DCVcoeff[3].gain_volt = 1;
  1263. Module_Info.DCVcoeff[3].offset_volt = 0;
  1264. break;
  1265. case 10:
  1266. Module_Info.memory.Module_Config.op_bits.read = ON;
  1267. break;
  1268. default:
  1269. break;
  1270. }
  1271. break;
  1272. case SMR5_output_voltage:
  1273. switch (uart_rx_buffer[7])
  1274. {
  1275. case 1:
  1276. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] = temp;
  1277. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN7.value * vsense1 / 10.0);
  1278. break;
  1279. case 2:
  1280. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] = temp;
  1281. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN7.value * vsense1 / 10.0);
  1282. break;
  1283. // reset coefficient to orginal.
  1284. case 9:
  1285. Module_Info.DCVcoeff[4].gain_volt = 1;
  1286. Module_Info.DCVcoeff[4].offset_volt = 0;
  1287. break;
  1288. case 10:
  1289. Module_Info.memory.Module_Config.op_bits.read = ON;
  1290. break;
  1291. default:
  1292. break;
  1293. }
  1294. break;
  1295. case SMR6_output_voltage:
  1296. switch (uart_rx_buffer[7])
  1297. {
  1298. case 1:
  1299. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] = temp;
  1300. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN8.value * vsense1 / 10.0);
  1301. break;
  1302. case 2:
  1303. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] = temp;
  1304. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN8.value * vsense1 / 10.0);
  1305. break;
  1306. // reset coefficient to orginal.
  1307. case 9:
  1308. Module_Info.DCVcoeff[5].gain_volt = 1;
  1309. Module_Info.DCVcoeff[5].offset_volt = 0;
  1310. break;
  1311. case 10:
  1312. Module_Info.memory.Module_Config.op_bits.read = ON;
  1313. break;
  1314. default:
  1315. break;
  1316. }
  1317. break;
  1318. case GFD_Resister_Left:
  1319. switch (uart_rx_buffer[7])
  1320. {
  1321. case 1:
  1322. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] = temp;
  1323. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][MCU_DATA] = Module_Info.gfd_chk[0].R_GFD_v / 100;
  1324. break;
  1325. case 2:
  1326. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] = temp;
  1327. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][MCU_DATA] = Module_Info.gfd_chk[0].R_GFD_v / 100;
  1328. break;
  1329. case 9:
  1330. bGfd_Correct[0] = 1;
  1331. Module_Info.GFDcoeff[0].gain_volt = 1;
  1332. Module_Info.GFDcoeff[0].offset_volt = 0;
  1333. break;
  1334. case 10:
  1335. Module_Info.memory.Module_Config.op_bits.read = ON;
  1336. break;
  1337. case 11:
  1338. bGfd_Correct[0] = 1;
  1339. break;
  1340. default:
  1341. break;
  1342. }
  1343. break;
  1344. case GFD_Resister_Right:
  1345. switch (uart_rx_buffer[7])
  1346. {
  1347. case 1:
  1348. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] = temp;
  1349. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][MCU_DATA] = Module_Info.gfd_chk[1].R_GFD_v / 100;
  1350. break;
  1351. case 2:
  1352. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] = temp;
  1353. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][MCU_DATA] = Module_Info.gfd_chk[1].R_GFD_v / 100;
  1354. break;
  1355. case 9:
  1356. bGfd_Correct[1] = 1;
  1357. Module_Info.GFDcoeff[1].gain_volt = 1;
  1358. Module_Info.GFDcoeff[1].offset_volt = 0;
  1359. break;
  1360. case 10:
  1361. Module_Info.memory.Module_Config.op_bits.read = ON;
  1362. break;
  1363. case 11:
  1364. bGfd_Correct[1] = 1;
  1365. break;
  1366. default:
  1367. break;
  1368. }
  1369. break;
  1370. case Battery1_input_voltage:
  1371. switch(uart_rx_buffer[7])
  1372. {
  1373. case 1:
  1374. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][METER_DATA] = temp;
  1375. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA] = (uint16_t) ((double)adc_value.ADC3_IN8.value * vsense1 / 10.0);
  1376. break;
  1377. case 2:
  1378. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[1][METER_DATA] = temp;
  1379. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[1][MCU_DATA] = (uint16_t) ((double)adc_value.ADC3_IN8.value * vsense1 / 10.0);
  1380. break;
  1381. // reset coefficient to orginal.
  1382. case 9:
  1383. Module_Info.DCINcoeff.gain_volt = 1;
  1384. Module_Info.DCINcoeff.offset_volt = 0;
  1385. break;
  1386. case 10:
  1387. Module_Info.memory.Module_Config.op_bits.read = ON;
  1388. break;
  1389. default:
  1390. break;
  1391. }
  1392. break;
  1393. }
  1394. Module_Info.memory.Module_Config.op_bits.update = ON;
  1395. break;
  1396. /*-----------------------------------------
  1397. Firmware update message
  1398. ------------------------------------------*/
  1399. case PROTOCOL_MESSAGE_UPGRADE_START:
  1400. tx_len = 8;
  1401. tx[0] = 0xaa;
  1402. tx[1] = PROTOCOL_ADDR;
  1403. tx[2] = uart_rx_buffer[1];
  1404. tx[3] = PROTOCOL_MESSAGE_UPGRADE_START;
  1405. tx[4] = 0x01;
  1406. tx[5] = 0x00;
  1407. // binCRCTarget = (uart_rx_buffer[6] << 24) | (uart_rx_buffer[6] << 16) | (uart_rx_buffer[6] << 8) | (uart_rx_buffer[6] << 0);
  1408. flashdestination = NEW_CODE_ADDRESS;
  1409. if (FLASH_If_Erase(ADDR_FLASH_SECTOR_9, 3) == FLASHIF_OK)
  1410. {
  1411. #if defined(DEBUG) || defined(RTOS_STAT)
  1412. // DEBUG_INFO("Firmware transfer start, earase flash success....\n\r");
  1413. #endif
  1414. tx[6] = 0x01;
  1415. tx[7] = 0x01;
  1416. }
  1417. else
  1418. {
  1419. #if defined(DEBUG) || defined(RTOS_STAT)
  1420. // DEBUG_INFO("Firmware transfer start, earase flash fail....\n\r");
  1421. #endif
  1422. tx[6] = 0x00;
  1423. tx[7] = 0x00;
  1424. }
  1425. break;
  1426. case PROTOCOL_MESSAGE_UPGRADE_TRANS:
  1427. tx_len = 8;
  1428. tx[0] = 0xaa;
  1429. tx[1] = PROTOCOL_ADDR;
  1430. tx[2] = uart_rx_buffer[1];
  1431. tx[3] = PROTOCOL_MESSAGE_UPGRADE_TRANS;
  1432. tx[4] = 0x01;
  1433. tx[5] = 0x00;
  1434. flashdestination = NEW_CODE_ADDRESS + ((uart_rx_buffer[6] << 0) | (uart_rx_buffer[7] << 8) | (uart_rx_buffer[8] << 16) | (uart_rx_buffer[9] << 24));
  1435. if (FLASH_If_Write(flashdestination, (uint32_t *)&uart_rx_buffer[10], ((((uart_rx_buffer[4]) | (uart_rx_buffer[5]) << 8) - 4) >> 2)) == FLASHIF_OK)
  1436. {
  1437. #if defined(DEBUG) || defined(RTOS_STAT)
  1438. // DEBUG_INFO("Firmware transfer start address, length:0x%x, %d...Pass\n\r", flashdestination, (((uart_rx_buffer[4]) | (uart_rx_buffer[5])<<8)-4));
  1439. #endif
  1440. tx[6] = 0x01;
  1441. tx[7] = 0x01;
  1442. }
  1443. else
  1444. {
  1445. #if defined(DEBUG) || defined(RTOS_STAT)
  1446. // DEBUG_INFO("Firmware transfer start address, length:0x%x, %d...Fail\n\r", flashdestination, (((uart_rx_buffer[4]) | (uart_rx_buffer[5])<<8)-4));
  1447. #endif
  1448. tx[6] = 0x00;
  1449. tx[7] = 0x00;
  1450. }
  1451. break;
  1452. case PROTOCOL_MESSAGE_UPGRADE_STOP:
  1453. tx_len = 8;
  1454. tx[0] = 0xaa;
  1455. tx[1] = PROTOCOL_ADDR;
  1456. tx[2] = uart_rx_buffer[1];
  1457. tx[3] = PROTOCOL_MESSAGE_UPGRADE_STOP;
  1458. tx[4] = 0x01;
  1459. tx[5] = 0x00;
  1460. flash = NEW_CODE_ADDRESS;
  1461. crc32 = HAL_CRC_Calculate(&hcrc, (uint32_t *)flash, ((FLASH_AP_LENGTH - 4) >> 2));
  1462. flash = ((uint32_t)(NEW_CODE_ADDRESS + FLASH_AP_LENGTH - 4));
  1463. #if defined(DEBUG) || defined(RTOS_STAT)
  1464. // DEBUG_INFO("Firmware transfer end, AP CRC crc32, flash: 0x%x, 0x%x\r\n", crc32, *((uint32_t *)flash) );
  1465. #endif
  1466. if (crc32 == *((uint32_t *)flash))
  1467. {
  1468. if (FLASH_If_Write(UPGRADE_REQ_ADDRESS, (uint32_t *)&endFlag[0], 1) == FLASHIF_OK)
  1469. {
  1470. #if defined(DEBUG) || defined(RTOS_STAT)
  1471. // DEBUG_INFO("Firmware Confirm Tag write ok..\n\r");
  1472. #endif
  1473. tx[6] = 0x01;
  1474. tx[7] = 0x01;
  1475. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_SET);
  1476. osDelay(2);
  1477. HAL_UART_Transmit(&IAP_USART, (uint8_t *)tx, tx_len, 0xffff);
  1478. osDelay(2);
  1479. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_RESET);
  1480. osDelay(100);
  1481. NVIC_SystemReset();
  1482. }
  1483. else
  1484. {
  1485. #if defined(DEBUG) || defined(RTOS_STAT)
  1486. // DEBUG_INFO("Firmware Confirm Tag write fail...\n\r");
  1487. #endif
  1488. tx[6] = 0x00;
  1489. tx[7] = 0x00;
  1490. }
  1491. }
  1492. else
  1493. {
  1494. #if defined(DEBUG) || defined(RTOS_STAT)
  1495. // DEBUG_INFO("Firmware crc32 compare fail...\n\r");
  1496. #endif
  1497. tx[6] = 0x00;
  1498. tx[7] = 0x00;
  1499. }
  1500. break;
  1501. case PROTOCOL_MESSAGE_UPGRADE_ABOARD:
  1502. #if defined(DEBUG) || defined(RTOS_STAT)
  1503. // DEBUG_INFO("Firmware update transfer aboard...\n\r");
  1504. #endif
  1505. tx_len = 8;
  1506. tx[0] = 0xaa;
  1507. tx[1] = PROTOCOL_ADDR;
  1508. tx[2] = uart_rx_buffer[1];
  1509. tx[3] = PROTOCOL_MESSAGE_UPGRADE_ABOARD;
  1510. tx[4] = 0x01;
  1511. tx[5] = 0x00;
  1512. tx[6] = 0x01;
  1513. tx[7] = 0x01;
  1514. break;
  1515. default:
  1516. /* Todo: bin file receive aboard */
  1517. #if defined(DEBUG) || defined(RTOS_STAT)
  1518. // DEBUG_INFO("Protocol message unknow...\n\r");
  1519. #endif
  1520. tx_len = 8;
  1521. tx[0] = 0xaa;
  1522. tx[1] = PROTOCOL_ADDR;
  1523. tx[2] = uart_rx_buffer[1];
  1524. tx[3] = uart_rx_buffer[3];
  1525. tx[4] = 0x01;
  1526. tx[5] = 0x00;
  1527. tx[6] = 0x00;
  1528. tx[7] = 0x00;
  1529. break;
  1530. }
  1531. }
  1532. else
  1533. {
  1534. #if defined(DEBUG) || defined(RTOS_STAT)
  1535. // DEBUG_INFO("Protocol check sum is wrong...\n\r");
  1536. #endif
  1537. tx_len = 8;
  1538. tx[0] = 0xaa;
  1539. tx[1] = PROTOCOL_ADDR;
  1540. tx[2] = uart_rx_buffer[1];
  1541. tx[3] = uart_rx_buffer[3];
  1542. tx[4] = 0x01;
  1543. tx[5] = 0x00;
  1544. tx[6] = 0x00;
  1545. tx[7] = 0x00;
  1546. }
  1547. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_SET);
  1548. osDelay(2);
  1549. HAL_UART_Transmit(&IAP_USART, (uint8_t *)tx, tx_len, 0xffff);
  1550. osDelay(2);
  1551. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_RESET);
  1552. for (int i = 0; i < uart_rx_len; i++)
  1553. uart_rx_buffer[i] = 0;
  1554. uart_rx_len = 0;
  1555. }
  1556. uart_recv_end_flag = 0;
  1557. HAL_UART_Receive_DMA(&IAP_USART, uart_rx_buffer, UART_BUFFER_SIZE);
  1558. }
  1559. osDelay(1);
  1560. }
  1561. /* USER CODE END Uart1Task */
  1562. }
  1563. /* USER CODE BEGIN Header_Adc1Task */
  1564. /**
  1565. * @brief Function implementing the adc1Task thread.
  1566. * @param argument: Not used
  1567. * @retval None
  1568. */
  1569. /* USER CODE END Header_Adc1Task */
  1570. void Adc1Task(void const * argument)
  1571. {
  1572. /* USER CODE BEGIN Adc1Task */
  1573. uint16_t i;
  1574. /* Infinite loop */
  1575. for (;;)
  1576. {
  1577. if(bADC1_Done)
  1578. {
  1579. bADC1_Done = OFF;
  1580. for (i = 0;i < ADC1_CHANEL_COUNT;i++)
  1581. {
  1582. ADC1_Value[i] = 0;
  1583. }
  1584. for (i = 0; i < (ADC1_CHANEL_COUNT * ADC1_SAMPLE_COUNT);)
  1585. {
  1586. ADC1_Value[0] += ADC1_Buf[i++];
  1587. ADC1_Value[1] += ADC1_Buf[i++];
  1588. ADC1_Value[2] += ADC1_Buf[i++];
  1589. ADC1_Value[3] += ADC1_Buf[i++];
  1590. ADC1_Value[4] += ADC1_Buf[i++];
  1591. ADC1_Value[5] += ADC1_Buf[i++];
  1592. ADC1_Value[6] += ADC1_Buf[i++];
  1593. ADC1_Value[7] += ADC1_Buf[i++];
  1594. ADC1_Value[8] += ADC1_Buf[i++];
  1595. }
  1596. for (i = 0;i < ADC1_CHANEL_COUNT;i++)
  1597. {
  1598. ADC1_Value[i] /= ADC1_SAMPLE_COUNT;
  1599. }
  1600. HAL_ADC_Start_DMA(&hadc1, ADC1_Buf, (ADC1_SAMPLE_COUNT * ADC1_CHANEL_COUNT));
  1601. // Smooth Filter
  1602. adc_filter_move_avg(&adc_value.ADC1_IN0, ADC1_Value[0]);
  1603. adc_filter_move_avg(&adc_value.ADC1_IN1, ADC1_Value[1]);
  1604. adc_filter_move_avg(&adc_value.ADC1_IN2, ADC1_Value[2]);
  1605. adc_filter_move_avg(&adc_value.ADC1_IN3, ADC1_Value[3]);
  1606. adc_filter_move_avg(&adc_value.ADC1_IN4, ADC1_Value[4]);
  1607. adc_filter_move_avg(&adc_value.ADC1_IN5, ADC1_Value[5]);
  1608. adc_filter_move_avg(&adc_value.ADC1_IN6, ADC1_Value[6]);
  1609. adc_filter_move_avg(&adc_value.ADC1_IN7, ADC1_Value[7]);
  1610. adc_filter_move_avg(&adc_value.ADC1_IN8, ADC1_Value[8]);
  1611. // output result
  1612. Module_Info.SMR1_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN0.value * vsense1 * Module_Info.DCVcoeff[0].gain_volt) + Module_Info.DCVcoeff[0].offset_volt) / 10;
  1613. Module_Info.SMR2_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN2.value * vsense1 * Module_Info.DCVcoeff[1].gain_volt) + Module_Info.DCVcoeff[1].offset_volt) / 10;
  1614. Module_Info.SMR3_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN5.value * vsense1 * Module_Info.DCVcoeff[2].gain_volt) + Module_Info.DCVcoeff[2].offset_volt) / 10;
  1615. Module_Info.SMR4_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN6.value * vsense1 * Module_Info.DCVcoeff[3].gain_volt) + Module_Info.DCVcoeff[3].offset_volt) / 10;
  1616. Module_Info.SMR5_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN7.value * vsense1 * Module_Info.DCVcoeff[4].gain_volt) + Module_Info.DCVcoeff[4].offset_volt) / 10;
  1617. Module_Info.SMR6_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN8.value * vsense1 * Module_Info.DCVcoeff[5].gain_volt) + Module_Info.DCVcoeff[5].offset_volt) / 10;
  1618. c_vadc[0] = (float)(adc_value.ADC1_IN1.value * v_div);
  1619. c_vadc[1] = (float)(adc_value.ADC1_IN3.value * v_div);
  1620. Module_Info.SMR1_Relay_C = (uint32_t)(c_vadc[0] * vsense3) / 10;
  1621. Module_Info.SMR2_Relay_C = (uint32_t)(c_vadc[1] * vsense3) / 10;
  1622. // }
  1623. Module_Info.Vref_165 = (float)(adc_value.ADC1_IN4.value * v_div);
  1624. }
  1625. osDelay(1);
  1626. }
  1627. /* USER CODE END Adc1Task */
  1628. }
  1629. /* USER CODE BEGIN Header_Adc2Task */
  1630. /**
  1631. * @brief Function implementing the adc2Task thread.
  1632. * @param argument: Not used
  1633. * @retval None
  1634. */
  1635. /* USER CODE END Header_Adc2Task */
  1636. void Adc2Task(void const * argument)
  1637. {
  1638. /* USER CODE BEGIN Adc2Task */
  1639. uint16_t i, j;
  1640. /* Infinite loop */
  1641. for (;;)
  1642. {
  1643. // AC_Contactor off, will stop AC Converstion Calcuate.
  1644. // because of AC_Contactor on/off, the AC_Value will be wrong (746v).
  1645. // Sense 3-Phases voltage before AC-Contracor.
  1646. if (bADC2_Done)
  1647. {
  1648. for (i = 0, j = 0; i < (ADC2_CHANEL_COUNT * ADC2_SAMPLE_COUNT); i += ADC2_CHANEL_COUNT)
  1649. {
  1650. L1_ADC_Each_Value[j] = ADC2_Buf[(i + 0)];
  1651. L2_ADC_Each_Value[j] = ADC2_Buf[(i + 1)];
  1652. L3_ADC_Each_Value[j] = ADC2_Buf[(i + 2)];
  1653. j++;
  1654. }
  1655. HAL_ADC_Start_DMA(&hadc2, ADC2_Buf, (ADC2_SAMPLE_COUNT * ADC2_CHANEL_COUNT));
  1656. ADCSineCalculate2(L1_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[0], vsense2, 0);
  1657. ADCSineCalculate2(L2_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[1], vsense2, 1);
  1658. ADCSineCalculate2(L3_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[2], vsense2, 2);
  1659. // smooth filter
  1660. adc_filter_move_avg(&adc_value.ADC2_IN0, AC_Sine[0].Vrms);
  1661. adc_filter_move_avg(&adc_value.ADC2_IN1, AC_Sine[1].Vrms);
  1662. adc_filter_move_avg(&adc_value.ADC2_IN2, AC_Sine[2].Vrms);
  1663. // Patch the AC_GAIN
  1664. for (i = 0; i < 3; i++)
  1665. {
  1666. switch (i)
  1667. {
  1668. case 0:
  1669. AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN0.value / 10), i);
  1670. break;
  1671. case 1:
  1672. AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN1.value / 10), i);
  1673. break;
  1674. case 2:
  1675. AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN2.value / 10), i);
  1676. break;
  1677. default:
  1678. break;
  1679. }
  1680. }
  1681. // worng filiter
  1682. for (i = 0; i < 3; i++)
  1683. {
  1684. if (AC_Sine[i].Vrms_AVG >= 6000)
  1685. AC_Sine[i].Vrms_AVG = 0;
  1686. }
  1687. // Buffer clean
  1688. // memset(&ADC2_Buf[0], 0x00, ADC2_CHANEL_COUNT * ADC2_SAMPLE_COUNT);
  1689. // memset(&L1_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
  1690. // memset(&L2_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
  1691. // memset(&L3_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
  1692. // DMA restart
  1693. bADC2_Done = OFF;
  1694. }
  1695. osDelay(1);
  1696. }
  1697. /* USER CODE END Adc2Task */
  1698. }
  1699. /* USER CODE BEGIN Header_Adc3Task */
  1700. /**
  1701. * @brief Function implementing the adc3Task thread.
  1702. * @param argument: Not used
  1703. * @retval None
  1704. */
  1705. /* USER CODE END Header_Adc3Task */
  1706. void Adc3Task(void const * argument)
  1707. {
  1708. /* USER CODE BEGIN Adc3Task */
  1709. /* Infinite loop */
  1710. // Fail : <= 100ohm * 950v = 95K ohm
  1711. // Warning : <= 475K ohm & > 95K ohm
  1712. // Pass : > 500ohm * 950v = 475K ohm
  1713. for (;;)
  1714. {
  1715. float temp[2];
  1716. uint16_t i;
  1717. uint8_t gunindex;
  1718. uint32_t Relay_V;
  1719. // uint32_t R_GFD_Total[2];
  1720. if(bADC3_Done)
  1721. {
  1722. bADC3_Done = OFF;
  1723. for(i = 0, ADC3_Value[0]=0, ADC3_Value[1]=0, ADC3_Value[2]=0; i < (ADC3_CHANEL_COUNT*ADC3_SAMPLE_COUNT); )
  1724. {
  1725. ADC3_Value[0] += ADC3_Buf[i++];
  1726. ADC3_Value[1] += ADC3_Buf[i++];
  1727. ADC3_Value[2] += ADC3_Buf[i++];
  1728. }
  1729. ADC3_Value[0] /= ADC3_SAMPLE_COUNT; // GFD 1
  1730. ADC3_Value[1] /= ADC3_SAMPLE_COUNT; // GFD 2
  1731. ADC3_Value[2] /= ADC3_SAMPLE_COUNT; // Bat_Voltage
  1732. HAL_ADC_Start_DMA(&hadc3, ADC3_Buf, (ADC3_SAMPLE_COUNT * ADC3_CHANEL_COUNT));
  1733. // Smooth Filter
  1734. adc_filter_move_avg(&adc_value.ADC3_IN8, ADC3_Value[2]);
  1735. Module_Info.BAT_Voltage = (uint32_t) (((double)adc_value.ADC3_IN8.value * vsense1
  1736. * Module_Info.DCINcoeff.gain_volt) + Module_Info.DCINcoeff.offset_volt) / 10;
  1737. for(gunindex = 0 ; gunindex < 2 ; gunindex++){
  1738. if(gunindex == 0)
  1739. Relay_V = Module_Info.SMR1_Relay_V;
  1740. else
  1741. Relay_V = Module_Info.SMR2_Relay_V;
  1742. if(Gfd.operation[gunindex] == GFD_BALANCE && Gfd.SCBwaitfg[gunindex] == 0){
  1743. if(Module_Info.gfd_chk[gunindex].Csu_State != IDLE || bGfd_Correct[gunindex] == 1){
  1744. Module_Info.SMR_Gfd_Sense[gunindex] =(float) ADC3_Value[gunindex] * v_div;
  1745. if(Gfd.GfdAvgCount[gunindex] < 2){
  1746. Gfd.TotalGFDvalue[gunindex] += Module_Info.SMR_Gfd_Sense[gunindex];
  1747. Gfd.Gfdcount[gunindex]++;
  1748. }else{
  1749. if(Gfd.Gfdcount[gunindex] > Gfd.maxcount[gunindex])
  1750. Gfd.maxcount[gunindex] = Gfd.Gfdcount[gunindex];
  1751. if(Gfd.Gfdcount[gunindex] < Gfd.mincount[gunindex])
  1752. Gfd.mincount[gunindex] = Gfd.Gfdcount[gunindex];
  1753. if(Gfd.TotalGFDvalue[gunindex] > Gfd.maxgfdcount[gunindex])
  1754. Gfd.maxgfdcount[gunindex] = Gfd.TotalGFDvalue[gunindex];
  1755. if(Gfd.TotalGFDvalue[gunindex] < Gfd.mingfdcount[gunindex])
  1756. Gfd.mingfdcount[gunindex] = Gfd.TotalGFDvalue[gunindex];
  1757. Module_Info.SMR_Gfd_Sense[gunindex] = Gfd.TotalGFDvalue[gunindex] / Gfd.Gfdcount[gunindex];
  1758. Gfd.TotalGFDvalue[gunindex] = 0;
  1759. Gfd.Gfdcount[gunindex] = 0;
  1760. Gfd.GfdAvgCount[gunindex] = 0;
  1761. }
  1762. if(Relay_V > GFD_WORKING_VOLTAGE) // > 50v
  1763. {
  1764. if(Gfd.UpBridgeMaxV[gunindex] == 0){
  1765. Gfd.UpBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  1766. }
  1767. if(Gfd.UpBridgeMinV[gunindex] == 0){
  1768. Gfd.UpBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  1769. }
  1770. if(Module_Info.SMR_Gfd_Sense[gunindex] > Gfd.UpBridgeMaxV[gunindex]){
  1771. Gfd.UpBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  1772. }
  1773. if(Module_Info.SMR_Gfd_Sense[gunindex] < Gfd.UpBridgeMinV[gunindex]){
  1774. Gfd.UpBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  1775. }
  1776. temp[gunindex] = fabs(Module_Info.SMR_Gfd_Sense[gunindex] - Module_Info.Vref_165);
  1777. Module_Info.gfd_chk[gunindex].R_GFD = (uint32_t) ((double) Relay_V / 10.0 * GFD_RESISTOR_COEFFICIENT / temp[gunindex]) - 50018;
  1778. // if(Module_Info.gfd_chk[gunindex].R_GFD > 1000000)
  1779. // Module_Info.gfd_chk[gunindex].R_GFD = 1000000;
  1780. CalcuteGFDMaxMinValue(gunindex);
  1781. }
  1782. }
  1783. }
  1784. }
  1785. if(Gfd.operation[0] == GFD_UNBALANCE){
  1786. if(Module_Info.gfd_chk[0].Csu_State != IDLE || bGfd_Correct[0] == 1){
  1787. Module_Info.SMR_Gfd_Sense[0] =(float) ADC3_Value[0] * v_div;
  1788. if(Gfd.Gfdtimer < GFD_SWITCH_TIME-2 || (Gfd.Gfdtimer > GFD_SWITCH_TIME && Gfd.Gfdtimer < (GFD_SWITCH_TIME*2)-2)){
  1789. Gfd.TotalGFDvalue[0] = 0;
  1790. Gfd.Gfdcount[0] = 0;
  1791. }
  1792. if(Gfd.Gfdtimer >= GFD_SWITCH_TIME-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME ||
  1793. Gfd.Gfdtimer >= (GFD_SWITCH_TIME*2)-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME*2){
  1794. Gfd.TotalGFDvalue[0] += Module_Info.SMR_Gfd_Sense[0];
  1795. Gfd.Gfdcount[0]++;
  1796. }else if(Gfd.Gfdtimer >= GFD_SWITCH_TIME && Gfd.Gfdtimer < GFD_SWITCH_TIME+1 ||
  1797. Gfd.Gfdtimer >= GFD_SWITCH_TIME*2){
  1798. Module_Info.SMR_Gfd_Sense[0] = Gfd.TotalGFDvalue[0] / Gfd.Gfdcount[0];
  1799. }
  1800. if(Gfd.Gfdtimer >= GFD_SWITCH_TIME) // > 50v
  1801. {
  1802. //Re+=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U2;
  1803. //Re-=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U1
  1804. //U1 = |1.65-vadc+| / 8.2
  1805. //U2 = |1.65-vadc-| / 8.2
  1806. if(Gfd.Gfdtimer == GFD_SWITCH_TIME*2){
  1807. if(Module_Info.gfd_chk[1].Csu_State == IDLE){
  1808. Gfd.Gfdtimer = 0;
  1809. Gfd.GfdSwitch = 0;
  1810. }
  1811. // printf("2\n\r");
  1812. if(Module_Info.SMR1_Relay_V > GFD_WORKING_VOLTAGE){
  1813. if(Gfd.UpBridgeMaxV[0] == 0){
  1814. Gfd.UpBridgeMaxV[0] = Module_Info.SMR_Gfd_Sense[0];
  1815. }
  1816. if(Gfd.UpBridgeMinV[0] == 0){
  1817. Gfd.UpBridgeMinV[0] = Module_Info.SMR_Gfd_Sense[0];
  1818. }
  1819. if(Module_Info.SMR_Gfd_Sense[0] > Gfd.UpBridgeMaxV[0]){
  1820. Gfd.UpBridgeMaxV[0] = Module_Info.SMR_Gfd_Sense[0];
  1821. }
  1822. if(Module_Info.SMR_Gfd_Sense[0] < Gfd.UpBridgeMinV[0]){
  1823. Gfd.UpBridgeMinV[0] = Module_Info.SMR_Gfd_Sense[0];
  1824. }
  1825. Module_Info.gfd_chk[0].UP_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[0];
  1826. Module_Info.gfd_chk[0].U2_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[0].UP_BRIDGE_OP_V)/8.2;
  1827. if(Module_Info.gfd_chk[0].U1_V != 0){
  1828. Module_Info.gfd_chk[0].R_GFD = (uint32_t)(((Module_Info.SMR1_Relay_V /10 * Rsense) - (R1+Rsense)*(Module_Info.gfd_chk[0].U1_V + Module_Info.gfd_chk[0].U2_V))/Module_Info.gfd_chk[0].U2_V);
  1829. Module_Info.gfd_chk[0].P2PE_GFD = Module_Info.gfd_chk[0].R_GFD;
  1830. // Module_Info.gfd_chk[0].R_GFD = (uint32_t)(((Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[0].U1_V + Module_Info.gfd_chk[0].U2_V))/Module_Info.gfd_chk[0].U1_V);
  1831. // Module_Info.gfd_chk[0].N2PE_GFD = Module_Info.gfd_chk[0].R_GFD;
  1832. Module_Info.gfd_chk[0].U1_V = 0;
  1833. CalcuteGFDMaxMinValue(0);
  1834. }
  1835. }else{
  1836. // printf("1V:%d T:%d\n\r",Module_Info.SMR1_Relay_V,Gfd.Gfdtimer);
  1837. }
  1838. }else if(Gfd.Gfdtimer == GFD_SWITCH_TIME){
  1839. if(Module_Info.SMR1_Relay_V > GFD_WORKING_VOLTAGE){
  1840. // printf("1\n\r");
  1841. Module_Info.gfd_chk[0].DN_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[0];
  1842. Module_Info.gfd_chk[0].U1_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[0].DN_BRIDGE_OP_V)/8.2;
  1843. if(Module_Info.gfd_chk[0].U2_V != 0){
  1844. Module_Info.gfd_chk[0].R_GFD = (uint32_t)(((Module_Info.SMR1_Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[0].U1_V + Module_Info.gfd_chk[0].U2_V))/Module_Info.gfd_chk[0].U1_V);
  1845. Module_Info.gfd_chk[0].N2PE_GFD = Module_Info.gfd_chk[0].R_GFD;
  1846. Module_Info.gfd_chk[0].U2_V = 0;
  1847. CalcuteGFDMaxMinValue(0);
  1848. }
  1849. }else{
  1850. // printf("1V:%d T:%d\n\r",Module_Info.SMR1_Relay_V,Gfd.Gfdtimer);
  1851. }
  1852. }
  1853. }
  1854. }
  1855. }
  1856. if(Gfd.operation[1] == GFD_UNBALANCE){
  1857. if(Module_Info.gfd_chk[1].Csu_State != IDLE || bGfd_Correct[1] == 1){
  1858. Module_Info.SMR_Gfd_Sense[1] =(float) ADC3_Value[1] * v_div;
  1859. if((Gfd.Gfdtimer > GFD_SWITCH_TIME*2 && Gfd.Gfdtimer < (GFD_SWITCH_TIME*3)-2) ||
  1860. (Gfd.Gfdtimer > GFD_SWITCH_TIME*3 && Gfd.Gfdtimer < (GFD_SWITCH_TIME*4)-2)){
  1861. Gfd.TotalGFDvalue[1] = 0;
  1862. Gfd.Gfdcount[1] = 0;
  1863. }
  1864. if(Gfd.Gfdtimer >= (GFD_SWITCH_TIME*3)-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME*3 ||
  1865. Gfd.Gfdtimer >= (GFD_SWITCH_TIME*4)-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME*4){
  1866. Gfd.TotalGFDvalue[1] += Module_Info.SMR_Gfd_Sense[1];
  1867. Gfd.Gfdcount[1]++;
  1868. }else if(Gfd.Gfdtimer >= (GFD_SWITCH_TIME*3) && Gfd.Gfdtimer < (GFD_SWITCH_TIME*3)+1 ||
  1869. Gfd.Gfdtimer >= (GFD_SWITCH_TIME*4)){
  1870. Module_Info.SMR_Gfd_Sense[1] =Gfd.TotalGFDvalue[1] / Gfd.Gfdcount[1];
  1871. }
  1872. if(Gfd.Gfdtimer >= (GFD_SWITCH_TIME*3))
  1873. {
  1874. //Re+=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U2;
  1875. //Re-=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U1
  1876. //U1 = |1.65-vadc+| / 8.2
  1877. //U2 = |1.65-vadc-| / 8.2
  1878. if(Gfd.Gfdtimer == (GFD_SWITCH_TIME*4)){
  1879. // printf("4\n\r");
  1880. if(Module_Info.gfd_chk[0].Csu_State == IDLE){
  1881. Gfd.Gfdtimer = (GFD_SWITCH_TIME*2);
  1882. Gfd.GfdSwitch = 2;
  1883. }else{
  1884. Gfd.Gfdtimer = 0;
  1885. Gfd.GfdSwitch = 0;
  1886. }
  1887. if(Module_Info.SMR2_Relay_V > GFD_WORKING_VOLTAGE){
  1888. if(Gfd.UpBridgeMaxV[1] == 0){
  1889. Gfd.UpBridgeMaxV[1] = Module_Info.SMR_Gfd_Sense[1];
  1890. }
  1891. if(Gfd.UpBridgeMinV[1] == 0){
  1892. Gfd.UpBridgeMinV[1] = Module_Info.SMR_Gfd_Sense[1];
  1893. }
  1894. if(Module_Info.SMR_Gfd_Sense[1] > Gfd.UpBridgeMaxV[1]){
  1895. Gfd.UpBridgeMaxV[1] = Module_Info.SMR_Gfd_Sense[1];
  1896. }
  1897. if(Module_Info.SMR_Gfd_Sense[1] < Gfd.UpBridgeMinV[1]){
  1898. Gfd.UpBridgeMinV[1] = Module_Info.SMR_Gfd_Sense[1];
  1899. }
  1900. Module_Info.gfd_chk[1].UP_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[1];
  1901. Module_Info.gfd_chk[1].U2_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[1].UP_BRIDGE_OP_V)/8.2;
  1902. if(Module_Info.gfd_chk[1].U1_V != 0){
  1903. Module_Info.gfd_chk[1].R_GFD = (uint32_t)(((Module_Info.SMR2_Relay_V /10 * Rsense) - (R1+Rsense)*(Module_Info.gfd_chk[1].U1_V + Module_Info.gfd_chk[1].U2_V))/Module_Info.gfd_chk[1].U2_V);
  1904. Module_Info.gfd_chk[1].P2PE_GFD = Module_Info.gfd_chk[1].R_GFD;
  1905. // Module_Info.gfd_chk[1].R_GFD = (uint32_t)(((Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[1].U1_V + Module_Info.gfd_chk[1].U2_V))/Module_Info.gfd_chk[1].U1_V);
  1906. // Module_Info.gfd_chk[1].N2PE_GFD = Module_Info.gfd_chk[1].R_GFD;
  1907. Module_Info.gfd_chk[1].U1_V = 0;
  1908. CalcuteGFDMaxMinValue(1);
  1909. }
  1910. }else{
  1911. // printf("2V:%d T:%d\n\r",Module_Info.SMR2_Relay_V,Gfd.Gfdtimer);
  1912. }
  1913. }else if(Gfd.Gfdtimer == (GFD_SWITCH_TIME*3)){
  1914. // printf("3\n\r");
  1915. if(Module_Info.SMR2_Relay_V > GFD_WORKING_VOLTAGE){
  1916. Module_Info.gfd_chk[1].DN_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[1];
  1917. Module_Info.gfd_chk[1].U1_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[1].DN_BRIDGE_OP_V)/8.2;
  1918. if(Module_Info.gfd_chk[1].U2_V != 0){
  1919. Module_Info.gfd_chk[1].R_GFD = (uint32_t)(((Module_Info.SMR2_Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[1].U1_V + Module_Info.gfd_chk[1].U2_V))/Module_Info.gfd_chk[1].U1_V);
  1920. Module_Info.gfd_chk[1].N2PE_GFD = Module_Info.gfd_chk[1].R_GFD;
  1921. Module_Info.gfd_chk[1].U2_V = 0;
  1922. CalcuteGFDMaxMinValue(1);
  1923. }
  1924. }else{
  1925. // printf("2V:%d T:%d\n\r",Module_Info.SMR2_Relay_V,Gfd.Gfdtimer);
  1926. }
  1927. }
  1928. }
  1929. }
  1930. }
  1931. for(gunindex = 0 ; gunindex < 2 ; gunindex++){
  1932. if(Gfd.GfdMode[gunindex] == GFD_UNBALANCE){
  1933. if(Gfd.operation[gunindex] == GFD_OFF || Module_Info.gfd_chk[gunindex].Csu_State == IDLE){
  1934. Gfd.UpBridgeMaxV[gunindex] = 0;
  1935. Gfd.UpBridgeMinV[gunindex] = 0;
  1936. Gfd.DnBridgeMaxV[gunindex] = 0;
  1937. Gfd.DnBridgeMinV[gunindex] = 0;
  1938. Gfd.MaxP2PE[gunindex] = 0;
  1939. Gfd.MinP2PE[gunindex] = 0;
  1940. Gfd.MaxN2PE[gunindex] = 0;
  1941. Gfd.MinN2PE[gunindex] = 0;
  1942. Module_Info.gfd_chk[gunindex].R_GFD = 0;
  1943. Module_Info.gfd_chk[gunindex].P2PE_GFD = 0;
  1944. Module_Info.gfd_chk[gunindex].N2PE_GFD = 0;
  1945. Gfd.TotalGFDvalue[gunindex] = 0;
  1946. Gfd.Gfdcount[gunindex] = 0;
  1947. Gfd.GfdAvgCount[gunindex] = 0;
  1948. }
  1949. }
  1950. }
  1951. // bADC3_Done = OFF;
  1952. // HAL_ADC_Start_DMA(&hadc3, ADC3_Buf, (ADC3_SAMPLE_COUNT * ADC3_CHANEL_COUNT));
  1953. }
  1954. osDelay(1);
  1955. }
  1956. /* USER CODE END Adc3Task */
  1957. }
  1958. /* USER CODE BEGIN Header_GpioTask */
  1959. /**
  1960. * @brief Function implementing the gpioTask thread.
  1961. * @param argument: Not used
  1962. * @retval None
  1963. */
  1964. /* USER CODE END Header_GpioTask */
  1965. void GpioTask(void const * argument)
  1966. {
  1967. /* USER CODE BEGIN GpioTask */
  1968. /* Infinite loop */
  1969. for (;;)
  1970. {
  1971. HAL_IWDG_Refresh(&hiwdg);
  1972. #if 0
  1973. // Output test
  1974. IOdebug();
  1975. #endif
  1976. if (OpFlag.bRelay_Config_Change == ON)
  1977. {
  1978. OpFlag.bRelay_Config_Change = OFF;
  1979. // =================( SMR1_Relay_n )=======================
  1980. if (Module_Info.Relay_IO.flags.SMR1_relay_n == ON){
  1981. if (!Exti.EXTI_SMR1_Flag || (Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1982. Exti.EXTI_SMR1_Flag = false;
  1983. EXTI_SMR1_Count= 0;
  1984. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_SET);
  1985. printf(" 1N ON\r\n");
  1986. if(!RelayStatus.SMR1_relay_n)
  1987. {
  1988. osDelay(Multi_Relay_Delay_Time);
  1989. RelayStatus.SMR1_relay_n = true;
  1990. }
  1991. }else if(Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count < WeldingCMDDelay){ //Reset count
  1992. EXTI_SMR1_Count = 0;
  1993. }
  1994. }
  1995. else{
  1996. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  1997. RelayStatus.SMR1_relay_n = false;
  1998. printf(" 1N OFF\r\n");
  1999. }
  2000. // =================( SMR1_Relay_p )=======================
  2001. if (Module_Info.Relay_IO.flags.SMR1_relay_p == ON){
  2002. if (!Exti.EXTI_SMR1_Flag || (Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2003. Exti.EXTI_SMR1_Flag = false;
  2004. EXTI_SMR1_Count= 0;
  2005. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2006. printf(" 1P ON\r\n");
  2007. if(!RelayStatus.SMR1_relay_p)
  2008. {
  2009. osDelay(Multi_Relay_Delay_Time);
  2010. RelayStatus.SMR1_relay_p = true;
  2011. }
  2012. }else if(Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count < WeldingCMDDelay){ //Reset count
  2013. EXTI_SMR1_Count = 0;
  2014. }
  2015. }
  2016. else
  2017. {
  2018. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2019. RelayStatus.SMR1_relay_p = false;
  2020. printf(" 1P OFF\r\n");
  2021. }
  2022. // =================( SMR2_Relay_n )=======================
  2023. if (Module_Info.Relay_IO.flags.SMR2_relay_n == ON){
  2024. if (!Exti.EXTI_SMR2_Flag || (Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2025. Exti.EXTI_SMR2_Flag = false;
  2026. EXTI_SMR2_Count= 0;
  2027. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_SET);
  2028. printf(" 2N ON\r\n");
  2029. if(!RelayStatus.SMR2_relay_n)
  2030. {
  2031. osDelay(Multi_Relay_Delay_Time);
  2032. RelayStatus.SMR2_relay_n = true;
  2033. }
  2034. }else if(Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count < WeldingCMDDelay){ //Reset count
  2035. EXTI_SMR2_Count = 0;
  2036. }
  2037. }
  2038. else
  2039. {
  2040. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2041. RelayStatus.SMR2_relay_n = false;
  2042. printf(" 2N OFF\r\n");
  2043. }
  2044. // =================( SMR2_Relay_p )=======================
  2045. if (Module_Info.Relay_IO.flags.SMR2_relay_p == ON){
  2046. if (!Exti.EXTI_SMR2_Flag || (Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2047. Exti.EXTI_SMR2_Flag = false;
  2048. EXTI_SMR2_Count= 0;
  2049. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2050. printf(" 2P ON\r\n");
  2051. if(!RelayStatus.SMR2_relay_p)
  2052. {
  2053. osDelay(Multi_Relay_Delay_Time);
  2054. RelayStatus.SMR2_relay_p = true;
  2055. }
  2056. }else if(Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count < WeldingCMDDelay){ //Reset count
  2057. EXTI_SMR2_Count = 0;
  2058. }
  2059. }
  2060. else
  2061. {
  2062. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2063. RelayStatus.SMR2_relay_p = false;
  2064. printf(" 2P OFF\r\n");
  2065. }
  2066. // =================( SMR3_Relay_n )=======================
  2067. if (Module_Info.Relay_IO.flags.SMR3_relay_n == ON){
  2068. if (!Exti.EXTI_SMR3_Flag || (Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2069. Exti.EXTI_SMR3_Flag = false;
  2070. EXTI_SMR3_Count= 0;
  2071. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_SET);
  2072. printf(" 3N ON\r\n");
  2073. if(!RelayStatus.SMR3_relay_n)
  2074. {
  2075. osDelay(Multi_Relay_Delay_Time);
  2076. RelayStatus.SMR3_relay_n = true;
  2077. }
  2078. }else if(Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count < WeldingCMDDelay){ //Reset count
  2079. EXTI_SMR3_Count = 0;
  2080. }
  2081. }
  2082. else
  2083. {
  2084. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2085. RelayStatus.SMR3_relay_n = false;
  2086. printf(" 3N OFF\r\n");
  2087. }
  2088. // =================( SMR3_Relay_p )=======================
  2089. if (Module_Info.Relay_IO.flags.SMR3_relay_p == ON){
  2090. if (!Exti.EXTI_SMR3_Flag || (Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2091. Exti.EXTI_SMR3_Flag = false;
  2092. EXTI_SMR3_Count= 0;
  2093. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2094. printf(" 3P ON\r\n");
  2095. if(!RelayStatus.SMR3_relay_p)
  2096. {
  2097. osDelay(Multi_Relay_Delay_Time);
  2098. RelayStatus.SMR3_relay_p = true;
  2099. }
  2100. }else if(Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count < WeldingCMDDelay){ //Reset count
  2101. EXTI_SMR3_Count = 0;
  2102. }
  2103. }
  2104. else
  2105. {
  2106. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2107. RelayStatus.SMR3_relay_p = false;
  2108. printf(" 3P OFF\r\n");
  2109. }
  2110. // =================( SMR4_Relay_n )=======================
  2111. if (Module_Info.Relay_IO.flags.SMR4_relay_n == ON){
  2112. if (!Exti.EXTI_SMR4_Flag || (Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2113. Exti.EXTI_SMR4_Flag = false;
  2114. EXTI_SMR4_Count= 0;
  2115. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_SET);
  2116. printf(" 4N ON\r\n");
  2117. if(!RelayStatus.SMR4_relay_n)
  2118. {
  2119. osDelay(Multi_Relay_Delay_Time);
  2120. RelayStatus.SMR4_relay_n = true;
  2121. }
  2122. }else if(Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count < WeldingCMDDelay){ //Reset count
  2123. EXTI_SMR4_Count = 0;
  2124. }
  2125. }
  2126. else
  2127. {
  2128. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2129. RelayStatus.SMR4_relay_n = false;
  2130. printf(" 4N OFF\r\n");
  2131. }
  2132. // =================( SMR4_Relay_p )=======================
  2133. if (Module_Info.Relay_IO.flags.SMR4_relay_p == ON){
  2134. if (!Exti.EXTI_SMR4_Flag || (Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2135. Exti.EXTI_SMR4_Flag = false;
  2136. EXTI_SMR4_Count= 0;
  2137. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2138. printf(" 4P ON\r\n");
  2139. if(!RelayStatus.SMR4_relay_p)
  2140. {
  2141. osDelay(Multi_Relay_Delay_Time);
  2142. RelayStatus.SMR4_relay_p = true;
  2143. }
  2144. }else if(Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count < WeldingCMDDelay){ //Reset count
  2145. EXTI_SMR4_Count = 0;
  2146. }
  2147. }
  2148. else
  2149. {
  2150. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2151. RelayStatus.SMR4_relay_p = false;
  2152. printf(" 4P OFF\r\n");
  2153. }
  2154. // =================( SMR5_Relay_n )=======================
  2155. if (Module_Info.Relay_IO.flags.SMR5_relay_n == ON){
  2156. if (!Exti.EXTI_SMR5_Flag || (Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2157. Exti.EXTI_SMR5_Flag = false;
  2158. EXTI_SMR5_Count= 0;
  2159. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_SET);
  2160. printf(" 5N ON\r\n");
  2161. if(!RelayStatus.SMR5_relay_n)
  2162. {
  2163. osDelay(Multi_Relay_Delay_Time);
  2164. RelayStatus.SMR5_relay_n = true;
  2165. }
  2166. }else if(Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count < WeldingCMDDelay){ //Reset count
  2167. EXTI_SMR5_Count = 0;
  2168. }
  2169. }
  2170. else
  2171. {
  2172. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2173. RelayStatus.SMR5_relay_n = false;
  2174. printf(" 5N OFF\r\n");
  2175. }
  2176. // =================( SMR5_Relay_p )=======================
  2177. if (Module_Info.Relay_IO.flags.SMR5_relay_p == ON){
  2178. if (!Exti.EXTI_SMR5_Flag || (Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2179. Exti.EXTI_SMR5_Flag = false;
  2180. EXTI_SMR5_Count= 0;
  2181. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2182. printf(" 5P ON\r\n");
  2183. if(!RelayStatus.SMR5_relay_p)
  2184. {
  2185. osDelay(Multi_Relay_Delay_Time);
  2186. RelayStatus.SMR5_relay_p = true;
  2187. }
  2188. }else if(Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count < WeldingCMDDelay){ //Reset count
  2189. EXTI_SMR5_Count = 0;
  2190. }
  2191. }
  2192. else
  2193. {
  2194. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2195. RelayStatus.SMR5_relay_p = false;
  2196. printf(" 5P OFF\r\n");
  2197. }
  2198. // =================( SMR6_Relay_n )=======================
  2199. if (Module_Info.Relay_IO.flags.SMR6_relay_n == ON){
  2200. if (!Exti.EXTI_SMR6_Flag || (Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2201. Exti.EXTI_SMR6_Flag = false;
  2202. EXTI_SMR6_Count= 0;
  2203. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_SET);
  2204. printf(" 6N ON\r\n");
  2205. if(!RelayStatus.SMR6_relay_n)
  2206. {
  2207. osDelay(Multi_Relay_Delay_Time);
  2208. RelayStatus.SMR6_relay_n = true;
  2209. }
  2210. }else if(Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count < WeldingCMDDelay){ //Reset count
  2211. EXTI_SMR6_Count = 0;
  2212. }
  2213. }
  2214. else
  2215. {
  2216. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2217. RelayStatus.SMR6_relay_n = false;
  2218. printf(" 6N OFF\r\n");
  2219. }
  2220. // =================( SMR6_Relay_p )=======================
  2221. if (Module_Info.Relay_IO.flags.SMR6_relay_p == ON){
  2222. if (!Exti.EXTI_SMR6_Flag || (Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count >=10)){ //ignore DCM relay command 1s when Relay welding
  2223. Exti.EXTI_SMR6_Flag = false;
  2224. EXTI_SMR6_Count= 0;
  2225. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2226. printf(" 6P ON\r\n");
  2227. if(!RelayStatus.SMR6_relay_p)
  2228. {
  2229. osDelay(Multi_Relay_Delay_Time);
  2230. RelayStatus.SMR6_relay_p = true;
  2231. }
  2232. }else if(Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count < WeldingCMDDelay){ //Reset count
  2233. EXTI_SMR6_Count = 0;
  2234. }
  2235. }
  2236. else
  2237. {
  2238. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2239. RelayStatus.SMR6_relay_p = false;
  2240. printf(" 6P OFF\r\n");
  2241. }
  2242. // =================( Precharge1 )==============================
  2243. if (Module_Info.Relay_IO.flags.Precharge1 == ON)
  2244. {
  2245. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_SET);
  2246. printf("Pre-charge 1 ON\r\n");
  2247. }
  2248. else
  2249. {
  2250. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_RESET);
  2251. printf("Pre-charge 1 OFF\r\n");
  2252. }
  2253. // =================( Precharge2 )==============================
  2254. if (Module_Info.Relay_IO.flags.Precharge2 == ON)
  2255. {
  2256. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_SET);
  2257. printf("Pre-charge 2 ON\r\n");
  2258. }
  2259. else
  2260. {
  2261. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_RESET);
  2262. printf("Pre-charge 2 OFF\r\n");
  2263. }
  2264. // =================( AC_Contactor )=======================
  2265. if (Module_Info.Relay_IO.flags.AC_Contactor == ON)
  2266. {
  2267. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_SET);
  2268. printf("AC Contactor ON\r\n");
  2269. }
  2270. else
  2271. {
  2272. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
  2273. printf("AC Contactor OFF\r\n");
  2274. }
  2275. }
  2276. osDelay(1);
  2277. }
  2278. /* USER CODE END GpioTask */
  2279. }
  2280. /* USER CODE BEGIN Header_MemoryTask */
  2281. /**
  2282. * @brief Function implementing the memoryTask thread.
  2283. * @param argument: Not used
  2284. * @retval None
  2285. */
  2286. /* USER CODE END Header_MemoryTask */
  2287. void MemoryTask(void const * argument)
  2288. {
  2289. /* USER CODE BEGIN MemoryTask */
  2290. Module_Info.memory.Module_Config.op_bits.read = ON;
  2291. __IO uint32_t flash;
  2292. int i;
  2293. /* Infinite loop */
  2294. for (;;)
  2295. {
  2296. /*
  2297. Charger config operation
  2298. */
  2299. if (Module_Info.memory.Module_Config.op_bits.read) // Memory read
  2300. {
  2301. // Read data from block
  2302. // for(uint16_t idx=0; idx<(MEMORY_LENGTH_CONFIG>>2); idx++)
  2303. GainCaliFlag = true;
  2304. for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++)
  2305. {
  2306. flash = ADDR_FLASH_SECTOR_4 + (idx * 4);
  2307. Module_Info.memory.Module_Config.data.value[idx] = *(uint32_t *)flash;
  2308. if ((Module_Info.memory.Module_Config.data.value[idx] == 0xffffffff) ||
  2309. (Module_Info.memory.Module_Config.data.value[idx] == 0))
  2310. {
  2311. if(BridgeBoard)
  2312. break;
  2313. else
  2314. GainCaliFlag = false;
  2315. Module_Info.memory.Module_Config.data.value[idx] = mem_def_data[idx];
  2316. }
  2317. }
  2318. // coefficient DATA
  2319. for (i = 0; i < DC_CORRECT_GAIN_MAX_NUM; i++)
  2320. {
  2321. if (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][MCU_DATA] >
  2322. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][MCU_DATA]) // Make sure memory have calibration valid value
  2323. {
  2324. CLC_Corr_Gain_Par(Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][METER_DATA],
  2325. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][METER_DATA],
  2326. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][MCU_DATA],
  2327. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][MCU_DATA],
  2328. &Module_Info.DCVcoeff[i].gain_volt, &Module_Info.DCVcoeff[i].offset_volt);
  2329. }
  2330. else
  2331. {
  2332. Module_Info.DCVcoeff[i].gain_volt = 1;
  2333. Module_Info.DCVcoeff[i].offset_volt = 0;
  2334. }
  2335. }
  2336. for (i = 0; i < GFD_CORRECT_GAIN_MAX_NUM; i++)
  2337. {
  2338. if (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][MCU_DATA] >
  2339. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][MCU_DATA])
  2340. {
  2341. CLC_Corr_Gain_Par(Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][METER_DATA],
  2342. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][METER_DATA],
  2343. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][MCU_DATA],
  2344. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][MCU_DATA],
  2345. &Module_Info.GFDcoeff[i].gain_volt, &Module_Info.GFDcoeff[i].offset_volt);
  2346. }
  2347. else
  2348. {
  2349. Module_Info.GFDcoeff[i].gain_volt = 1;
  2350. Module_Info.GFDcoeff[i].offset_volt = 0;
  2351. }
  2352. }
  2353. if( Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA] >
  2354. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][MCU_DATA] )
  2355. {
  2356. CLC_Corr_Gain_Par( Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][METER_DATA],
  2357. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][METER_DATA],
  2358. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA],
  2359. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][MCU_DATA],
  2360. &Module_Info.DCINcoeff.gain_volt, &Module_Info.DCINcoeff.offset_volt);
  2361. }
  2362. else
  2363. {
  2364. Module_Info.DCINcoeff.gain_volt = 1;
  2365. Module_Info.DCINcoeff.offset_volt = 0;
  2366. }
  2367. for(uint16_t idx=MEM_MODELNAME_ADDRESS; idx<MEM_MODELNAME_ADDRESS+MEM_MODELNAME_LENGTH; idx++)
  2368. {
  2369. flash = ADDR_FLASH_SECTOR_4 + idx*4;
  2370. Module_Info.memory.Module_Config.data.value[idx] = *(uint32_t *)flash;
  2371. }
  2372. memcpy (ModelName, Module_Info.memory.Module_Config.data.item.Modelname, 14);
  2373. SetGfdMode();
  2374. Module_Info.memory.Module_Config.op_bits.read = OFF;
  2375. // DEBUG_INFO("Read MEM_ADDR_EVSE_CONFIG block(4k byte) pass.\r\n");
  2376. // Module_Info.memory.Module_Config.op_bits.update = 1;
  2377. // for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++)
  2378. // {
  2379. // Module_Info.memory.Module_Config.data.value[idx] = 0;
  2380. // }
  2381. }
  2382. if (Module_Info.memory.Module_Config.op_bits.update) // Memory update
  2383. {
  2384. // Erase block data
  2385. if (Module_Info.memory.Module_Config.op_bits.modelname){
  2386. for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++){
  2387. flash = ADDR_FLASH_SECTOR_4 + (idx * 4);
  2388. Module_Info.memory.Module_Config.data.value[idx] = *(uint32_t *)flash;
  2389. }
  2390. }
  2391. if (FLASH_If_Erase(ADDR_FLASH_SECTOR_4, 1) == FLASHIF_OK)
  2392. {
  2393. #ifdef DEBUG
  2394. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k bytes) pass.\r\n");
  2395. #endif
  2396. // Write data to block
  2397. if (FLASH_If_Write(ADDR_FLASH_SECTOR_4, (uint32_t *)Module_Info.memory.Module_Config.data.value, MEMORY_LENGTH_CONFIG >> 2) == FLASHIF_OK)
  2398. {
  2399. // DEBUG_INFO("Write MEM_ADDR_EVSE_CONFIG block(4k bytes) pass.\r\n");
  2400. }
  2401. else
  2402. {
  2403. // DEBUG_INFO("Write MEM_ADDR_EVSE_CONFIG block(4k bytes) fail.\r\n");
  2404. }
  2405. if (Module_Info.memory.Module_Config.op_bits.modelname){
  2406. for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++){
  2407. if ((Module_Info.memory.Module_Config.data.value[idx] == 0xffffffff) ||
  2408. (Module_Info.memory.Module_Config.data.value[idx] == 0)){
  2409. Module_Info.memory.Module_Config.data.value[idx] = mem_def_data[idx];
  2410. }
  2411. }
  2412. }
  2413. SetGfdMode();
  2414. Module_Info.memory.Module_Config.op_bits.update = OFF;
  2415. Module_Info.memory.Module_Config.op_bits.modelname = OFF;
  2416. }
  2417. else
  2418. {
  2419. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k bytes) fail.\r\n");
  2420. }
  2421. }
  2422. if (Module_Info.memory.Module_Config.op_bits.clear) // Memory clear
  2423. {
  2424. // Erase block data
  2425. if (FLASH_If_Erase(ADDR_FLASH_SECTOR_4, 1) == FLASHIF_OK)
  2426. {
  2427. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k byte) pass.\r\n");
  2428. Module_Info.memory.Module_Config.op_bits.clear = OFF;
  2429. }
  2430. else
  2431. {
  2432. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k byte) fail.\r\n");
  2433. }
  2434. }
  2435. osDelay(1);
  2436. }
  2437. /* USER CODE END MemoryTask */
  2438. }
  2439. /* USER CODE BEGIN Header_Inkey_Task */
  2440. /**
  2441. * @brief Function implementing the InkeyTask thread.
  2442. * @param argument: Not used
  2443. * @retval None
  2444. */
  2445. /* USER CODE END Header_Inkey_Task */
  2446. void Inkey_Task(void const * argument)
  2447. {
  2448. /* USER CODE BEGIN Inkey_Task */
  2449. /* Infinite loop */
  2450. for (;;)
  2451. {
  2452. // if( (AC_Sine[0].Vrms_AVG < 1600) ||
  2453. // (AC_Sine[1].Vrms_AVG < 1600) ||
  2454. // (AC_Sine[2].Vrms_AVG < 1600) )
  2455. // {
  2456. // if(Counter.nAC_Drop > 10)
  2457. // HAL_GPIO_WritePin(CSU_IO_HIGH_GPIO_Port, CSU_IO_HIGH_Pin, GPIO_PIN_RESET);
  2458. // else
  2459. // Counter.nAC_Drop++;
  2460. // }
  2461. // else
  2462. // {
  2463. // Counter.nAC_Drop = 0;
  2464. // HAL_GPIO_WritePin(CSU_IO_HIGH_GPIO_Port, CSU_IO_HIGH_Pin, GPIO_PIN_SET);
  2465. // }
  2466. // InterLock bit Detect ....
  2467. // if(HAL_GPIO_ReadPin(Relay_Interlock_GPIO_Port, Relay_Interlock_Pin) == 1)
  2468. // {
  2469. // Counter.nInterLock++;
  2470. // if(Counter.nInterLock >5)
  2471. // OpFlag.bInterLock = ON;
  2472. // }
  2473. // else
  2474. // {
  2475. // Counter.nInterLock = OpFlag.bInterLock = OFF;
  2476. // }
  2477. //
  2478. // if( OpFlag.bInterLock == ON )
  2479. // {
  2480. // OpFlag.bInterLock= OFF;
  2481. //
  2482. // HAL_GPIO_WritePin(Parallel_RLY_n_Enable_GPIO_Port, Parallel_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2483. // HAL_GPIO_WritePin(Parallel_RLY_p_Enable_GPIO_Port, Parallel_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2484. // HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2485. // HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2486. // HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2487. // HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2488. // HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
  2489. // HAL_GPIO_WritePin(Precharge_Enable_GPIO_Port, Precharge_Enable_Pin, GPIO_PIN_RESET);
  2490. //
  2491. // osDelay(10);
  2492. // }
  2493. //
  2494. osDelay(1);
  2495. }
  2496. /* USER CODE END Inkey_Task */
  2497. }
  2498. /* USER CODE BEGIN Header_Gfd_Left_Task */
  2499. /**
  2500. * @brief Function implementing the gfd_left_Task thread.
  2501. * @param argument: Not used
  2502. * @retval None
  2503. */
  2504. /* USER CODE END Header_Gfd_Left_Task */
  2505. void Gfd_Left_Task(void const * argument)
  2506. {
  2507. /* USER CODE BEGIN Gfd_Left_Task */
  2508. /* Infinite loop */
  2509. // Fail : <= 100ohm * 950v = 95K ohm
  2510. // Warning : <= 475K ohm & > 95K ohm
  2511. // Pass : > 500ohm * 950v = 475K ohm
  2512. for(;;)
  2513. {
  2514. uint16_t _delay;
  2515. // if( ( Module_Info.Dip_status.Mode == m_GUN_1)
  2516. // || (Module_Info.Dip_status.Mode == m_ALL)
  2517. // 21-08-26 Henry
  2518. // if( Module_Info.Dip_status.Mode > 0
  2519. // )
  2520. {
  2521. switch(Module_Info.gfd_chk[0].Csu_State)
  2522. {
  2523. case IDLE: // idle
  2524. _delay = 1000;
  2525. if(bGfd_Correct[0] == 0)
  2526. {
  2527. Module_Info.gfd_chk[0].bResult_Gfd = GFD_UNKNOW;
  2528. Module_Info.gfd_chk[0].Rfd_State = 0;
  2529. // Module_Info.gfd_chk[0].bFirstGfd = 1;
  2530. HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_RESET);
  2531. HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_RESET);
  2532. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2533. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2534. }
  2535. else
  2536. {
  2537. HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
  2538. HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
  2539. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2540. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2541. }
  2542. Gfd.operation[0] = GFD_OFF;
  2543. Gfd.ToggleBridge[0] = 0;
  2544. break;
  2545. case CABLE_CHECK: // Cable check -- 500v
  2546. switch(Module_Info.gfd_chk[0].Rfd_State)
  2547. {
  2548. case 0:
  2549. // ********* On Up-Down Bridge
  2550. _delay = WAIT_FOR_RESISTER_CALC;
  2551. if(Module_Info.gfd_chk[0].bResult_Gfd == GFD_UNKNOW)
  2552. {
  2553. if(Gfd.operation[0] != Gfd.GfdMode[0]){
  2554. Gfd.operation[0] = Gfd.GfdMode[0];
  2555. printf("Charge mode ,SMR1 GFD Mode is %s\n\r", Gfd.GfdMode[0] == GFD_BALANCE ? "Balance" : "Unbalance");
  2556. }
  2557. if(Gfd.operation[0] == GFD_BALANCE){
  2558. HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
  2559. HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
  2560. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  2561. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2562. Gfd.SCBwaitfg[0] = 1;
  2563. }
  2564. if(Gfd.operation[0] == GFD_UNBALANCE){
  2565. // HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
  2566. // HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_RESET);
  2567. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  2568. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  2569. }
  2570. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2571. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2572. Module_Info.gfd_chk[0].U1_V = 0;
  2573. Module_Info.gfd_chk[0].U2_V = 0;
  2574. Module_Info.gfd_chk[0].Rfd_State++;
  2575. }
  2576. break;
  2577. case 1:
  2578. _delay = WAIT_FOR_RESISTER_CALC_LONG;
  2579. if( ! ((Module_Info.SMR_Gfd_Sense[0] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
  2580. && (Module_Info.SMR_Gfd_Sense[0] < GFD_SENSE_VOLTAGE_UP_LIMIT)
  2581. && (Module_Info.SMR1_Relay_V < GFD_WORKING_VOLTAGE))
  2582. ){
  2583. Module_Info.gfd_chk[0].Rfd_State++;
  2584. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2585. // Self_Test_1_DC+
  2586. // HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  2587. // HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  2588. }else{
  2589. Module_Info.gfd_chk[0].R_GFD = 1000000; // 1000K Ohm
  2590. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2591. Module_Info.gfd_chk[0].Rfd_State = 0;
  2592. }
  2593. break;
  2594. case 2:
  2595. _delay = 10;
  2596. // begin isolation test ....Self_test
  2597. if(abs(Module_Info.SMR1_Relay_V - Gfd.IsolationVoltage) < LINE_VOLTAGE_TOLERANCE){ // ABS(20V)
  2598. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2599. if(Module_Info.gfd_chk[0].Gfd_Running_Count > 4){
  2600. if(Module_Info.gfd_chk[0].bFirstGfd ==1){
  2601. Module_Info.gfd_chk[0].Rfd_State = 5;
  2602. }else{
  2603. Module_Info.gfd_chk[0].Rfd_State++;
  2604. }
  2605. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2606. }
  2607. }else{
  2608. Module_Info.gfd_chk[0].Rfd_State = 0;
  2609. }
  2610. break;
  2611. case 3:
  2612. _delay = WAIT_FOR_RESISTER_CALC;
  2613. //----------------------------------------Banlance self check P2PE ----------------------------------------------
  2614. if(Gfd.operation[0] == GFD_BALANCE){
  2615. if(Gfd.SCBwaitfg[0] == 0 && Module_Info.gfd_chk[0].R_GFD != 0){
  2616. if( Module_Info.gfd_chk[0].R_GFD < GFD_SELF_TEST_RESISTOR){
  2617. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2618. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  2619. Module_Info.gfd_chk[0].Rfd_State++;
  2620. // Gfd.SCBwaitfg[0] = 1;
  2621. }else{
  2622. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2623. Module_Info.gfd_chk[0].R_GFD = 0;
  2624. if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
  2625. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2626. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2627. Exti.EXTI_SMR1_Flag = true;
  2628. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
  2629. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2630. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2631. Module_Info.gfd_chk[0].Rfd_State = 0;
  2632. printf("SMR1 GFD P2PE Self-check Fault ,P2PE = %dK\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
  2633. }
  2634. }
  2635. Module_Info.gfd_chk[0].R_GFD = 0;
  2636. }
  2637. }
  2638. //----------------------------------------Unbanlance self check P2PE ----------------------------------------------
  2639. if(Gfd.operation[0] == GFD_UNBALANCE){
  2640. if(Module_Info.gfd_chk[0].P2PE_GFD !=0 && Module_Info.gfd_chk[0].N2PE_GFD != 0){
  2641. if( Module_Info.gfd_chk[0].P2PE_GFD < GFD_SELF_TEST_RESISTOR){
  2642. Module_Info.gfd_chk[0].Rfd_State++;
  2643. }else{
  2644. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2645. Module_Info.gfd_chk[0].U1_V = 0;
  2646. Module_Info.gfd_chk[0].U2_V = 0;
  2647. if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_UNBALANCE_TEST_COUNT){
  2648. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2649. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2650. Exti.EXTI_SMR1_Flag = true;
  2651. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].P2PE_GFD;
  2652. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2653. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2654. Module_Info.gfd_chk[0].Rfd_State = 0;
  2655. printf("SMR1 GFD P2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[0].P2PE_GFD,Module_Info.gfd_chk[0].N2PE_GFD);
  2656. }else{
  2657. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2658. }
  2659. }
  2660. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2661. }
  2662. }
  2663. break;
  2664. case 4:
  2665. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2666. //----------------------------------------Banlance self check N2PE ----------------------------------------------
  2667. if(Gfd.operation[0] == GFD_BALANCE){
  2668. if(Gfd.SCBwaitfg[0] == 0 && Module_Info.gfd_chk[0].R_GFD != 0){
  2669. if( Module_Info.gfd_chk[0].R_GFD < GFD_SELF_TEST_RESISTOR){
  2670. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2671. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2672. Module_Info.gfd_chk[0].Rfd_State++;
  2673. // Gfd.SCBwaitfg[0] = 1;
  2674. }else{
  2675. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2676. if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
  2677. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2678. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2679. Exti.EXTI_SMR1_Flag = true;
  2680. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
  2681. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2682. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2683. Module_Info.gfd_chk[0].Rfd_State = 0;
  2684. printf("SMR1 GFD N2PE Self-check Fault ,N2PE = %dK\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
  2685. }
  2686. }
  2687. Module_Info.gfd_chk[0].R_GFD = 0;
  2688. }
  2689. }
  2690. //----------------------------------------Unbanlance self check N2PE ----------------------------------------------
  2691. if(Gfd.operation[0] == GFD_UNBALANCE){
  2692. if(Module_Info.gfd_chk[0].N2PE_GFD < GFD_SELF_TEST_RESISTOR){
  2693. Module_Info.gfd_chk[0].Rfd_State++;
  2694. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2695. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2696. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2697. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2698. Module_Info.gfd_chk[0].U1_V = 0;
  2699. Module_Info.gfd_chk[0].U2_V = 0;
  2700. }else{
  2701. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2702. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2703. Module_Info.gfd_chk[0].U1_V = 0;
  2704. Module_Info.gfd_chk[0].U2_V = 0;
  2705. if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
  2706. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2707. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2708. Exti.EXTI_SMR1_Flag = true;
  2709. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].N2PE_GFD;
  2710. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2711. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2712. Module_Info.gfd_chk[0].Rfd_State = 0;
  2713. printf("SMR1 GFD N2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[0].P2PE_GFD,Module_Info.gfd_chk[0].N2PE_GFD);
  2714. }else{
  2715. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2716. }
  2717. }
  2718. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2719. }
  2720. break;
  2721. case 5:
  2722. _delay = WAIT_FOR_RESISTER_CALC;
  2723. //----------------------------------------Banlance self check open circle ----------------------------------------------
  2724. if(Gfd.operation[0] == GFD_BALANCE){
  2725. if(Gfd.SCBwaitfg[0] == 0 && Module_Info.gfd_chk[0].R_GFD != 0){
  2726. if( Module_Info.gfd_chk[0].R_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  2727. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2728. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2729. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2730. }
  2731. if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_BALANCE_TEST_COUNT){
  2732. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2733. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2734. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
  2735. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2736. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2737. Module_Info.gfd_chk[0].Rfd_State = 0;
  2738. Exti.EXTI_SMR1_Flag = true;
  2739. printf("SMR1 GFD Open circle Self-check Fault ,R = %dK,\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
  2740. }
  2741. }else{
  2742. if( Module_Info.gfd_chk[0].R_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  2743. Module_Info.gfd_chk[0].R_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  2744. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2745. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2746. Module_Info.gfd_chk[0].Gfd_Warning_Count++;
  2747. }
  2748. if(Module_Info.gfd_chk[0].Gfd_Warning_Count > GFD_BALANCE_TEST_COUNT){
  2749. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2750. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2751. Module_Info.gfd_chk[0].Rfd_State++;
  2752. printf("SMR1 GFD Open circle Self-check Warning ,R = %dK,\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
  2753. // }
  2754. }
  2755. }else{
  2756. // Gfd = Pass.
  2757. Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
  2758. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2759. Module_Info.gfd_chk[0].Rfd_State++;
  2760. printf("SMR1 GFD Self-check Pass ,R = %dK,\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
  2761. }
  2762. }
  2763. Module_Info.gfd_chk[0].R_GFD = 0;
  2764. }
  2765. }
  2766. //----------------------------------------Unbanlance self check open circle ----------------------------------------------
  2767. if(Gfd.operation[0] == GFD_UNBALANCE){
  2768. if(Module_Info.gfd_chk[0].P2PE_GFD !=0 && Module_Info.gfd_chk[0].N2PE_GFD != 0){
  2769. if( Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR ||
  2770. Module_Info.gfd_chk[0].N2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  2771. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2772. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2773. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2774. }
  2775. if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_UNBALANCE_CABLECHK_TEST_COUNT){
  2776. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2777. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2778. Exti.EXTI_SMR1_Flag = true;
  2779. if(Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  2780. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].P2PE_GFD;
  2781. }else{
  2782. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].N2PE_GFD;
  2783. }
  2784. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2785. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2786. Module_Info.gfd_chk[0].Rfd_State = 0;
  2787. printf("SMR1 GFD Self-check Fault ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[0].P2PE_GFD/1000,Module_Info.gfd_chk[0].N2PE_GFD/1000);
  2788. }else{
  2789. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2790. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2791. }
  2792. }else{
  2793. if((Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  2794. Module_Info.gfd_chk[0].P2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR) ||
  2795. (Module_Info.gfd_chk[0].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  2796. Module_Info.gfd_chk[0].N2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR)){
  2797. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2798. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2799. Module_Info.gfd_chk[0].Gfd_Warning_Count++;
  2800. }
  2801. if(Module_Info.gfd_chk[0].Gfd_Warning_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
  2802. // if(Module_Info.gfd_chk[0].bFirstGfd ==1){
  2803. // Module_Info.gfd_chk[0].bFirstGfd = 0;
  2804. // Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2805. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2806. // Module_Info.gfd_chk[0].Rfd_State++;
  2807. // }else{
  2808. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2809. Module_Info.gfd_chk[0].Rfd_State++;
  2810. printf("SMR1 GFD Self-check Warning ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[0].P2PE_GFD/1000,Module_Info.gfd_chk[0].N2PE_GFD/1000);
  2811. // }
  2812. }else{
  2813. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2814. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2815. }
  2816. }else{
  2817. // Gfd = Pass.
  2818. Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
  2819. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2820. Module_Info.gfd_chk[0].Rfd_State++;
  2821. printf("SMR1 GFD Self-check pass,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[0].P2PE_GFD/1000,Module_Info.gfd_chk[0].N2PE_GFD/1000);
  2822. }
  2823. }
  2824. // Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2825. // Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2826. }
  2827. }
  2828. break;
  2829. default:
  2830. if((Module_Info.gfd_chk[0].bResult_Gfd == GFD_UNKNOW) ||
  2831. (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)){
  2832. Module_Info.gfd_chk[0].Rfd_State = 0;
  2833. }else{
  2834. Module_Info.gfd_chk[0].Rfd_State = 10;
  2835. }
  2836. break;
  2837. }
  2838. break;
  2839. case PRECHARGE:
  2840. case CHARGE:
  2841. //預防系統在cable check未完成時,進入充電狀態
  2842. if(Module_Info.gfd_chk[0].Rfd_State < 10 && Module_Info.gfd_chk[0].bResult_Gfd != GFD_FAIL){
  2843. Module_Info.gfd_chk[0].Rfd_State =10;
  2844. }
  2845. //預防系統在cable check未完成時,進入充電狀態
  2846. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2847. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2848. if(Gfd.operation[0] != Gfd.GfdMode[0]){
  2849. Gfd.operation[0] = Gfd.GfdMode[0];
  2850. }
  2851. switch(Module_Info.gfd_chk[0].Rfd_State){
  2852. case 10:
  2853. // ********* On Up-Down Bridge
  2854. _delay = 1;
  2855. Module_Info.gfd_chk[0].Rfd_State++;
  2856. break;
  2857. case 11:
  2858. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2859. if( ! ((Module_Info.SMR_Gfd_Sense[0] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
  2860. && (Module_Info.SMR_Gfd_Sense[0] < GFD_SENSE_VOLTAGE_UP_LIMIT)
  2861. && (Module_Info.SMR1_Relay_V < GFD_WORKING_VOLTAGE))){
  2862. Module_Info.gfd_chk[0].Rfd_State++;
  2863. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2864. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2865. }else{ // Not Match to Ground Test condiction.
  2866. // Module_Info.gfd_chk[0].R_GFD = 1000000; // 1000K Ohm
  2867. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2868. Module_Info.gfd_chk[0].Rfd_State = 10;
  2869. }
  2870. break;
  2871. case 12:
  2872. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2873. if(Gfd.operation[0] == GFD_BALANCE){
  2874. if(Module_Info.gfd_chk[0].R_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
  2875. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2876. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2877. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2878. }
  2879. if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_BALANCE_TEST_COUNT){
  2880. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2881. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2882. Exti.EXTI_SMR1_Flag = true;
  2883. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
  2884. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2885. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2886. Module_Info.gfd_chk[0].Rfd_State = 0;
  2887. }
  2888. }else{
  2889. if( ( Module_Info.gfd_chk[0].R_GFD <= (GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) ) &&
  2890. (Module_Info.gfd_chk[0].R_GFD > ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR))){
  2891. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2892. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2893. Module_Info.gfd_chk[0].Gfd_Warning_Count++;
  2894. }
  2895. if(Module_Info.gfd_chk[0].Gfd_Warning_Count >GFD_BALANCE_TEST_COUNT){
  2896. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2897. Module_Info.gfd_chk[0].Rfd_State++;
  2898. }
  2899. }else{
  2900. Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
  2901. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2902. Module_Info.gfd_chk[0].Rfd_State++;
  2903. }
  2904. }
  2905. }else if(Gfd.operation[0] == GFD_UNBALANCE){
  2906. if(Module_Info.gfd_chk[0].P2PE_GFD !=0 && Module_Info.gfd_chk[0].N2PE_GFD != 0){
  2907. if( Module_Info.gfd_chk[0].P2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
  2908. Module_Info.gfd_chk[0].N2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
  2909. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2910. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2911. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2912. }
  2913. if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_UNBALANCE_TEST_COUNT){
  2914. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2915. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2916. Exti.EXTI_SMR1_Flag = true;
  2917. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
  2918. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2919. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2920. Module_Info.gfd_chk[0].Rfd_State = 0;
  2921. }else{
  2922. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2923. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2924. }
  2925. }else{
  2926. if( (Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  2927. Module_Info.gfd_chk[0].P2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
  2928. (Module_Info.gfd_chk[0].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  2929. Module_Info.gfd_chk[0].N2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
  2930. if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
  2931. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2932. Module_Info.gfd_chk[0].Gfd_Warning_Count++;
  2933. }
  2934. if(Module_Info.gfd_chk[0].Gfd_Warning_Count >GFD_UNBALANCE_TEST_COUNT){
  2935. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2936. Module_Info.gfd_chk[0].Rfd_State++;
  2937. }else{
  2938. Module_Info.gfd_chk[0].P2PE_GFD = 0;
  2939. Module_Info.gfd_chk[0].N2PE_GFD = 0;
  2940. }
  2941. }else{
  2942. Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
  2943. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2944. Module_Info.gfd_chk[0].Rfd_State++;
  2945. }
  2946. }
  2947. }
  2948. }
  2949. break;
  2950. default:
  2951. if(Module_Info.gfd_chk[0].bResult_Gfd != GFD_FAIL)
  2952. Module_Info.gfd_chk[0].Rfd_State = 10;
  2953. break;
  2954. }
  2955. break;
  2956. default:
  2957. break;
  2958. }
  2959. if(Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
  2960. {
  2961. _delay = 100;
  2962. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2963. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2964. bRelayFeedback = 1;
  2965. }
  2966. vTaskDelay( _delay / portTICK_RATE_MS);
  2967. }
  2968. // else
  2969. // osDelay(1);
  2970. }
  2971. /* USER CODE END Gfd_Left_Task */
  2972. }
  2973. /* USER CODE BEGIN Header_Gfd_Right_Task */
  2974. /**
  2975. * @brief Function implementing the gfd_right_Task thread.
  2976. * @param argument: Not used
  2977. * @retval None
  2978. */
  2979. /* USER CODE END Header_Gfd_Right_Task */
  2980. void Gfd_Right_Task(void const * argument)
  2981. {
  2982. /* USER CODE BEGIN Gfd_Right_Task */
  2983. /* Infinite loop */
  2984. // Fail : <= 100ohm * 950v = 95K ohm
  2985. // Warning : <= 475K ohm & > 95K ohm
  2986. // Pass : > 500ohm * 950v = 475K
  2987. for(;;)
  2988. {
  2989. uint16_t _delay;
  2990. // if( ( Module_Info.Dip_status.Mode == m_GUN_1)
  2991. // || (Module_Info.Dip_status.Mode == m_ALL)
  2992. // 21-08-26 Henry
  2993. // if( Module_Info.Dip_status.Mode > 0
  2994. // )
  2995. {
  2996. switch(Module_Info.gfd_chk[1].Csu_State)
  2997. {
  2998. case IDLE: // idle
  2999. _delay = 1000;
  3000. if(bGfd_Correct[1] == 0)
  3001. {
  3002. Module_Info.gfd_chk[1].bResult_Gfd = GFD_UNKNOW;
  3003. Module_Info.gfd_chk[1].Rfd_State = 0;
  3004. // Module_Info.gfd_chk[0].bFirstGfd = 1;
  3005. HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_RESET);
  3006. HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_RESET);
  3007. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  3008. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  3009. }
  3010. else
  3011. {
  3012. HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_SET);
  3013. HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_RESET);
  3014. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  3015. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  3016. }
  3017. Gfd.operation[1] = GFD_OFF;
  3018. Gfd.ToggleBridge[1] = 0;
  3019. break;
  3020. case CABLE_CHECK: // Cable check -- 500v
  3021. switch(Module_Info.gfd_chk[1].Rfd_State)
  3022. {
  3023. case 0:
  3024. // ********* On Up-Down Bridge
  3025. _delay = WAIT_FOR_RESISTER_CALC;
  3026. if(Module_Info.gfd_chk[1].bResult_Gfd == GFD_UNKNOW)
  3027. {
  3028. if(Gfd.operation[1] != Gfd.GfdMode[1]){
  3029. Gfd.operation[1] = Gfd.GfdMode[1];
  3030. printf("Charge mode ,SMR2 GFD Mode is %s\n\r", Gfd.GfdMode[1] == GFD_BALANCE ? "Balance" : "Unbalance");
  3031. }
  3032. if(Gfd.operation[1] == GFD_BALANCE){
  3033. HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_SET);
  3034. HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_SET);
  3035. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  3036. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  3037. Gfd.SCBwaitfg[1] = 1;
  3038. }
  3039. if(Gfd.operation[1] == GFD_UNBALANCE){
  3040. // HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_RESET);
  3041. // HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_SET);
  3042. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  3043. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  3044. }
  3045. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3046. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3047. Module_Info.gfd_chk[1].U1_V = 0;
  3048. Module_Info.gfd_chk[1].U2_V = 0;
  3049. Module_Info.gfd_chk[1].Rfd_State++;
  3050. }
  3051. break;
  3052. case 1:
  3053. _delay = WAIT_FOR_RESISTER_CALC_LONG;
  3054. if( ! ((Module_Info.SMR_Gfd_Sense[1] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
  3055. && (Module_Info.SMR_Gfd_Sense[1] < GFD_SENSE_VOLTAGE_UP_LIMIT)
  3056. && (Module_Info.SMR2_Relay_V < GFD_WORKING_VOLTAGE))
  3057. ){
  3058. Module_Info.gfd_chk[1].Rfd_State++;
  3059. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3060. // Self_Test_1_DC+
  3061. // HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  3062. // HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  3063. }else{
  3064. Module_Info.gfd_chk[1].R_GFD = 1000000; // 1000K Ohm
  3065. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  3066. Module_Info.gfd_chk[1].Rfd_State = 0;
  3067. }
  3068. break;
  3069. case 2:
  3070. _delay = 10;
  3071. if(abs(Module_Info.SMR2_Relay_V - Gfd.IsolationVoltage) < LINE_VOLTAGE_TOLERANCE){ // ABS(20V)
  3072. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3073. if(Module_Info.gfd_chk[1].Gfd_Running_Count > 4){
  3074. Module_Info.gfd_chk[1].Rfd_State++;
  3075. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3076. }
  3077. }else{
  3078. Module_Info.gfd_chk[1].Rfd_State = 0;
  3079. }
  3080. break;
  3081. case 3:
  3082. _delay = WAIT_FOR_RESISTER_CALC;
  3083. //----------------------------------------Banlance self check P2PE ----------------------------------------------
  3084. if(Gfd.operation[1] == GFD_BALANCE){
  3085. if(Gfd.SCBwaitfg[1] == 0 && Module_Info.gfd_chk[1].R_GFD != 0){
  3086. if( Module_Info.gfd_chk[1].R_GFD < GFD_SELF_TEST_RESISTOR){
  3087. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  3088. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  3089. Module_Info.gfd_chk[1].Rfd_State++;
  3090. // Gfd.SCBwaitfg[1] = 1;
  3091. }else{
  3092. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3093. if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
  3094. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3095. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3096. Exti.EXTI_SMR2_Flag = true;
  3097. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
  3098. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3099. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3100. Module_Info.gfd_chk[1].Rfd_State = 0;
  3101. printf("SMR2 GFD P2PE Self-check Fault ,P2PE = %dK\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
  3102. }
  3103. }
  3104. Module_Info.gfd_chk[1].R_GFD = 0;
  3105. }
  3106. }
  3107. //----------------------------------------Unbanlance self check P2PE ----------------------------------------------
  3108. if(Gfd.operation[1] == GFD_UNBALANCE){
  3109. if(Module_Info.gfd_chk[1].P2PE_GFD !=0 && Module_Info.gfd_chk[1].N2PE_GFD != 0){
  3110. if( Module_Info.gfd_chk[1].P2PE_GFD < GFD_SELF_TEST_RESISTOR){
  3111. Module_Info.gfd_chk[1].Rfd_State++;
  3112. }else{
  3113. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3114. Module_Info.gfd_chk[1].U1_V = 0;
  3115. Module_Info.gfd_chk[1].U2_V = 0;
  3116. if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_UNBALANCE_TEST_COUNT){
  3117. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3118. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3119. Exti.EXTI_SMR2_Flag = true;
  3120. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].P2PE_GFD;
  3121. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3122. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3123. Module_Info.gfd_chk[1].Rfd_State = 0;
  3124. printf("SMR2 GFD P2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[1].P2PE_GFD,Module_Info.gfd_chk[1].N2PE_GFD);
  3125. }else{
  3126. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3127. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3128. }
  3129. }
  3130. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3131. }
  3132. }
  3133. break;
  3134. case 4:
  3135. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  3136. //----------------------------------------Banlance self check N2PE ----------------------------------------------
  3137. if(Gfd.operation[1] == GFD_BALANCE){
  3138. if(Gfd.SCBwaitfg[1] == 0 && Module_Info.gfd_chk[1].R_GFD != 0){
  3139. if( Module_Info.gfd_chk[1].R_GFD < GFD_SELF_TEST_RESISTOR){
  3140. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  3141. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  3142. Module_Info.gfd_chk[1].Rfd_State++;
  3143. // Gfd.SCBwaitfg[1] = 1;
  3144. }else{
  3145. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3146. if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
  3147. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3148. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3149. Exti.EXTI_SMR2_Flag = true;
  3150. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
  3151. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3152. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3153. Module_Info.gfd_chk[1].Rfd_State = 0;
  3154. printf("SMR2 GFD N2PE Self-check Fault ,N2PE = %dK\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
  3155. }
  3156. }
  3157. Module_Info.gfd_chk[1].R_GFD = 0;
  3158. }
  3159. }
  3160. //----------------------------------------Unbanlance self check N2PE ----------------------------------------------
  3161. if(Gfd.operation[1] == GFD_UNBALANCE){
  3162. if(Module_Info.gfd_chk[1].N2PE_GFD < GFD_SELF_TEST_RESISTOR){
  3163. Module_Info.gfd_chk[1].Rfd_State++;
  3164. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3165. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  3166. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  3167. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  3168. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3169. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3170. Module_Info.gfd_chk[1].U1_V = 0;
  3171. Module_Info.gfd_chk[1].U2_V = 0;
  3172. }else{
  3173. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3174. Module_Info.gfd_chk[1].U1_V = 0;
  3175. Module_Info.gfd_chk[1].U2_V = 0;
  3176. if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
  3177. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3178. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3179. Exti.EXTI_SMR2_Flag = true;
  3180. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].N2PE_GFD;
  3181. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3182. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3183. Module_Info.gfd_chk[1].Rfd_State = 0;
  3184. printf("SMR2 GFD N2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[1].P2PE_GFD,Module_Info.gfd_chk[1].N2PE_GFD);
  3185. }else{
  3186. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3187. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3188. }
  3189. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3190. }
  3191. }
  3192. break;
  3193. case 5:
  3194. _delay = WAIT_FOR_RESISTER_CALC;
  3195. //----------------------------------------Banlance self check open circle ----------------------------------------------
  3196. if(Gfd.operation[1] == GFD_BALANCE){
  3197. if(Gfd.SCBwaitfg[1] == 0 && Module_Info.gfd_chk[1].R_GFD != 0){
  3198. if( Module_Info.gfd_chk[1].R_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  3199. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3200. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3201. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  3202. }
  3203. if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_BALANCE_TEST_COUNT){
  3204. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3205. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3206. Exti.EXTI_SMR2_Flag = true;
  3207. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
  3208. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3209. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3210. Module_Info.gfd_chk[1].Rfd_State = 0;
  3211. printf("SMR2 GFD Open circle Self-check Fault ,R = %dK,\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
  3212. }
  3213. }else{
  3214. if( Module_Info.gfd_chk[1].R_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  3215. Module_Info.gfd_chk[1].R_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  3216. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3217. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3218. Module_Info.gfd_chk[1].Gfd_Warning_Count++;
  3219. }
  3220. if(Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_BALANCE_TEST_COUNT){
  3221. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3222. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  3223. Module_Info.gfd_chk[1].Rfd_State++;
  3224. printf("SMR2 GFD Open circle Self-check Warning ,R = %dK,\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
  3225. }
  3226. }else{
  3227. // Gfd = Pass.
  3228. Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
  3229. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  3230. Module_Info.gfd_chk[1].Rfd_State++;
  3231. printf("SMR2 GFD Self-check Pass ,R = %dK,\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
  3232. }
  3233. }
  3234. Module_Info.gfd_chk[1].R_GFD = 0;
  3235. }
  3236. }
  3237. //----------------------------------------Unbanlance self check open circle ----------------------------------------------
  3238. if(Gfd.operation[1] == GFD_UNBALANCE){
  3239. if(Module_Info.gfd_chk[1].P2PE_GFD !=0 && Module_Info.gfd_chk[1].N2PE_GFD != 0){
  3240. if( Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR ||
  3241. Module_Info.gfd_chk[1].N2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  3242. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3243. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3244. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  3245. }
  3246. if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_UNBALANCE_CABLECHK_TEST_COUNT){
  3247. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3248. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3249. Exti.EXTI_SMR2_Flag = true;
  3250. if(Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
  3251. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].P2PE_GFD;
  3252. }else{
  3253. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].N2PE_GFD;
  3254. }
  3255. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3256. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3257. Module_Info.gfd_chk[1].Rfd_State = 0;
  3258. printf("SMR2 GFD Self-check Fault ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[1].P2PE_GFD/1000,Module_Info.gfd_chk[1].N2PE_GFD/1000);
  3259. }else{
  3260. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3261. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3262. }
  3263. }else{
  3264. if((Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  3265. Module_Info.gfd_chk[1].P2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR) ||
  3266. (Module_Info.gfd_chk[1].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  3267. Module_Info.gfd_chk[1].N2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR)){
  3268. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3269. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3270. Module_Info.gfd_chk[1].Gfd_Warning_Count++;
  3271. }
  3272. if(Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
  3273. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3274. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  3275. Module_Info.gfd_chk[1].Rfd_State++;
  3276. printf("SMR2 GFD Self-check Warning ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[1].P2PE_GFD/1000,Module_Info.gfd_chk[1].N2PE_GFD/1000);
  3277. }else{
  3278. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3279. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3280. }
  3281. }else{
  3282. // Gfd = Pass.
  3283. Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
  3284. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  3285. Module_Info.gfd_chk[1].Rfd_State++;
  3286. printf("SMR2 GFD Self-check pass,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[1].P2PE_GFD/1000,Module_Info.gfd_chk[1].N2PE_GFD/1000);
  3287. }
  3288. }
  3289. // Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3290. // Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3291. }
  3292. }
  3293. break;
  3294. default:
  3295. if((Module_Info.gfd_chk[1].bResult_Gfd == GFD_UNKNOW) ||
  3296. (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)){
  3297. Module_Info.gfd_chk[1].Rfd_State = 0;
  3298. }else{
  3299. Module_Info.gfd_chk[1].Rfd_State = 10;
  3300. }
  3301. break;
  3302. }
  3303. break;
  3304. case PRECHARGE:
  3305. case CHARGE:
  3306. //預防系統在cable check未完成時,進入充電狀態
  3307. if(Module_Info.gfd_chk[1].Rfd_State < 10 && Module_Info.gfd_chk[1].bResult_Gfd != GFD_FAIL){
  3308. Module_Info.gfd_chk[1].Rfd_State =10;
  3309. }
  3310. //預防系統在cable check未完成時,進入充電狀態
  3311. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  3312. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  3313. if(Gfd.operation[1] != Gfd.GfdMode[1]){
  3314. Gfd.operation[1] = Gfd.GfdMode[1];
  3315. }
  3316. switch(Module_Info.gfd_chk[1].Rfd_State){
  3317. case 10:
  3318. // ********* On Up-Down Bridge
  3319. _delay = 1;
  3320. Module_Info.gfd_chk[1].Rfd_State++;
  3321. break;
  3322. case 11:
  3323. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  3324. if( ! ((Module_Info.SMR_Gfd_Sense[1] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
  3325. && (Module_Info.SMR_Gfd_Sense[1] < GFD_SENSE_VOLTAGE_UP_LIMIT)
  3326. && (Module_Info.SMR2_Relay_V < GFD_WORKING_VOLTAGE))){
  3327. Module_Info.gfd_chk[1].Rfd_State++;
  3328. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3329. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  3330. }else{ // Not Match to Ground Test condiction.
  3331. // Module_Info.gfd_chk[1].R_GFD = 1000000; // 1000K Ohm
  3332. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  3333. Module_Info.gfd_chk[1].Rfd_State = 10;
  3334. }
  3335. break;
  3336. case 12:
  3337. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  3338. if(Gfd.operation[1] == GFD_BALANCE){
  3339. if(Module_Info.gfd_chk[1].R_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
  3340. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3341. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  3342. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3343. }
  3344. if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_UNBALANCE_TEST_COUNT){
  3345. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3346. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3347. Exti.EXTI_SMR2_Flag = true;
  3348. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
  3349. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3350. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3351. Module_Info.gfd_chk[1].Rfd_State = 0;
  3352. }
  3353. }else{
  3354. if( ( Module_Info.gfd_chk[1].R_GFD <= (GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) ) &&
  3355. ( Module_Info.gfd_chk[1].R_GFD > ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR))){
  3356. if( Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3357. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3358. Module_Info.gfd_chk[1].Gfd_Warning_Count++;
  3359. }
  3360. if( Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_UNBALANCE_TEST_COUNT){
  3361. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  3362. Module_Info.gfd_chk[1].Rfd_State++;
  3363. }
  3364. }else{
  3365. Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
  3366. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  3367. Module_Info.gfd_chk[1].Rfd_State++;
  3368. }
  3369. }
  3370. }else if(Gfd.operation[1] == GFD_UNBALANCE){
  3371. if(Module_Info.gfd_chk[1].P2PE_GFD !=0 && Module_Info.gfd_chk[1].N2PE_GFD != 0){
  3372. if( Module_Info.gfd_chk[1].P2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
  3373. Module_Info.gfd_chk[1].N2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
  3374. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3375. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  3376. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  3377. }
  3378. if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_UNBALANCE_TEST_COUNT){
  3379. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  3380. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  3381. Exti.EXTI_SMR2_Flag = true;
  3382. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
  3383. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  3384. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  3385. Module_Info.gfd_chk[1].Rfd_State = 0;
  3386. }else{
  3387. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3388. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3389. }
  3390. }else{
  3391. if( (Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  3392. Module_Info.gfd_chk[1].P2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
  3393. (Module_Info.gfd_chk[1].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
  3394. Module_Info.gfd_chk[1].N2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
  3395. if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
  3396. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  3397. Module_Info.gfd_chk[1].Gfd_Warning_Count++;
  3398. }
  3399. if(Module_Info.gfd_chk[1].Gfd_Warning_Count >GFD_UNBALANCE_TEST_COUNT){
  3400. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  3401. Module_Info.gfd_chk[1].Rfd_State++;
  3402. }else{
  3403. Module_Info.gfd_chk[1].P2PE_GFD = 0;
  3404. Module_Info.gfd_chk[1].N2PE_GFD = 0;
  3405. }
  3406. }else{
  3407. Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
  3408. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  3409. Module_Info.gfd_chk[1].Rfd_State++;
  3410. }
  3411. }
  3412. }
  3413. }
  3414. break;
  3415. default:
  3416. if(Module_Info.gfd_chk[1].bResult_Gfd != GFD_FAIL)
  3417. Module_Info.gfd_chk[1].Rfd_State = 10;
  3418. break;
  3419. }
  3420. break;
  3421. default:
  3422. break;
  3423. }
  3424. if(Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
  3425. {
  3426. _delay = 100;
  3427. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3428. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3429. bRelayFeedback = 1;
  3430. }
  3431. vTaskDelay( _delay / portTICK_RATE_MS);
  3432. }
  3433. // else
  3434. // osDelay(1);
  3435. }
  3436. /* USER CODE END Gfd_Right_Task */
  3437. }
  3438. /* USER CODE BEGIN Header_SF_Test_Task */
  3439. /**
  3440. * @brief Function implementing the sf_test_Task thread.
  3441. * @param argument: Not used
  3442. * @retval None
  3443. */
  3444. /* USER CODE END Header_SF_Test_Task */
  3445. void SF_Test_Task(void const * argument)
  3446. {
  3447. /* USER CODE BEGIN SF_Test_Task */
  3448. /* Infinite loop */
  3449. uint16_t temp;
  3450. for (;;)
  3451. {
  3452. if (sf_t.SF_Config.SF_Act)
  3453. {
  3454. //Check AC voltage bit 0 ~ 2
  3455. //CheckACVoltage:
  3456. if(BridgeBoard){
  3457. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3458. sf_t.SF_Config.SF_State++;
  3459. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3460. sf_t.SF_Config.SF_State++;
  3461. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3462. sf_t.SF_Config.SF_State++;
  3463. }else{
  3464. for (int n = 0; n < 3; n++)
  3465. {
  3466. printf("AC %d:%d\r\n",n,AC_Sine[n].Vrms_AVG);
  3467. if (AC_Sine[n].Vrms_AVG > 2200)
  3468. {temp = AC_Sine[n].Vrms_AVG - 2200;
  3469. }else{
  3470. temp = 2200 - AC_Sine[n].Vrms_AVG;
  3471. }
  3472. if (temp >= 200){
  3473. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3474. }else{
  3475. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3476. }
  3477. sf_t.SF_Config.SF_State++;
  3478. }
  3479. }
  3480. // Check SMR1_Voltage bit 3
  3481. //CheckSMR1Voltage:
  3482. if(BridgeBoard){
  3483. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3484. sf_t.SF_Config.SF_State++;
  3485. }else{
  3486. printf("SMR1 V:%d\r\n",Module_Info.SMR1_Relay_V);
  3487. if (Module_Info.SMR1_Relay_V > 1500){
  3488. temp = Module_Info.SMR1_Relay_V - 1500;
  3489. }else{
  3490. temp = 1500 - Module_Info.SMR1_Relay_V;
  3491. }
  3492. if (temp >= 30){
  3493. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3494. }else{
  3495. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3496. }
  3497. sf_t.SF_Config.SF_State++;
  3498. }
  3499. // Check SMR2_Voltage bit 4
  3500. //CheckSMR2Voltage:
  3501. if(BridgeBoard){
  3502. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3503. sf_t.SF_Config.SF_State++;
  3504. }else{
  3505. printf("SMR2 V:%d\r\n",Module_Info.SMR2_Relay_V);
  3506. if (Module_Info.SMR2_Relay_V > 1500)
  3507. temp = Module_Info.SMR2_Relay_V - 1500;
  3508. else
  3509. temp = 1500 - Module_Info.SMR2_Relay_V;
  3510. if (temp >= 30)
  3511. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3512. else
  3513. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3514. sf_t.SF_Config.SF_State++;
  3515. }
  3516. // Check SMR3_Voltage bit 5
  3517. //CheckSMR3Voltage:
  3518. if(BridgeBoard){
  3519. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3520. sf_t.SF_Config.SF_State++;
  3521. }else{
  3522. printf("SMR3 V:%d\r\n",Module_Info.SMR3_Relay_V);
  3523. if (Module_Info.SMR3_Relay_V > 1500)
  3524. temp = Module_Info.SMR3_Relay_V - 1500;
  3525. else
  3526. temp = 1500 - Module_Info.SMR3_Relay_V;
  3527. if (temp >= 30)
  3528. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3529. else
  3530. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3531. sf_t.SF_Config.SF_State++;
  3532. }
  3533. // Check SMR4_Voltage bit 6
  3534. //CheckSMR4Voltage:
  3535. if(BridgeBoard){
  3536. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3537. sf_t.SF_Config.SF_State++;
  3538. }else{
  3539. printf("SMR4V :%d\r\n",Module_Info.SMR4_Relay_V);
  3540. if (Module_Info.SMR4_Relay_V > 1500)
  3541. temp = Module_Info.SMR4_Relay_V - 1500;
  3542. else
  3543. temp = 1500 - Module_Info.SMR4_Relay_V;
  3544. if (temp >= 30)
  3545. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3546. else
  3547. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3548. sf_t.SF_Config.SF_State++;
  3549. }
  3550. // Check SMR5_Voltage bit 7
  3551. //CheckSMR5Voltage:
  3552. if(BridgeBoard){
  3553. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3554. sf_t.SF_Config.SF_State++;
  3555. }else{
  3556. printf("SMR5 V:%d\r\n",Module_Info.SMR5_Relay_V);
  3557. if (Module_Info.SMR5_Relay_V > 1500)
  3558. temp = Module_Info.SMR5_Relay_V - 1500;
  3559. else
  3560. temp = 1500 - Module_Info.SMR5_Relay_V;
  3561. if (temp >= 30)
  3562. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3563. else
  3564. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3565. sf_t.SF_Config.SF_State++;
  3566. }
  3567. // Check SMR6_Voltage bit 8
  3568. //CheckSMR6Voltage:
  3569. if(BridgeBoard){
  3570. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3571. sf_t.SF_Config.SF_State++;
  3572. }else{
  3573. printf("SMR6 V:%d\r\n",Module_Info.SMR6_Relay_V);
  3574. if (Module_Info.SMR6_Relay_V > 1500)
  3575. temp = Module_Info.SMR6_Relay_V - 1500;
  3576. else
  3577. temp = 1500 - Module_Info.SMR6_Relay_V;
  3578. if (temp >= 30)
  3579. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3580. else
  3581. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3582. sf_t.SF_Config.SF_State++;
  3583. }
  3584. // Check SMR6_Voltage bit 9
  3585. //CheckDCInVoltage:
  3586. if(BridgeBoard){
  3587. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3588. sf_t.SF_Config.SF_State++;
  3589. }else{
  3590. printf("DC In1:%d\r\n",Module_Info.BAT_Voltage);
  3591. if (Module_Info.BAT_Voltage > 1500)
  3592. temp = Module_Info.BAT_Voltage - 1500;
  3593. else
  3594. temp = 1500 - Module_Info.BAT_Voltage;
  3595. if (temp >= 50)
  3596. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3597. else
  3598. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3599. sf_t.SF_Config.SF_State++;
  3600. }
  3601. //Check IO bit 10~32
  3602. //CheckIO:
  3603. if(BridgeBoard){
  3604. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3605. sf_t.SF_Config.SF_State++;
  3606. }else{
  3607. nTestIO(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin, sf_t.SF_Config.SF_State++);
  3608. }
  3609. nTestIO(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3610. if(BridgeBoard){
  3611. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3612. sf_t.SF_Config.SF_State++;
  3613. }else{
  3614. nTestIO(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin, sf_t.SF_Config.SF_State++);
  3615. }
  3616. nTestIO(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3617. nTestIO(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3618. nTestIO(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3619. nTestIO(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3620. nTestIO(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3621. nTestIO(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3622. nTestIO(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3623. nTestIO(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3624. nTestIO(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3625. nTestIO(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3626. if(BridgeBoard){
  3627. if(CSRHB_VER == 1){
  3628. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3629. sf_t.SF_Config.SF_State++;
  3630. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3631. sf_t.SF_Config.SF_State++;
  3632. }else{
  3633. nTestIO(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3634. nTestIO(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3635. }
  3636. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3637. sf_t.SF_Config.SF_State++;
  3638. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3639. sf_t.SF_Config.SF_State++;
  3640. }else{
  3641. nTestIO(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3642. nTestIO(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3643. nTestIO(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin, sf_t.SF_Config.SF_State++);
  3644. nTestIO(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin, sf_t.SF_Config.SF_State++);
  3645. }
  3646. nTestEXT_INT(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, &EXTI_TestFlag1, sf_t.SF_Config.SF_State++);
  3647. nTestEXT_INT(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, &EXTI_TestFlag2, sf_t.SF_Config.SF_State++);
  3648. if(BridgeBoard){
  3649. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3650. sf_t.SF_Config.SF_State++;
  3651. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3652. sf_t.SF_Config.SF_State++;
  3653. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3654. sf_t.SF_Config.SF_State++;
  3655. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3656. sf_t.SF_Config.SF_State++;
  3657. }else{
  3658. nTestEXT_INT(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, &EXTI_TestFlag3, sf_t.SF_Config.SF_State++);
  3659. nTestEXT_INT(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, &EXTI_TestFlag4, sf_t.SF_Config.SF_State++);
  3660. nTestEXT_INT(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, &EXTI_TestFlag5, sf_t.SF_Config.SF_State++);
  3661. nTestEXT_INT(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, &EXTI_TestFlag6, sf_t.SF_Config.SF_State++);
  3662. }
  3663. // Check SMR1_Current bit 33
  3664. //CheckSMR1Current:
  3665. if(BridgeBoard){
  3666. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3667. sf_t.SF_Config.SF_State++;
  3668. }else{
  3669. printf("SMR1 C:%d\r\n",Module_Info.SMR1_Relay_C);
  3670. if (Module_Info.SMR1_Relay_C > 1180)
  3671. temp = Module_Info.SMR1_Relay_C - 1180;
  3672. else
  3673. temp = 1180 - Module_Info.SMR1_Relay_C;
  3674. // In Range( 118A +- 5A )
  3675. if (temp >= 50)
  3676. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3677. else
  3678. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3679. sf_t.SF_Config.SF_State++;
  3680. }
  3681. // Check SMR2_Current bit 34
  3682. //CheckSMR2Current:
  3683. if(BridgeBoard){
  3684. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3685. sf_t.SF_Config.SF_State++;
  3686. }else{
  3687. printf("SMR2 C:%d\r\n",Module_Info.SMR2_Relay_C);
  3688. if (Module_Info.SMR2_Relay_C > 1180)
  3689. temp = Module_Info.SMR2_Relay_C - 1180;
  3690. else
  3691. temp = 1180 - Module_Info.SMR2_Relay_C;
  3692. // In Range( 118A +- 5A )
  3693. if (temp >= 50)
  3694. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3695. else
  3696. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3697. sf_t.SF_Config.SF_State++;
  3698. }
  3699. //CheckFinish:
  3700. sf_t.SF_Config.SF_Act = 0; // Turn Off
  3701. if (sf_t.SF_Config.data.value > 0)
  3702. {
  3703. sf_t.SF_Config.SF_test_status = 0; // Fail
  3704. }
  3705. else
  3706. {
  3707. sf_t.SF_Config.SF_test_status = 1; // Pass
  3708. }
  3709. }
  3710. osDelay(1);
  3711. }
  3712. /* USER CODE END SF_Test_Task */
  3713. }
  3714. /* USER CODE BEGIN Header_LedTask */
  3715. /**
  3716. * @brief Function implementing the _ledTask_ thread.
  3717. * @param argument: Not used
  3718. * @retval None
  3719. */
  3720. /* USER CODE END Header_LedTask */
  3721. void LedTask(void const * argument)
  3722. {
  3723. /* USER CODE BEGIN LedTask */
  3724. /* Infinite loop */
  3725. for (;;)
  3726. {
  3727. if (dir == 0)
  3728. {
  3729. if (pwmVal < 500)
  3730. {
  3731. if (GainCaliFlag)
  3732. pwmVal++;
  3733. else
  3734. pwmVal += 20;
  3735. __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_2, pwmVal);
  3736. }
  3737. else
  3738. {
  3739. dir = 1;
  3740. if (GainCaliFlag)
  3741. osDelay(400);
  3742. else
  3743. osDelay(100);
  3744. }
  3745. }
  3746. else
  3747. {
  3748. if (pwmVal > 0)
  3749. {
  3750. if (GainCaliFlag)
  3751. pwmVal--;
  3752. else
  3753. pwmVal -= 20;
  3754. __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_2, pwmVal);
  3755. }
  3756. else
  3757. {
  3758. dir = 0;
  3759. if (GainCaliFlag)
  3760. osDelay(400);
  3761. else
  3762. osDelay(100);
  3763. }
  3764. }
  3765. osDelay(1);
  3766. }
  3767. /* USER CODE END LedTask */
  3768. }
  3769. /* USER CODE BEGIN Header_canTask */
  3770. /**
  3771. * @brief Function implementing the CANTask thread.
  3772. * @param argument: Not used
  3773. * @retval None
  3774. */
  3775. /* USER CODE END Header_canTask */
  3776. void canTask(void const * argument)
  3777. {
  3778. /* USER CODE BEGIN canTask */
  3779. CAN1_sFilterConfig.FilterBank = 0;
  3780. CAN1_sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
  3781. CAN1_sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
  3782. // CAN1_sFilterConfig.FilterIdHigh =(0x0450 << 3) >> 16;
  3783. // CAN1_sFilterConfig.FilterIdLow = (0x0450 << 3) | CAN_ID_EXT;
  3784. // CAN1_sFilterConfig.FilterMaskIdHigh =(0x0450 << 3) >> 16;
  3785. // CAN1_sFilterConfig.FilterMaskIdLow =(0x0450 << 3) ;
  3786. CAN1_sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
  3787. CAN1_sFilterConfig.FilterActivation = ENABLE;
  3788. CAN1_sFilterConfig.SlaveStartFilterBank = 0;
  3789. if(HAL_CAN_ConfigFilter(&hcan1, &CAN1_sFilterConfig) != HAL_OK)
  3790. {
  3791. #ifdef DEBUG
  3792. DEBUG_ERROR("CAN1 filter initialization fail...\r\n");
  3793. #endif
  3794. /* Filter configuration Error */
  3795. Error_Handler();
  3796. }
  3797. if (HAL_CAN_Start(&hcan1) != HAL_OK)
  3798. {
  3799. #ifdef DEBUG
  3800. DEBUG_ERROR("CAN1 start fail...\r\n");
  3801. #endif
  3802. /* Start Error */
  3803. Error_Handler();
  3804. }
  3805. if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING) != HAL_OK)
  3806. {
  3807. #ifdef DEBUG
  3808. DEBUG_ERROR("CAN1 activateNotification fail...\r\n");
  3809. #endif
  3810. /* Notification Error */
  3811. Error_Handler();
  3812. }
  3813. //CAN1_RX_EndFlag = 1; for 2 board can test
  3814. /* Infinite loop */
  3815. for(;;)
  3816. {
  3817. if(CAN1_RX_EndFlag){
  3818. if(HAL_CAN_GetTxMailboxesFreeLevel( &hcan1 ) != 0){
  3819. CAN1_TxHeader.ExtId = 0x456;
  3820. CAN1_TxHeader.IDE = CAN_ID_EXT; // IDE = CAN_ID_EXT means Extended ID message.
  3821. //CAN1_TxHeader.SRR = 0; //stm32 hal lib not .SRR
  3822. CAN1_TxHeader.RTR = 0; // Not an RTR message.
  3823. CAN1_TxHeader.DLC = 1; // Send one byte of data.
  3824. CAN1_TxData[0] = 0xAA;
  3825. // CAN1_TxData[1] = 0x22;
  3826. // CAN1_TxData[2] = 0x33;
  3827. // CAN1_TxData[3] = 0x44;
  3828. // CAN1_TxData[4] = 0x55;
  3829. // CAN1_TxData[5] = 0x66;
  3830. // CAN1_TxData[6] = 0x77;
  3831. // CAN1_TxData[7] +=1;
  3832. if (HAL_CAN_AddTxMessage(&hcan1, &CAN1_TxHeader, CAN1_TxData, &CAN1_TxMailbox) != HAL_OK)
  3833. {
  3834. Error_Handler();
  3835. }
  3836. CAN1_RX_EndFlag = 0;
  3837. // osDelay(1000);
  3838. }
  3839. }
  3840. // osDelay(1000);
  3841. // if(HAL_CAN_GetTxMailboxesFreeLevel( &hcan1 ) != 0){
  3842. // CAN1_TxHeader.ExtId = 0x123;
  3843. // CAN1_TxHeader.IDE = CAN_ID_EXT; // IDE = CAN_ID_EXT means Extended ID message.
  3844. // //CAN1_TxHeader.SRR = 0; //stm32 hal lib not .SRR
  3845. // CAN1_TxHeader.RTR = 0; // Not an RTR message.
  3846. // CAN1_TxHeader.DLC = 8; // Send one byte of data.
  3847. // CAN1_TxData[0] = 0xAA;
  3848. // CAN1_TxData[1] = 0xBB;
  3849. // CAN1_TxData[2] = 0xCC;
  3850. // CAN1_TxData[3] = 0xDD;
  3851. // CAN1_TxData[4] = 0xEE;
  3852. // CAN1_TxData[5] = 0xFF;
  3853. // CAN1_TxData[6] = 0x11;
  3854. // CAN1_TxData[7] = 0x22;
  3855. // if (HAL_CAN_AddTxMessage(&hcan1, &CAN1_TxHeader, CAN1_TxData, &CAN1_TxMailbox) != HAL_OK)
  3856. // {
  3857. // Error_Handler();
  3858. // }
  3859. // }
  3860. osDelay(1);
  3861. }
  3862. /* USER CODE END canTask */
  3863. }
  3864. /* Private application code --------------------------------------------------*/
  3865. /* USER CODE BEGIN Application */
  3866. /**
  3867. * @brief Sets the selected data port bits.
  3868. * @param GPIOx: where x can be (A..G) to select the GPIO peripheral.
  3869. * @param GPIO_Pin: specifies the port bits to be written.
  3870. * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
  3871. * @retval None
  3872. */
  3873. // void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
  3874. //{
  3875. // /* Check the parameters */
  3876. // assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
  3877. // assert_param(IS_GPIO_PIN(GPIO_Pin));
  3878. //
  3879. // GPIOx->BSRR = GPIO_Pin;
  3880. // }
  3881. /**
  3882. * @brief Clears the selected data port bits.
  3883. * @param GPIOx: where x can be (A..G) to select the GPIO peripheral.
  3884. * @param GPIO_Pin: specifies the port bits to be written.
  3885. * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
  3886. * @retval None
  3887. */
  3888. // void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
  3889. //{
  3890. // /* Check the parameters */
  3891. // assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
  3892. // assert_param(IS_GPIO_PIN(GPIO_Pin));
  3893. //
  3894. // GPIOx->BRR = GPIO_Pin;
  3895. // }
  3896. void nTestIO(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem)
  3897. {
  3898. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
  3899. HAL_Delay(Multi_Relay_Delay_Time);
  3900. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_RESET)
  3901. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3902. else{
  3903. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3904. return;
  3905. }
  3906. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
  3907. HAL_Delay(Multi_Relay_Delay_Time);
  3908. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_SET)
  3909. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3910. else
  3911. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3912. }
  3913. void nTestIO1(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem)
  3914. {
  3915. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
  3916. HAL_Delay(Multi_Relay_Delay_Time);
  3917. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_SET)
  3918. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3919. else{
  3920. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3921. return;
  3922. }
  3923. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
  3924. HAL_Delay(Multi_Relay_Delay_Time);
  3925. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_RESET)
  3926. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3927. else
  3928. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3929. }
  3930. void nTestEXT_INT(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin,uint8_t *flag,uint8_t nItem)
  3931. {
  3932. *flag = 0;
  3933. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
  3934. HAL_Delay(Multi_Relay_Delay_Time);
  3935. if(*flag){
  3936. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3937. }else{
  3938. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3939. }
  3940. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
  3941. HAL_Delay(Multi_Relay_Delay_Time);
  3942. }
  3943. uint8_t isValidCheckSum(void)
  3944. {
  3945. uint8_t result = OFF;
  3946. uint8_t chksum = 0x00;
  3947. if (uart_rx_buffer[0] == PROTOCOL_HEAD)
  3948. {
  3949. for (int idx = 0; idx < (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)); idx++)
  3950. {
  3951. chksum ^= uart_rx_buffer[(6 + idx)];
  3952. }
  3953. if (chksum == uart_rx_buffer[(6 + (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)))])
  3954. result = ON;
  3955. }
  3956. return result;
  3957. }
  3958. // two points
  3959. void CLC_Corr_Gain_Par(uint16_t SpecData_H, uint16_t SpecData_L, uint16_t MCUData_H, uint16_t MCUData_L, float *GainA, float *GainB)
  3960. {
  3961. *GainA = (float)((float)(SpecData_H - SpecData_L) / (float)(MCUData_H - MCUData_L));
  3962. *GainB = (float)(SpecData_H - (float)(*GainA * MCUData_H));
  3963. }
  3964. // three points
  3965. uint16_t acVolCalWithGain(uint16_t orgValue, uint8_t phase)
  3966. {
  3967. uint16_t result = 0;
  3968. if ((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) &&
  3969. (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]) &&
  3970. (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))
  3971. {
  3972. // If denominator not equal 0, calculate orgValue with Lagrange polynomial
  3973. result = (uint16_t)((((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][METER_DATA] +
  3974. (((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][METER_DATA] +
  3975. (((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][METER_DATA]);
  3976. }
  3977. else
  3978. {
  3979. // If denominator equal 0, pass orgValue as result
  3980. result = orgValue;
  3981. }
  3982. return result;
  3983. }
  3984. void CalcuteGFDMaxMinValue(uint8_t gunindex){
  3985. if(Gfd.DnBridgeMaxV[gunindex] == 0){
  3986. Gfd.DnBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  3987. }
  3988. if(Gfd.DnBridgeMinV[gunindex] == 0){
  3989. Gfd.DnBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  3990. }
  3991. if(Module_Info.SMR_Gfd_Sense[gunindex] > Gfd.DnBridgeMaxV[gunindex]){
  3992. Gfd.DnBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  3993. }
  3994. if(Module_Info.SMR_Gfd_Sense[gunindex] < Gfd.DnBridgeMinV[gunindex]){
  3995. Gfd.DnBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
  3996. }
  3997. if(Gfd.operation[gunindex] == GFD_BALANCE){
  3998. if(Gfd.MaxP2PE[gunindex] == 0){
  3999. Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
  4000. }
  4001. if(Gfd.MinP2PE[gunindex] == 0){
  4002. Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
  4003. }
  4004. if(Module_Info.gfd_chk[gunindex].R_GFD > Gfd.MaxP2PE[gunindex]){
  4005. Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
  4006. }
  4007. if(Module_Info.gfd_chk[gunindex].R_GFD < Gfd.MinP2PE[gunindex]){
  4008. Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
  4009. }
  4010. }
  4011. if(Gfd.operation[gunindex] == GFD_UNBALANCE){
  4012. if(Gfd.MaxP2PE[gunindex] == 0){
  4013. Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
  4014. }
  4015. if(Gfd.MinP2PE[gunindex] == 0){
  4016. Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
  4017. }
  4018. if(Gfd.MaxN2PE[gunindex] == 0){
  4019. Gfd.MaxN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
  4020. }
  4021. if(Gfd.MinN2PE[gunindex] == 0){
  4022. Gfd.MinN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
  4023. }
  4024. if(Module_Info.gfd_chk[gunindex].P2PE_GFD > Gfd.MaxP2PE[gunindex]){
  4025. Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
  4026. }
  4027. if(Module_Info.gfd_chk[gunindex].P2PE_GFD < Gfd.MaxP2PE[gunindex]){
  4028. Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
  4029. }
  4030. if(Module_Info.gfd_chk[gunindex].N2PE_GFD > Gfd.MaxN2PE[gunindex]){
  4031. Gfd.MaxN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
  4032. }
  4033. if(Module_Info.gfd_chk[gunindex].N2PE_GFD < Gfd.MaxN2PE[gunindex]){
  4034. Gfd.MinN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
  4035. }
  4036. }
  4037. }
  4038. void SetGfdMode(void)
  4039. {
  4040. int i;
  4041. for(i=0; i<2; i++){
  4042. if(ModelName[7+i*2] != 0){
  4043. switch (ModelName[7+i*2])
  4044. {
  4045. case 'J':
  4046. case 'K':
  4047. case 'L':
  4048. case 'S':
  4049. case 'W':
  4050. Gfd.GfdMode[i] = GFD_BALANCE;
  4051. break;
  4052. default:
  4053. Gfd.GfdMode[i] = GFD_UNBALANCE;
  4054. break;
  4055. }
  4056. }
  4057. }
  4058. osDelay(1000);
  4059. printf("Set SMR1 GFD Mode : %s\n\r", Gfd.GfdMode[0] == GFD_BALANCE ? "Balance" : "Unbalance");
  4060. printf("Set SMR2 GFD Mode : %s\n\r", Gfd.GfdMode[1] == GFD_BALANCE ? "Balance" : "Unbalance");
  4061. if(ModelName[2] == 'J' || ModelName[3] == 'J' || ModelName[3] == 'R'){
  4062. Gfd.IsolationVoltage = 4500;
  4063. }else{
  4064. Gfd.IsolationVoltage = 5000;
  4065. }
  4066. printf("Set IsolationVoltage:%dV\n\r\n\r",Gfd.IsolationVoltage/10);
  4067. }
  4068. void CSRHB_Ver_Check(void)
  4069. {
  4070. CSRHB_VER = 0;
  4071. CSRHB_VER = HAL_GPIO_ReadPin(CSRHB_VER_GPIO_Port, CSRHB_VER_Pin);
  4072. printf("CSRHB%s\n\r", CSRHB_VER ? "00 Rev02 (5 Relay)":"01 Rev01 (6 Relay)");
  4073. }
  4074. void IOdebug(void)
  4075. {
  4076. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_SET);
  4077. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_SET);
  4078. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_SET);
  4079. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_SET);
  4080. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_SET);
  4081. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_SET);
  4082. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_SET);
  4083. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_SET);
  4084. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_SET);
  4085. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_SET);
  4086. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_SET);
  4087. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_SET);
  4088. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_SET);
  4089. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_SET);
  4090. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_SET);
  4091. HAL_GPIO_WritePin(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, GPIO_PIN_SET);
  4092. HAL_GPIO_WritePin(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, GPIO_PIN_SET);
  4093. HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
  4094. HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
  4095. osDelay(200);
  4096. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  4097. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  4098. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  4099. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  4100. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  4101. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  4102. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  4103. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  4104. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  4105. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  4106. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  4107. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  4108. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  4109. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  4110. // printf("RELAY ON:%llx\r\n", Module_Info.Relay_Status.All);
  4111. printf("RELAY ON:S1:%x S2:%x S3:%x S4:%x\r\n",Module_Info.Relay_Status.Status[0],Module_Info.Relay_Status.Status[1],Module_Info.Relay_Status.Status[2],Module_Info.Relay_Status.Status[3]);
  4112. printf("RELAY ON:S5:%x S6:%x S7:%x\r\n\r\n",Module_Info.Relay_Status.Status[4],Module_Info.Relay_Status.Status[5],Module_Info.Relay_Status.Status[6]);
  4113. osDelay(1800);
  4114. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  4115. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  4116. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  4117. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  4118. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  4119. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  4120. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  4121. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  4122. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  4123. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  4124. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  4125. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  4126. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_RESET);
  4127. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_RESET);
  4128. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
  4129. HAL_GPIO_WritePin(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, GPIO_PIN_RESET);
  4130. HAL_GPIO_WritePin(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, GPIO_PIN_RESET);
  4131. HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
  4132. HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
  4133. osDelay(200);
  4134. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  4135. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  4136. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  4137. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  4138. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  4139. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  4140. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  4141. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  4142. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  4143. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  4144. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  4145. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  4146. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  4147. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  4148. // printf("RELAY OFF:%llx\r\n", Module_Info.Relay_Status.All);
  4149. printf("RELAY OFF:S1:%x S2:%x S3:%x S4:%x\r\n",Module_Info.Relay_Status.Status[0],Module_Info.Relay_Status.Status[1],Module_Info.Relay_Status.Status[2],Module_Info.Relay_Status.Status[3]);
  4150. printf("RELAY OFF:S5:%x S6:%x S7:%x\r\n\r\n",Module_Info.Relay_Status.Status[4],Module_Info.Relay_Status.Status[5],Module_Info.Relay_Status.Status[6]);
  4151. osDelay(1800);
  4152. }
  4153. void UartCMDtest(void)
  4154. {
  4155. if(Cmdcount > 0){
  4156. // osDelay(1000);
  4157. uart_recv_end_flag = 1;
  4158. uart_rx_buffer[0] = 0xAA;
  4159. uart_rx_buffer[1] = 0x0;
  4160. uart_rx_buffer[2] = 0xFF;
  4161. uart_rx_buffer[3] = PROTOCOL_MESSAGE_CONFIG_MODEL_NAME;
  4162. uart_rx_buffer[4] = 14;
  4163. uart_rx_buffer[5] = 00;
  4164. uart_rx_buffer[6] = 'D';
  4165. uart_rx_buffer[7] = 'D';
  4166. uart_rx_buffer[8] = 'Y';
  4167. // uart_rx_buffer[9] = 'C';
  4168. uart_rx_buffer[10] = '3';
  4169. uart_rx_buffer[11] = '6';
  4170. uart_rx_buffer[12] = '2';
  4171. // uart_rx_buffer[13] = '0';
  4172. uart_rx_buffer[14] = '0';
  4173. // uart_rx_buffer[15] = '0';
  4174. uart_rx_buffer[16] = 'E';
  4175. uart_rx_buffer[17] = '2';
  4176. uart_rx_buffer[18] = 'O';
  4177. uart_rx_buffer[19] = 'A';
  4178. uart_rx_buffer[20] = 0;
  4179. for(int idx=0; idx<(uart_rx_buffer[4] | (uart_rx_buffer[5]<<8));idx++)
  4180. {
  4181. uart_rx_buffer[20] ^= uart_rx_buffer[(6+ idx)];
  4182. }
  4183. Cmdcount --;
  4184. }
  4185. }
  4186. /* USER CODE END Application */