freertos.c 147 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035
  1. /* USER CODE BEGIN Header */
  2. /**
  3. ******************************************************************************
  4. * File Name : freertos.c
  5. * Description : Code for freertos applications
  6. ******************************************************************************
  7. * @attention
  8. *
  9. * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  10. * All rights reserved.</center></h2>
  11. *
  12. * This software component is licensed by ST under Ultimate Liberty license
  13. * SLA0044, the "License"; You may not use this file except in compliance with
  14. * the License. You may obtain a copy of the License at:
  15. * www.st.com/SLA0044
  16. *
  17. ******************************************************************************
  18. */
  19. /* USER CODE END Header */
  20. /* Includes ------------------------------------------------------------------*/
  21. #include "FreeRTOS.h"
  22. #include "task.h"
  23. #include "main.h"
  24. #include "cmsis_os.h"
  25. /* Private includes ----------------------------------------------------------*/
  26. /* USER CODE BEGIN Includes */
  27. #include <stdlib.h>
  28. #include "adc.h"
  29. #include "crc.h"
  30. #include "flash_if.h"
  31. #include "sine.h"
  32. #include "usart.h"
  33. #include "tim.h"
  34. #include "can.h"
  35. /* USER CODE END Includes */
  36. /* Private typedef -----------------------------------------------------------*/
  37. /* USER CODE BEGIN PTD */
  38. /* USER CODE END PTD */
  39. /* Private define ------------------------------------------------------------*/
  40. /* USER CODE BEGIN PD */
  41. #define PROTOCOL_HEAD 0xaa
  42. #define PROTOCOL_ADDR (nBoard_Addr) // 0x01:AUX PWR 0x02: FAN BD 0x03:RLY BD 0xff:Any
  43. #define PROTOCOL_ADDR_BROADCAST 0xff
  44. #define PROTOCOL_MESSAGE_QUERY_FW_VER 0x01
  45. #define PROTOCOL_MESSAGE_QUERY_HW_VER 0x02
  46. #define PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE 0x03
  47. #define PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE 0x04
  48. #define PROTOCOL_MESSAGE_QUERY_FAN_SPEED 0x05
  49. #define PROTOCOL_MESSAGE_QUERY_TEMPERATURE 0x06
  50. #define PROTOCOL_MESSAGE_QUERY_AUX_POWER_VOLTAGE 0x07
  51. #define PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE 0x09
  52. #define PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS 0x0A
  53. #define PROTOCOL_MESSAGE_QUERY_ALARM_LOG 0x22
  54. #define PROTOCOL_MESSAGE_QUERY_SN 0x23
  55. #define PROTOCOL_MESSAGE_QUERY_MODEL_NAME 0x24
  56. #define PROTOCOL_MESSAGE_QUERY_PARAMETER 0x25
  57. #define PROTOCOL_MESSAGE_QUERY_ALARM_CODE 0x29
  58. #define PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN 0x38
  59. #define PROTOCOL_MESSAGE_QUERY_OUTPUT_RELAY_OUTPUT_STATUS 0x3A
  60. #define PROTOCOL_MESSAGE_QUERY_BRIDGE_RELAY_OUTPUT_STATUS 0x3B
  61. #define PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS 0x3C
  62. #define PROTOCOL_MESSAGE_CONFIG_FAN_SPEED 0x81
  63. #define PROTOCOL_MESSAGE_CONFIG_SN 0x82
  64. #define PROTOCOL_MESSAGE_CONFIG_MODEL_NAME 0x83
  65. #define PROTOCOL_MESSAGE_CONFIG_PARAMETER 0x84
  66. #define PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT 0x86
  67. #define PROTOCOL_MESSAGE_CONFIG_GFD_VALUE 0x8B
  68. #define PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST 0x92
  69. #define PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT 0x98
  70. #define PROTOCOL_MESSAGE_CONFIG_BRIDGE_RELAY_OUTPUT 0x99
  71. #define PROTOCOL_MESSAGE_UPGRADE_START 0xe0
  72. #define PROTOCOL_MESSAGE_UPGRADE_ABOARD 0xe1
  73. #define PROTOCOL_MESSAGE_UPGRADE_TRANS 0xe2
  74. #define PROTOCOL_MESSAGE_UPGRADE_STOP 0xe3
  75. #define USER_MESSAGE_QUERY_SENSE_GFD 0xF1
  76. #define USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE 0xF2
  77. #define Multi_Relay_Delay_Time 200 //unit:ms
  78. #define WeldingCMDDelay 10 //unit:100ms
  79. /* USER CODE END PD */
  80. /* Private macro -------------------------------------------------------------*/
  81. /* USER CODE BEGIN PM */
  82. /* USER CODE END PM */
  83. /* Private variables ---------------------------------------------------------*/
  84. /* USER CODE BEGIN Variables */
  85. // RB v4.0
  86. // const uint32_t mem_def_data[20]={0xaf00984, 0x89807f9, 0x64005d5, 0xaf00989, 0x8980802, \
  87. // 0x64005da, 0xaf00986, 0x8980800, 0x64005db, 0x251c2516,
  88. // 0x5dc05e5, 0x251c250f,0x5dc05dd, 0x128e12c0, 0x3b604ae,
  89. // 0x128e1284, 0x3b604a4, 0, 0, 0 };
  90. // RB v4.0 (base on the situation of removing diode condition.)
  91. //L1~L3 SMR1~SMR6 GFD-L~FGD-R
  92. const uint32_t mem_def_data[27] = {0x0AEF0A2B, 0x08960800, 0x063F05D4, //L1 3 point
  93. 0x0AEF0A29, 0x089607FF, 0x063F05D3, //L2 3 point
  94. 0x0AEF0A29, 0x08960802, 0x063F05D5, //L3 3 point
  95. 0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR1,SMR2 DCV 2 point
  96. 0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR3,SMR4 DCV 2 point
  97. 0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR5,SMR6 DCV 2 point
  98. 0x128E13E4, 0x03B604CF, 0x128E139D, 0x03B604D0, //LGFD,RGFD 2 point
  99. 0x251C2505, 0x05DC05DD //DC IN 2 point
  100. };
  101. __IO uint32_t flashdestination;
  102. __IO uint32_t newdestination;
  103. //uint8_t test;
  104. uint8_t test[8];
  105. uint8_t CSRHB_VER;
  106. /* USER CODE END Variables */
  107. osThreadId defaultTaskHandle;
  108. osThreadId uart1TaskHandle;
  109. osThreadId adc1TaskHandle;
  110. osThreadId adc2TaskHandle;
  111. osThreadId adc3TaskHandle;
  112. osThreadId gpioTaskHandle;
  113. osThreadId memoryTaskHandle;
  114. osThreadId InkeyTaskHandle;
  115. osThreadId gfd_left_TaskHandle;
  116. osThreadId gfd_right_TaskHandle;
  117. osThreadId sf_test_TaskHandle;
  118. osThreadId _ledTask_Handle;
  119. osThreadId CANTaskHandle;
  120. /* Private function prototypes -----------------------------------------------*/
  121. /* USER CODE BEGIN FunctionPrototypes */
  122. void CSRHB_Ver_Check(void);
  123. uint8_t isValidCheckSum(void);
  124. void CLC_Corr_Gain_Par(uint16_t SpecData_H, uint16_t SpecData_L, uint16_t MCUData_H, uint16_t MCUData_L, float *GainA, float *GainB);
  125. uint16_t acVolCalWithGain(uint16_t orgValue, uint8_t phase);
  126. void nTestIO(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
  127. void nTestIO1(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
  128. void nTestEXT_INT(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, uint8_t *flag, uint8_t nItem);
  129. void nTestIO_2(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin,
  130. GPIO_TypeDef *GPIO_out2_port, uint16_t GPIO_out2_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
  131. void IOdebug(void);
  132. /* USER CODE END FunctionPrototypes */
  133. void StartDefaultTask(void const * argument);
  134. void Uart1Task(void const * argument);
  135. void Adc1Task(void const * argument);
  136. void Adc2Task(void const * argument);
  137. void Adc3Task(void const * argument);
  138. void GpioTask(void const * argument);
  139. void MemoryTask(void const * argument);
  140. void Inkey_Task(void const * argument);
  141. void Gfd_Left_Task(void const * argument);
  142. void Gfd_Right_Task(void const * argument);
  143. void SF_Test_Task(void const * argument);
  144. void LedTask(void const * argument);
  145. void canTask(void const * argument);
  146. void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */
  147. /* GetIdleTaskMemory prototype (linked to static allocation support) */
  148. void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize );
  149. /* USER CODE BEGIN GET_IDLE_TASK_MEMORY */
  150. static StaticTask_t xIdleTaskTCBBuffer;
  151. static StackType_t xIdleStack[configMINIMAL_STACK_SIZE];
  152. void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize)
  153. {
  154. *ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer;
  155. *ppxIdleTaskStackBuffer = &xIdleStack[0];
  156. *pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
  157. /* place for user code */
  158. }
  159. /* USER CODE END GET_IDLE_TASK_MEMORY */
  160. /**
  161. * @brief FreeRTOS initialization
  162. * @param None
  163. * @retval None
  164. */
  165. void MX_FREERTOS_Init(void) {
  166. /* USER CODE BEGIN Init */
  167. // Version info configuration
  168. memset(&Module_Info.Soft_Ver_Ptr[0], 0x00, ARRAY_SIZE(Module_Info.Soft_Ver_Ptr));
  169. memset(&Module_Info.Hard_Ver_Ptr[0], 0x00, ARRAY_SIZE(Module_Info.Hard_Ver_Ptr));
  170. sprintf((char *)Module_Info.Soft_Ver_Ptr, "V1.00.R3");
  171. if(nBoard_Addr == MainRelay){
  172. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_M ");
  173. }else if(nBoard_Addr == GunRelay){
  174. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_G ");
  175. }else if(nBoard_Addr == MainBridge1){
  176. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_1 ");
  177. }else if(nBoard_Addr == MainBridge2){
  178. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_2 ");
  179. }else if(nBoard_Addr == MainBridge3){
  180. sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_3 ");
  181. }else{
  182. sprintf((char *)Module_Info.Hard_Ver_Ptr, "Undefine");
  183. }
  184. /* USER CODE END Init */
  185. /* USER CODE BEGIN RTOS_MUTEX */
  186. /* add mutexes, ... */
  187. /* USER CODE END RTOS_MUTEX */
  188. /* USER CODE BEGIN RTOS_SEMAPHORES */
  189. /* add semaphores, ... */
  190. /* USER CODE END RTOS_SEMAPHORES */
  191. /* USER CODE BEGIN RTOS_TIMERS */
  192. /* start timers, add new ones, ... */
  193. /* USER CODE END RTOS_TIMERS */
  194. /* USER CODE BEGIN RTOS_QUEUES */
  195. /* add queues, ... */
  196. /* USER CODE END RTOS_QUEUES */
  197. /* Create the thread(s) */
  198. /* definition and creation of defaultTask */
  199. osThreadDef(defaultTask, StartDefaultTask, osPriorityIdle, 0, 128);
  200. defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
  201. /* definition and creation of uart1Task */
  202. osThreadDef(uart1Task, Uart1Task, osPriorityAboveNormal, 0, 1024);
  203. uart1TaskHandle = osThreadCreate(osThread(uart1Task), NULL);
  204. /* definition and creation of adc1Task */
  205. osThreadDef(adc1Task, Adc1Task, osPriorityNormal, 0, 512);
  206. adc1TaskHandle = osThreadCreate(osThread(adc1Task), NULL);
  207. /* definition and creation of adc2Task */
  208. osThreadDef(adc2Task, Adc2Task, osPriorityNormal, 0, 1024);
  209. adc2TaskHandle = osThreadCreate(osThread(adc2Task), NULL);
  210. /* definition and creation of adc3Task */
  211. osThreadDef(adc3Task, Adc3Task, osPriorityNormal, 0, 128);
  212. adc3TaskHandle = osThreadCreate(osThread(adc3Task), NULL);
  213. /* definition and creation of gpioTask */
  214. osThreadDef(gpioTask, GpioTask, osPriorityNormal, 0, 128);
  215. gpioTaskHandle = osThreadCreate(osThread(gpioTask), NULL);
  216. /* definition and creation of memoryTask */
  217. osThreadDef(memoryTask, MemoryTask, osPriorityIdle, 0, 256);
  218. memoryTaskHandle = osThreadCreate(osThread(memoryTask), NULL);
  219. /* definition and creation of InkeyTask */
  220. osThreadDef(InkeyTask, Inkey_Task, osPriorityAboveNormal, 0, 128);
  221. InkeyTaskHandle = osThreadCreate(osThread(InkeyTask), NULL);
  222. /* definition and creation of gfd_left_Task */
  223. osThreadDef(gfd_left_Task, Gfd_Left_Task, osPriorityAboveNormal, 0, 128);
  224. gfd_left_TaskHandle = osThreadCreate(osThread(gfd_left_Task), NULL);
  225. /* definition and creation of gfd_right_Task */
  226. osThreadDef(gfd_right_Task, Gfd_Right_Task, osPriorityAboveNormal, 0, 128);
  227. gfd_right_TaskHandle = osThreadCreate(osThread(gfd_right_Task), NULL);
  228. /* definition and creation of sf_test_Task */
  229. osThreadDef(sf_test_Task, SF_Test_Task, osPriorityNormal, 0, 128);
  230. sf_test_TaskHandle = osThreadCreate(osThread(sf_test_Task), NULL);
  231. /* definition and creation of _ledTask_ */
  232. osThreadDef(_ledTask_, LedTask, osPriorityIdle, 0, 128);
  233. _ledTask_Handle = osThreadCreate(osThread(_ledTask_), NULL);
  234. /* definition and creation of CANTask */
  235. osThreadDef(CANTask, canTask, osPriorityAboveNormal, 0, 256);
  236. CANTaskHandle = osThreadCreate(osThread(CANTask), NULL);
  237. /* USER CODE BEGIN RTOS_THREADS */
  238. /* add threads, ... */
  239. /* USER CODE END RTOS_THREADS */
  240. }
  241. /* USER CODE BEGIN Header_StartDefaultTask */
  242. /**
  243. * @brief Function implementing the defaultTask thread.
  244. * @param argument: Not used
  245. * @retval None
  246. */
  247. /* USER CODE END Header_StartDefaultTask */
  248. void StartDefaultTask(void const * argument)
  249. {
  250. /* USER CODE BEGIN StartDefaultTask */
  251. /* Infinite loop */
  252. printf("FW Ver:%s\n\r", Module_Info.Soft_Ver_Ptr);
  253. printf("PCB Define:%s\n\r", Module_Info.Hard_Ver_Ptr);
  254. CSRHB_Ver_Check();
  255. for (;;)
  256. {
  257. if (bRelayFeedback == 1)
  258. {
  259. bRelayFeedback = 0;
  260. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  261. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  262. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  263. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  264. }
  265. #if (DEBUG_PRINTF == 1)
  266. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  267. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  268. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  269. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  270. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  271. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  272. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  273. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  274. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  275. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  276. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  277. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  278. printf("Relay Set = %014llx \n\r",Module_Info.Relay_IO.All);
  279. printf("Relay Status = %014llx \n\r\n\r",Module_Info.Relay_Status.All);
  280. printf("Dip_Switch = %d \n\r", Module_Info.gfd_chk[1].R_GFD_v);
  281. printf(" ADC1 = %d ADC2 = %d ADC3 = %d ADC4 = %d ADC5 = %d \n\r", adc_value.ADC1_IN0.value,
  282. adc_value.ADC1_IN1.value,adc_value.ADC1_IN2.value,adc_value.ADC1_IN3.value,adc_value.ADC1_IN4.value);
  283. printf(" ADC6 = %d ADC7 = %d ADC8 = %d ADC9 = %d \n\r", adc_value.ADC1_IN5.value,
  284. adc_value.ADC1_IN6.value,adc_value.ADC1_IN7.value,adc_value.ADC1_IN8.value);
  285. printf("SMR6 = %d \n\r",Module_Info.SMR6_Relay_V);
  286. printf(" CT1 = %d , CT2 = %d , ADC_1 = %f, ADC_2 = %f \n\r", Module_Info.SMR1_Relay_C,
  287. Module_Info.SMR2_Relay_C, c_vadc[0], c_vadc[1]); // 100A = 1000
  288. vTaskDelay(2000 / portTICK_RATE_MS);
  289. #else
  290. osDelay(1);
  291. #endif
  292. }
  293. /* USER CODE END StartDefaultTask */
  294. }
  295. /* USER CODE BEGIN Header_Uart1Task */
  296. /**
  297. * @brief Function implementing the uart1Task thread.
  298. * @param argument: Not used
  299. * @retval None
  300. */
  301. /* USER CODE END Header_Uart1Task */
  302. void Uart1Task(void const * argument)
  303. {
  304. /* USER CODE BEGIN Uart1Task */
  305. /* Infinite loop */
  306. uint8_t tx[UART_BUFFER_SIZE];
  307. uint8_t tx_len;
  308. uint8_t chksum = 0;
  309. uint8_t endFlag[4] = {0x55, 0xaa, 0x55, 0xaa};
  310. uint32_t flash, crc32;
  311. uint16_t temp, SMR1_Gfd_Diff, SMR2_Gfd_Diff;
  312. uint16_t nSMR1_Sense, nSMR2_Sense, nSMR3_Sense,nSMR4_Sense,nSMR5_Sense,nSMR6_Sense,nVer165, SMR1_Gfd_Sense, SMR2_Gfd_Sense;
  313. // uint16_t delay = 100;
  314. for (;;)
  315. {
  316. // osDelay(delay);
  317. // chksum = 0;
  318. // Exti.EXTI_SMR1_Flag = true;
  319. // Exti.Status = 0xff;
  320. // uart_recv_end_flag = 1;
  321. // uart_rx_buffer[0] = 0xAA;
  322. // uart_rx_buffer[1] = 0x0;
  323. // uart_rx_buffer[2] = MainBridge1;
  324. // uart_rx_buffer[3] = 0x25;
  325. // uart_rx_buffer[4] = 0x2;
  326. // uart_rx_buffer[5] = 0x0;
  327. // uart_rx_buffer[6] = 0x46;
  328. // uart_rx_buffer[7] = 0x02;
  329. // for(int idx=0; idx<(uart_rx_buffer[4] | (uart_rx_buffer[5]<<8));idx++)
  330. // {
  331. // chksum ^= uart_rx_buffer[(6+ idx)];
  332. // }
  333. // uart_rx_buffer[8] = chksum;
  334. // uart_recv_end_flag = 1;
  335. // uart_rx_buffer[0] = 0xAA;
  336. // uart_rx_buffer[2] = MainRelay;
  337. // uart_rx_buffer[3] = PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT;
  338. // uart_rx_buffer[4] = 7;
  339. // uart_rx_buffer[5] = 0;
  340. // uart_rx_buffer[6] = test[0];
  341. // uart_rx_buffer[7] = test[1];
  342. // uart_rx_buffer[8] = test[2];
  343. // uart_rx_buffer[9] = test[3];
  344. // uart_rx_buffer[10] = test[4];
  345. // uart_rx_buffer[11] = test[5];
  346. // uart_rx_buffer[12] = test[6];
  347. // for (int idx = 0; idx < (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)); idx++){
  348. // chksum ^= uart_rx_buffer[6 + idx];
  349. // }
  350. // uart_rx_buffer[13] = chksum;
  351. // if(delay < 1500)
  352. // {
  353. // delay += 100;
  354. // }
  355. // else
  356. // {
  357. // Exti.EXTI_SMR1_Flag = true;
  358. // delay = 100;
  359. // }
  360. // printf("%d\r\n",delay);
  361. if (uart_recv_end_flag == 1)
  362. {
  363. // printf(" %x %x %x %x %x %x\n\r", uart_rx_buffer[0],uart_rx_buffer[1],uart_rx_buffer[2],uart_rx_buffer[3],uart_rx_buffer[4],uart_rx_buffer[5]);
  364. chksum = 0;
  365. if ((uart_rx_buffer[2] == PROTOCOL_ADDR) || (uart_rx_buffer[2] == PROTOCOL_ADDR_BROADCAST))
  366. {
  367. if (isValidCheckSum() == ON)
  368. {
  369. switch (uart_rx_buffer[3])
  370. {
  371. case USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE:
  372. tx_len = 35;
  373. tx[0] = 0xaa;
  374. tx[1] = PROTOCOL_ADDR;
  375. tx[2] = uart_rx_buffer[1];
  376. tx[3] = USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE;
  377. tx[4] = 28;
  378. tx[5] = 0;
  379. tx[6] = ((Module_Info.SMR1_Relay_C >> 0) & 0xff);
  380. tx[7] = ((Module_Info.SMR1_Relay_C >> 8) & 0xff);
  381. tx[8] = ((Module_Info.SMR2_Relay_C >> 0) & 0xff);
  382. tx[9] = ((Module_Info.SMR2_Relay_C >> 8) & 0xff);
  383. tx[10] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  384. tx[11] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  385. tx[12] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  386. tx[13] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  387. tx[14] = ((Module_Info.SMR3_Relay_V >> 0) & 0xff);
  388. tx[15] = ((Module_Info.SMR3_Relay_V >> 8) & 0xff);
  389. tx[16] = ((Module_Info.SMR4_Relay_V >> 0) & 0xff);
  390. tx[17] = ((Module_Info.SMR4_Relay_V >> 8) & 0xff);
  391. tx[18] = ((Module_Info.SMR5_Relay_V >> 0) & 0xff);
  392. tx[19] = ((Module_Info.SMR5_Relay_V >> 8) & 0xff);
  393. tx[20] = ((Module_Info.SMR6_Relay_V >> 0) & 0xff);
  394. tx[21] = ((Module_Info.SMR6_Relay_V >> 8) & 0xff);
  395. nSMR1_Sense = (uint16_t)adc_value.ADC1_IN0.value;
  396. nSMR2_Sense = (uint16_t)adc_value.ADC1_IN2.value;
  397. nSMR3_Sense = (uint16_t)adc_value.ADC1_IN5.value;
  398. nSMR4_Sense = (uint16_t)adc_value.ADC1_IN6.value;
  399. nSMR5_Sense = (uint16_t)adc_value.ADC1_IN7.value;
  400. nSMR6_Sense = (uint16_t)adc_value.ADC1_IN8.value;
  401. tx[22] = ((nSMR1_Sense >> 0) & 0xff);
  402. tx[23] = ((nSMR1_Sense >> 8) & 0xff);
  403. tx[24] = ((nSMR2_Sense >> 0) & 0xff);
  404. tx[25] = ((nSMR2_Sense >> 8) & 0xff);
  405. tx[26] = ((nSMR3_Sense >> 0) & 0xff);
  406. tx[27] = ((nSMR3_Sense >> 8) & 0xff);
  407. tx[28] = ((nSMR4_Sense >> 0) & 0xff);
  408. tx[29] = ((nSMR4_Sense >> 8) & 0xff);
  409. tx[30] = ((nSMR5_Sense >> 0) & 0xff);
  410. tx[31] = ((nSMR5_Sense >> 8) & 0xff);
  411. tx[32] = ((nSMR6_Sense >> 0) & 0xff);
  412. tx[33] = ((nSMR6_Sense >> 8) & 0xff);
  413. //tx[18] = ((Module_Info.BAT_Voltage >> 0) & 0xff);
  414. //tx[19] = ((Module_Info.BAT_Voltage >> 8) & 0xff);
  415. //tx[20] = ((nBat1_Sense >> 0) & 0xff);
  416. //tx[21] = ((nBat1_Sense >> 8) & 0xff);
  417. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  418. {
  419. chksum ^= tx[6 + idx];
  420. }
  421. tx[34] = chksum;
  422. break;
  423. case USER_MESSAGE_QUERY_SENSE_GFD:
  424. tx_len = 29;
  425. tx[0] = 0xaa;
  426. tx[1] = PROTOCOL_ADDR;
  427. tx[2] = uart_rx_buffer[1];
  428. tx[3] = USER_MESSAGE_QUERY_SENSE_GFD;
  429. tx[4] = 22;
  430. tx[5] = 0x00;
  431. if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
  432. {
  433. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  434. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 8) & 0xff);
  435. tx[8] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 0) & 0xff);
  436. tx[9] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 8) & 0xff);
  437. tx[11] = Module_Info.gfd_chk[0].Rfd_State_Fail;
  438. }
  439. else
  440. {
  441. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  442. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 8) & 0xff);
  443. tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  444. tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  445. tx[11] = Module_Info.gfd_chk[0].Rfd_State;
  446. }
  447. tx[10] = Module_Info.gfd_chk[0].bResult_Gfd;
  448. if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
  449. {
  450. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  451. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 8) & 0xff);
  452. tx[14] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 0) & 0xff);
  453. tx[15] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 8) & 0xff);
  454. tx[17] = Module_Info.gfd_chk[1].Rfd_State_Fail;
  455. }
  456. else
  457. {
  458. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  459. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 8) & 0xff);
  460. tx[14] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  461. tx[15] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  462. tx[17] = Module_Info.gfd_chk[1].Rfd_State;
  463. }
  464. tx[16] = Module_Info.gfd_chk[1].bResult_Gfd;
  465. // Verf_165
  466. nVer165 = (uint16_t)(Module_Info.Vref_165 * 100.0);
  467. tx[18] = ((nVer165 >> 0) & 0xff);
  468. tx[19] = ((nVer165 >> 8) & 0xff);
  469. SMR1_Gfd_Sense = (uint16_t)(Module_Info.SMR_Gfd_Sense[0] * 100.0);
  470. SMR2_Gfd_Sense = (uint16_t)(Module_Info.SMR_Gfd_Sense[1] * 100.0);
  471. SMR1_Gfd_Diff = (uint16_t)(Module_Info.SMR_Gfd_Diff[0] * 100.0);
  472. SMR2_Gfd_Diff = (uint16_t)(Module_Info.SMR_Gfd_Diff[1] * 100.0);
  473. tx[20] = ((SMR1_Gfd_Sense >> 0) & 0xff);
  474. tx[21] = ((SMR1_Gfd_Sense >> 8) & 0xff);
  475. tx[22] = ((SMR2_Gfd_Sense >> 0) & 0xff);
  476. tx[23] = ((SMR2_Gfd_Sense >> 8) & 0xff);
  477. tx[24] = ((SMR1_Gfd_Diff >> 0) & 0xff);
  478. tx[25] = ((SMR1_Gfd_Diff >> 8) & 0xff);
  479. tx[26] = ((SMR2_Gfd_Diff >> 0) & 0xff);
  480. tx[27] = ((SMR2_Gfd_Diff >> 8) & 0xff);
  481. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  482. {
  483. chksum ^= tx[6 + idx];
  484. }
  485. tx[28] = chksum;
  486. break;
  487. case PROTOCOL_MESSAGE_QUERY_FW_VER:
  488. tx_len = 15;
  489. tx[0] = 0xaa;
  490. tx[1] = PROTOCOL_ADDR;
  491. tx[2] = uart_rx_buffer[1];
  492. tx[3] = PROTOCOL_MESSAGE_QUERY_FW_VER;
  493. tx[4] = 0x08;
  494. tx[5] = 0x00;
  495. for (int idx = 0; idx < 8; idx++)
  496. tx[(6 + idx)] = Module_Info.Soft_Ver_Ptr[idx];
  497. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  498. chksum ^= tx[(6 + idx)];
  499. tx[14] = chksum;
  500. break;
  501. case PROTOCOL_MESSAGE_QUERY_HW_VER:
  502. tx_len = 15;
  503. tx[0] = 0xaa;
  504. tx[1] = PROTOCOL_ADDR;
  505. tx[2] = uart_rx_buffer[1];
  506. tx[3] = PROTOCOL_MESSAGE_QUERY_HW_VER;
  507. tx[4] = 0x08;
  508. tx[5] = 0x00;
  509. for (int idx = 0; idx < 8; idx++)
  510. tx[(6 + idx)] = Module_Info.Hard_Ver_Ptr[idx];
  511. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  512. chksum ^= tx[(6 + idx)];
  513. tx[14] = chksum;
  514. break;
  515. case PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE:
  516. tx_len = 14;
  517. tx[0] = 0xaa;
  518. tx[1] = PROTOCOL_ADDR;
  519. tx[2] = uart_rx_buffer[1];
  520. tx[3] = PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE;
  521. tx[4] = 0x07;
  522. tx[5] = 0x00;
  523. tx[6] = 0;
  524. tx[7] = ((AC_Sine[0].Vrms_AVG >> 0) & 0xff);
  525. tx[8] = ((AC_Sine[0].Vrms_AVG >> 8) & 0xff);
  526. tx[9] = ((AC_Sine[1].Vrms_AVG >> 0) & 0xff);
  527. tx[10] = ((AC_Sine[1].Vrms_AVG >> 8) & 0xff);
  528. tx[11] = ((AC_Sine[2].Vrms_AVG >> 0) & 0xff);
  529. tx[12] = ((AC_Sine[2].Vrms_AVG >> 8) & 0xff);
  530. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  531. chksum ^= tx[6 + idx];
  532. tx[13] = chksum;
  533. break;
  534. case PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN:
  535. tx_len = 11;
  536. tx[0] = 0xaa;
  537. tx[1] = PROTOCOL_ADDR;
  538. tx[2] = uart_rx_buffer[1];
  539. tx[3] = PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN;
  540. tx[4] = 0x04;
  541. tx[5] = 0x00;
  542. tx[6] = ((Module_Info.BAT_Voltage>>0) & 0xff);
  543. tx[7] = ((Module_Info.BAT_Voltage>>8) & 0xff);
  544. tx[8] = tx[9] = 0;
  545. for(int idx=0;idx<(tx[4] | (tx[5]<<8));idx++)
  546. {
  547. chksum ^= tx[6 + idx];
  548. }
  549. tx[10] = chksum;
  550. break;
  551. case PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE:
  552. tx_len = 23;
  553. tx[0] = 0xaa;
  554. tx[1] = PROTOCOL_ADDR;
  555. tx[2] = uart_rx_buffer[1];
  556. tx[3] = PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE;
  557. tx[4] = 16;
  558. tx[5] = 0x00;
  559. tx[6] = ((Module_Info.SMR1_Relay_C >> 0) & 0xff);
  560. tx[7] = ((Module_Info.SMR1_Relay_C >> 8) & 0xff);
  561. tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  562. tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  563. tx[10] = ((Module_Info.SMR2_Relay_C >> 0) & 0xff);
  564. tx[11] = ((Module_Info.SMR2_Relay_C >> 8) & 0xff);
  565. tx[12] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  566. tx[13] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  567. tx[14] = ((Module_Info.SMR3_Relay_V >> 0) & 0xff);
  568. tx[15] = ((Module_Info.SMR3_Relay_V >> 8) & 0xff);
  569. tx[16] = ((Module_Info.SMR4_Relay_V >> 0) & 0xff);
  570. tx[17] = ((Module_Info.SMR4_Relay_V >> 8) & 0xff);
  571. tx[18] = ((Module_Info.SMR5_Relay_V >> 0) & 0xff);
  572. tx[19] = ((Module_Info.SMR5_Relay_V >> 8) & 0xff);
  573. tx[20] = ((Module_Info.SMR6_Relay_V >> 0) & 0xff);
  574. tx[21] = ((Module_Info.SMR6_Relay_V >> 8) & 0xff);
  575. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  576. {
  577. chksum ^= tx[6 + idx];
  578. }
  579. tx[22] = chksum;
  580. break;
  581. case PROTOCOL_MESSAGE_QUERY_OUTPUT_RELAY_OUTPUT_STATUS:
  582. tx_len = 14;
  583. tx[0] = 0xaa;
  584. tx[1] = PROTOCOL_ADDR;
  585. tx[2] = uart_rx_buffer[1];
  586. tx[3] = uart_rx_buffer[3];
  587. tx[4] = 7;
  588. tx[5] = 0;
  589. // Read Relay Feedback Pins ......
  590. Module_Info.Relay_Status.flags.AC_Contactor = ~HAL_GPIO_ReadPin(AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin);
  591. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  592. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  593. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  594. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  595. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  596. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  597. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  598. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  599. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  600. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  601. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  602. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  603. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  604. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  605. tx[6] = (Module_Info.Relay_Status.All & 0xff);
  606. tx[7] = (Module_Info.Relay_Status.All >> 8) & 0xff;
  607. tx[8] = (Module_Info.Relay_Status.All >> 16) & 0xff;
  608. tx[9] = (Module_Info.Relay_Status.All >> 24) & 0xff;
  609. tx[10] = (Module_Info.Relay_Status.All >> 32) & 0xff;
  610. tx[11] = (Module_Info.Relay_Status.All >> 40) & 0xff;
  611. tx[12] = (Module_Info.Relay_Status.All >> 48) & 0xff;
  612. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  613. {
  614. chksum ^= tx[6 + idx];
  615. }
  616. tx[13] = chksum;
  617. break;
  618. case PROTOCOL_MESSAGE_QUERY_BRIDGE_RELAY_OUTPUT_STATUS:
  619. tx_len = 13;
  620. tx[0] = 0xaa;
  621. tx[1] = PROTOCOL_ADDR;
  622. tx[2] = uart_rx_buffer[1];
  623. tx[3] = uart_rx_buffer[3];
  624. tx[4] = 6;
  625. tx[5] = 0;
  626. // Read Relay Feedback Pins ......
  627. Module_Info.Relay_Status.flags.AC_Contactor = ~HAL_GPIO_ReadPin(AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin);
  628. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  629. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  630. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  631. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  632. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  633. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  634. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  635. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  636. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  637. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  638. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  639. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  640. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  641. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  642. tx[6] = (Module_Info.Relay_Status.All & 0xff);
  643. tx[7] = (Module_Info.Relay_Status.All >> 8) & 0xff;
  644. tx[8] = (Module_Info.Relay_Status.All >> 16) & 0xff;
  645. tx[9] = (Module_Info.Relay_Status.All >> 24) & 0xff;
  646. tx[10] = (Module_Info.Relay_Status.All >> 32) & 0xff;
  647. tx[11] = (Module_Info.Relay_Status.All >> 40) & 0xff;
  648. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  649. {
  650. chksum ^= tx[6 + idx];
  651. }
  652. tx[12] = chksum;
  653. break;
  654. case PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE:
  655. tx_len = 19;
  656. tx[0] = 0xaa;
  657. tx[1] = PROTOCOL_ADDR;
  658. tx[2] = uart_rx_buffer[1];
  659. tx[3] = PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE;
  660. tx[4] = 12;
  661. tx[5] = 0x00;
  662. if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
  663. {
  664. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  665. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 8) & 0xff);
  666. tx[8] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 0) & 0xff);
  667. tx[9] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 8) & 0xff);
  668. tx[11] = Module_Info.gfd_chk[0].Rfd_State_Fail;
  669. }
  670. else
  671. {
  672. tx[6] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  673. tx[7] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 8) & 0xff);
  674. tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
  675. tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
  676. tx[11] = Module_Info.gfd_chk[0].Rfd_State;
  677. }
  678. tx[10] = Module_Info.gfd_chk[0].bResult_Gfd;
  679. if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
  680. {
  681. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
  682. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 8) & 0xff);
  683. tx[14] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 0) & 0xff);
  684. tx[15] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 8) & 0xff);
  685. tx[17] = Module_Info.gfd_chk[1].Rfd_State_Fail;
  686. }
  687. else
  688. {
  689. tx[12] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
  690. tx[13] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 8) & 0xff);
  691. tx[14] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
  692. tx[15] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
  693. tx[17] = Module_Info.gfd_chk[1].Rfd_State;
  694. }
  695. tx[16] = Module_Info.gfd_chk[1].bResult_Gfd;
  696. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  697. {
  698. chksum ^= tx[6 + idx];
  699. }
  700. tx[18] = chksum;
  701. break;
  702. case PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS:
  703. tx_len = 8;
  704. tx[0] = 0xaa;
  705. tx[1] = PROTOCOL_ADDR;
  706. tx[2] = uart_rx_buffer[1];
  707. tx[3] = PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS;
  708. tx[4] = 1;
  709. tx[5] = 0;
  710. tx[6] = Module_Info.Gpio_status.All;
  711. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  712. {
  713. chksum ^= tx[6 + idx];
  714. }
  715. tx[7] = chksum;
  716. break;
  717. case PROTOCOL_MESSAGE_QUERY_SN:
  718. tx_len = 27;
  719. tx[0] = 0xaa;
  720. tx[1] = PROTOCOL_ADDR;
  721. tx[2] = uart_rx_buffer[1];
  722. tx[3] = PROTOCOL_MESSAGE_QUERY_SN;
  723. tx[4] = 0x14;
  724. tx[5] = 0x00;
  725. memcpy(&tx[6], Module_Info.SN, 20);
  726. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  727. {
  728. chksum ^= tx[6 + idx];
  729. }
  730. tx[26] = chksum;
  731. break;
  732. case PROTOCOL_MESSAGE_QUERY_ALARM_CODE:
  733. tx_len = 13;
  734. tx[0] = 0xaa;
  735. tx[1] = PROTOCOL_ADDR;
  736. tx[2] = uart_rx_buffer[1];
  737. tx[3] = PROTOCOL_MESSAGE_QUERY_ALARM_CODE;
  738. tx[4] = 6;
  739. tx[5] = 0;
  740. // === Data ===
  741. tx[6] = 0;
  742. tx[7] = 0;
  743. tx[8] = 0;
  744. tx[9] = (Module_Info.Alarm_CSU.All) & 0xff;
  745. tx[10] = (Module_Info.Alarm_CSU.All >> 8) & 0xff;
  746. tx[11] = 0;
  747. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  748. {
  749. chksum ^= tx[6 + idx];
  750. }
  751. tx[12] = chksum;
  752. break;
  753. case PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS:
  754. tx_len = 13;
  755. tx[0] = 0xaa;
  756. tx[1] = PROTOCOL_ADDR;
  757. tx[2] = uart_rx_buffer[1];
  758. tx[3] = PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS;
  759. tx[4] = 6;
  760. tx[5] = 0;
  761. tx[6] = sf_t.SF_Config.SF_test_status;
  762. tx[7] = sf_t.SF_Config.data.value & 0xff;
  763. tx[8] = (sf_t.SF_Config.data.value >> 8) & 0xff;
  764. tx[9] = (sf_t.SF_Config.data.value >> 16) & 0xff;
  765. tx[10] = (sf_t.SF_Config.data.value >> 24) & 0xff;
  766. tx[11] = (sf_t.SF_Config.data.value >> 32) & 0xff;
  767. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  768. {
  769. chksum ^= tx[6 + idx];
  770. }
  771. tx[12] = chksum;
  772. break;
  773. case PROTOCOL_MESSAGE_QUERY_PARAMETER:
  774. tx_len = 11;
  775. tx[0] = 0xaa;
  776. tx[1] = PROTOCOL_ADDR;
  777. tx[2] = uart_rx_buffer[1];
  778. tx[3] = PROTOCOL_MESSAGE_QUERY_PARAMETER;
  779. tx[4] = 4;
  780. tx[5] = 0;
  781. tx[6] = uart_rx_buffer[6];
  782. tx[7] = uart_rx_buffer[7];
  783. // === Data ===
  784. switch (uart_rx_buffer[6])
  785. {
  786. case Input_L1_AC_voltage:
  787. switch (uart_rx_buffer[7])
  788. {
  789. case 1: // METER_DATA , MCU_DATA
  790. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] & 0xff;
  791. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] >> 8) & 0xff;
  792. break;
  793. case 2:
  794. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] & 0xff;
  795. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] >> 8) & 0xff;
  796. break;
  797. case 3:
  798. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] & 0xff;
  799. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] >> 8) & 0xff;
  800. break;
  801. default:
  802. tx[8] = 0;
  803. tx[9] = 0;
  804. break;
  805. }
  806. break;
  807. case Input_L2_AC_voltage:
  808. switch (uart_rx_buffer[7])
  809. {
  810. case 1:
  811. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] & 0xff;
  812. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] >> 8) & 0xff;
  813. break;
  814. case 2:
  815. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] & 0xff;
  816. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] >> 8) & 0xff;
  817. break;
  818. case 3:
  819. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] & 0xff;
  820. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] >> 8) & 0xff;
  821. break;
  822. default:
  823. break;
  824. }
  825. break;
  826. case Input_L3_AC_voltage:
  827. switch (uart_rx_buffer[7])
  828. {
  829. case 1:
  830. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] & 0xff;
  831. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] >> 8) & 0xff;
  832. break;
  833. case 2:
  834. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] & 0xff;
  835. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] >> 8) & 0xff;
  836. break;
  837. case 3:
  838. tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] & 0xff;
  839. tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] >> 8) & 0xff;
  840. break;
  841. default:
  842. break;
  843. }
  844. break;
  845. case SMR1_output_voltage:
  846. switch (uart_rx_buffer[7])
  847. {
  848. case 1:
  849. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] & 0xff;
  850. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] >> 8) & 0xff;
  851. break;
  852. case 2:
  853. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] & 0xff;
  854. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] >> 8) & 0xff;
  855. break;
  856. default:
  857. break;
  858. }
  859. break;
  860. case SMR2_output_voltage:
  861. switch (uart_rx_buffer[7])
  862. {
  863. case 1:
  864. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] & 0xff;
  865. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] >> 8) & 0xff;
  866. break;
  867. case 2:
  868. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] & 0xff;
  869. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] >> 8) & 0xff;
  870. break;
  871. default:
  872. break;
  873. }
  874. break;
  875. case SMR3_output_voltage:
  876. switch (uart_rx_buffer[7])
  877. {
  878. case 1:
  879. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] & 0xff;
  880. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] >> 8) & 0xff;
  881. break;
  882. case 2:
  883. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] & 0xff;
  884. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] >> 8) & 0xff;
  885. break;
  886. default:
  887. break;
  888. }
  889. break;
  890. case SMR4_output_voltage:
  891. switch (uart_rx_buffer[7])
  892. {
  893. case 1:
  894. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] & 0xff;
  895. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] >> 8) & 0xff;
  896. break;
  897. case 2:
  898. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] & 0xff;
  899. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] >> 8) & 0xff;
  900. break;
  901. default:
  902. break;
  903. }
  904. break;
  905. case SMR5_output_voltage:
  906. switch (uart_rx_buffer[7])
  907. {
  908. case 1:
  909. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] & 0xff;
  910. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] >> 8) & 0xff;
  911. break;
  912. case 2:
  913. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] & 0xff;
  914. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] >> 8) & 0xff;
  915. break;
  916. default:
  917. break;
  918. }
  919. break;
  920. case SMR6_output_voltage:
  921. switch (uart_rx_buffer[7])
  922. {
  923. case 1:
  924. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] & 0xff;
  925. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] >> 8) & 0xff;
  926. break;
  927. case 2:
  928. tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] & 0xff;
  929. tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] >> 8) & 0xff;
  930. break;
  931. default:
  932. break;
  933. }
  934. break;
  935. case GFD_Resister_Left:
  936. switch (uart_rx_buffer[7])
  937. {
  938. case 1:
  939. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] & 0xff;
  940. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] >> 8) & 0xff;
  941. break;
  942. case 2:
  943. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] & 0xff;
  944. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] >> 8) & 0xff;
  945. break;
  946. default:
  947. break;
  948. }
  949. break;
  950. case GFD_Resister_Right:
  951. switch (uart_rx_buffer[7])
  952. {
  953. case 1:
  954. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] & 0xff;
  955. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] >> 8) & 0xff;
  956. break;
  957. case 2:
  958. tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] & 0xff;
  959. tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] >> 8) & 0xff;
  960. break;
  961. default:
  962. break;
  963. }
  964. break;
  965. default:
  966. break;
  967. }
  968. for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
  969. {
  970. chksum ^= tx[(6 + idx)];
  971. }
  972. tx[10] = chksum;
  973. break;
  974. /*--------------------------------------------
  975. Config message
  976. --------------------------------------------*/
  977. case PROTOCOL_MESSAGE_CONFIG_MODEL_NAME:
  978. nGun = 0;
  979. for (int i = 7; i <= 9; i++)
  980. {
  981. if (uart_rx_buffer[(6 + i)] != '0')
  982. nGun += 1;
  983. }
  984. tx_len = 8;
  985. tx[0] = 0xaa;
  986. tx[1] = PROTOCOL_ADDR;
  987. tx[2] = uart_rx_buffer[1];
  988. tx[3] = PROTOCOL_MESSAGE_CONFIG_MODEL_NAME;
  989. tx[4] = 0x01;
  990. tx[5] = 0x00;
  991. tx[6] = 0x01;
  992. tx[7] = 0x01;
  993. break;
  994. case PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT:
  995. Module_Info.Relay_IO.All = (((uint64_t)uart_rx_buffer[12] << 48) | ((uint64_t)uart_rx_buffer[11] << 40) | ((uint64_t)uart_rx_buffer[10]<< 32) |
  996. ((uint64_t)uart_rx_buffer[9] << 24) | ((uint64_t)uart_rx_buffer[8] << 16) | ((uint64_t)uart_rx_buffer[7]<< 8) |
  997. ((uint64_t)uart_rx_buffer[6] )) ;
  998. tx_len = 8;
  999. tx[0] = 0xaa;
  1000. tx[1] = PROTOCOL_ADDR;
  1001. tx[2] = uart_rx_buffer[1];
  1002. tx[3] = uart_rx_buffer[3];
  1003. tx[4] = 0x01;
  1004. tx[5] = 0x00;
  1005. tx[6] = 0x01;
  1006. tx[7] = 0x01;
  1007. OpFlag.bRelay_Config_Change = ON;
  1008. break;
  1009. case PROTOCOL_MESSAGE_CONFIG_BRIDGE_RELAY_OUTPUT:
  1010. Module_Info.Relay_IO.All = (((uint64_t)uart_rx_buffer[11] << 40) | ((uint64_t)uart_rx_buffer[10] << 32) | ((uint64_t)uart_rx_buffer[9]<< 24) |
  1011. ((uint64_t)uart_rx_buffer[8] << 16) | ((uint64_t)uart_rx_buffer[7] << 8) | ((uint64_t)uart_rx_buffer[6]));
  1012. tx_len = 8;
  1013. tx[0] = 0xaa;
  1014. tx[1] = PROTOCOL_ADDR;
  1015. tx[2] = uart_rx_buffer[1];
  1016. tx[3] = uart_rx_buffer[3];
  1017. tx[4] = 0x01;
  1018. tx[5] = 0x00;
  1019. tx[6] = 0x01;
  1020. tx[7] = 0x01;
  1021. OpFlag.bRelay_Config_Change = ON;
  1022. break;
  1023. case PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT:
  1024. Module_Info.Gpio_status.All = uart_rx_buffer[6];
  1025. tx_len = 8;
  1026. tx[0] = 0xaa;
  1027. tx[1] = PROTOCOL_ADDR;
  1028. tx[2] = uart_rx_buffer[1];
  1029. tx[3] = PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT;
  1030. tx[4] = 0x01;
  1031. tx[5] = 0x00;
  1032. tx[6] = 0x01;
  1033. tx[7] = 0x01;
  1034. break;
  1035. case PROTOCOL_MESSAGE_CONFIG_SN:
  1036. for (int idx = 0; idx < ((uart_rx_buffer[4] | uart_rx_buffer[5] << 8) >> 1); idx++)
  1037. Module_Info.SN[idx] = uart_rx_buffer[(idx + 6)];
  1038. tx_len = 8;
  1039. tx[0] = 0xaa;
  1040. tx[1] = PROTOCOL_ADDR;
  1041. tx[2] = uart_rx_buffer[1];
  1042. tx[3] = PROTOCOL_MESSAGE_CONFIG_SN;
  1043. tx[4] = 0x01;
  1044. tx[5] = 0x00;
  1045. tx[6] = 0x01;
  1046. tx[7] = 0x01;
  1047. break;
  1048. case PROTOCOL_MESSAGE_CONFIG_GFD_VALUE:
  1049. tx_len = 8;
  1050. tx[0] = 0xaa;
  1051. tx[1] = PROTOCOL_ADDR;
  1052. tx[2] = uart_rx_buffer[1];
  1053. tx[3] = PROTOCOL_MESSAGE_CONFIG_GFD_VALUE;
  1054. tx[4] = 0x01;
  1055. tx[5] = 0x00;
  1056. tx[6] = 0x01;
  1057. switch (uart_rx_buffer[6])
  1058. {
  1059. case 0: // Left gun
  1060. Module_Info.gfd_chk[0].Csu_State = uart_rx_buffer[7];
  1061. tx[7] = 0x01;
  1062. break;
  1063. case 1: // Right gun
  1064. Module_Info.gfd_chk[1].Csu_State = uart_rx_buffer[7];
  1065. tx[7] = 0x01;
  1066. break;
  1067. default:
  1068. Module_Info.gfd_chk[0].Csu_State = 0;
  1069. Module_Info.gfd_chk[1].Csu_State = 0;
  1070. tx[7] = 0x00;
  1071. break;
  1072. }
  1073. break;
  1074. case PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST:
  1075. tx_len = 8;
  1076. tx[0] = 0xaa;
  1077. tx[1] = PROTOCOL_ADDR;
  1078. tx[2] = uart_rx_buffer[1];
  1079. tx[3] = PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST;
  1080. tx[4] = 1;
  1081. tx[5] = 0;
  1082. tx[6] = sf_t.SF_Config.SF_Act = 1;
  1083. tx[7] = 1;
  1084. sf_t.SF_Config.SF_State = 0;
  1085. sf_t.SF_Config.data.value = 0;
  1086. sf_t.SF_Config.SF_test_status = 2; // Unknow
  1087. break;
  1088. case PROTOCOL_MESSAGE_CONFIG_PARAMETER:
  1089. tx_len = 8;
  1090. tx[0] = 0xaa;
  1091. tx[1] = PROTOCOL_ADDR;
  1092. tx[2] = uart_rx_buffer[1];
  1093. tx[3] = PROTOCOL_MESSAGE_CONFIG_PARAMETER;
  1094. tx[4] = 0x01;
  1095. tx[5] = 0x00;
  1096. tx[6] = 0x01;
  1097. // Default the result.
  1098. tx[7] = 0x01;
  1099. temp = uart_rx_buffer[8] | (uart_rx_buffer[9] << 8);
  1100. switch (uart_rx_buffer[6])
  1101. {
  1102. case Input_L1_AC_voltage:
  1103. switch (uart_rx_buffer[7])
  1104. {
  1105. case 1:
  1106. Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] = temp;
  1107. Module_Info.memory.Module_Config.data.item.Correction_Volt[0][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
  1108. break;
  1109. case 2:
  1110. Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] = temp;
  1111. Module_Info.memory.Module_Config.data.item.Correction_Volt[1][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
  1112. break;
  1113. case 3:
  1114. Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] = temp;
  1115. Module_Info.memory.Module_Config.data.item.Correction_Volt[2][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
  1116. break;
  1117. case 10:
  1118. Module_Info.memory.Module_Config.op_bits.read = ON;
  1119. break;
  1120. default:
  1121. break;
  1122. }
  1123. break;
  1124. case Input_L2_AC_voltage:
  1125. switch (uart_rx_buffer[7])
  1126. {
  1127. case 1:
  1128. Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] = temp;
  1129. Module_Info.memory.Module_Config.data.item.Correction_Volt[3][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
  1130. break;
  1131. case 2:
  1132. Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] = temp;
  1133. Module_Info.memory.Module_Config.data.item.Correction_Volt[4][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
  1134. break;
  1135. case 3:
  1136. Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] = temp;
  1137. Module_Info.memory.Module_Config.data.item.Correction_Volt[5][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
  1138. break;
  1139. default:
  1140. break;
  1141. }
  1142. break;
  1143. case Input_L3_AC_voltage:
  1144. switch (uart_rx_buffer[7])
  1145. {
  1146. case 1:
  1147. Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] = temp;
  1148. Module_Info.memory.Module_Config.data.item.Correction_Volt[6][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
  1149. break;
  1150. case 2:
  1151. Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] = temp;
  1152. Module_Info.memory.Module_Config.data.item.Correction_Volt[7][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
  1153. break;
  1154. case 3:
  1155. Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] = temp;
  1156. Module_Info.memory.Module_Config.data.item.Correction_Volt[8][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
  1157. break;
  1158. default:
  1159. break;
  1160. }
  1161. break;
  1162. case SMR1_output_voltage:
  1163. switch (uart_rx_buffer[7])
  1164. {
  1165. case 1:
  1166. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] = temp;
  1167. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN0.value * vsense1 / 10.0);
  1168. break;
  1169. case 2:
  1170. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] = temp;
  1171. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN0.value * vsense1 / 10.0);
  1172. break;
  1173. // reset coefficient to orginal.
  1174. case 9:
  1175. Module_Info.DCVcoeff[0].gain_volt = 1;
  1176. Module_Info.DCVcoeff[0].offset_volt = 0;
  1177. break;
  1178. case 10:
  1179. Module_Info.memory.Module_Config.op_bits.read = ON;
  1180. break;
  1181. default:
  1182. break;
  1183. }
  1184. break;
  1185. case SMR2_output_voltage:
  1186. switch (uart_rx_buffer[7])
  1187. {
  1188. case 1:
  1189. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] = temp;
  1190. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN2.value * vsense1 / 10.0);
  1191. break;
  1192. case 2:
  1193. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] = temp;
  1194. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN2.value * vsense1 / 10.0);
  1195. break;
  1196. // reset coefficient to orginal.
  1197. case 9:
  1198. Module_Info.DCVcoeff[1].gain_volt = 1;
  1199. Module_Info.DCVcoeff[1].offset_volt = 0;
  1200. break;
  1201. case 10:
  1202. Module_Info.memory.Module_Config.op_bits.read = ON;
  1203. break;
  1204. default:
  1205. break;
  1206. }
  1207. break;
  1208. case SMR3_output_voltage:
  1209. switch (uart_rx_buffer[7])
  1210. {
  1211. case 1:
  1212. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] = temp;
  1213. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN5.value * vsense1 / 10.0);
  1214. break;
  1215. case 2:
  1216. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] = temp;
  1217. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN5.value * vsense1 / 10.0);
  1218. break;
  1219. // reset coefficient to orginal.
  1220. case 9:
  1221. Module_Info.DCVcoeff[2].gain_volt = 1;
  1222. Module_Info.DCVcoeff[2].offset_volt = 0;
  1223. break;
  1224. case 10:
  1225. Module_Info.memory.Module_Config.op_bits.read = ON;
  1226. break;
  1227. default:
  1228. break;
  1229. }
  1230. break;
  1231. case SMR4_output_voltage:
  1232. switch (uart_rx_buffer[7])
  1233. {
  1234. case 1:
  1235. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] = temp;
  1236. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN6.value * vsense1 / 10.0);
  1237. break;
  1238. case 2:
  1239. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] = temp;
  1240. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN6.value * vsense1 / 10.0);
  1241. break;
  1242. // reset coefficient to orginal.
  1243. case 9:
  1244. Module_Info.DCVcoeff[3].gain_volt = 1;
  1245. Module_Info.DCVcoeff[3].offset_volt = 0;
  1246. break;
  1247. case 10:
  1248. Module_Info.memory.Module_Config.op_bits.read = ON;
  1249. break;
  1250. default:
  1251. break;
  1252. }
  1253. break;
  1254. case SMR5_output_voltage:
  1255. switch (uart_rx_buffer[7])
  1256. {
  1257. case 1:
  1258. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] = temp;
  1259. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN7.value * vsense1 / 10.0);
  1260. break;
  1261. case 2:
  1262. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] = temp;
  1263. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN7.value * vsense1 / 10.0);
  1264. break;
  1265. // reset coefficient to orginal.
  1266. case 9:
  1267. Module_Info.DCVcoeff[4].gain_volt = 1;
  1268. Module_Info.DCVcoeff[4].offset_volt = 0;
  1269. break;
  1270. case 10:
  1271. Module_Info.memory.Module_Config.op_bits.read = ON;
  1272. break;
  1273. default:
  1274. break;
  1275. }
  1276. break;
  1277. case SMR6_output_voltage:
  1278. switch (uart_rx_buffer[7])
  1279. {
  1280. case 1:
  1281. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] = temp;
  1282. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN8.value * vsense1 / 10.0);
  1283. break;
  1284. case 2:
  1285. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] = temp;
  1286. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN8.value * vsense1 / 10.0);
  1287. break;
  1288. // reset coefficient to orginal.
  1289. case 9:
  1290. Module_Info.DCVcoeff[5].gain_volt = 1;
  1291. Module_Info.DCVcoeff[5].offset_volt = 0;
  1292. break;
  1293. case 10:
  1294. Module_Info.memory.Module_Config.op_bits.read = ON;
  1295. break;
  1296. default:
  1297. break;
  1298. }
  1299. break;
  1300. case GFD_Resister_Left:
  1301. switch (uart_rx_buffer[7])
  1302. {
  1303. case 1:
  1304. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] = temp;
  1305. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][MCU_DATA] = Module_Info.gfd_chk[0].R_GFD_v / 100;
  1306. break;
  1307. case 2:
  1308. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] = temp;
  1309. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][MCU_DATA] = Module_Info.gfd_chk[0].R_GFD_v / 100;
  1310. break;
  1311. case 9:
  1312. bGfd_Correct[0] = 1;
  1313. Module_Info.GFDcoeff[0].gain_volt = 1;
  1314. Module_Info.GFDcoeff[0].offset_volt = 0;
  1315. break;
  1316. case 10:
  1317. Module_Info.memory.Module_Config.op_bits.read = ON;
  1318. break;
  1319. case 11:
  1320. bGfd_Correct[0] = 1;
  1321. break;
  1322. default:
  1323. break;
  1324. }
  1325. break;
  1326. case GFD_Resister_Right:
  1327. switch (uart_rx_buffer[7])
  1328. {
  1329. case 1:
  1330. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] = temp;
  1331. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][MCU_DATA] = Module_Info.gfd_chk[1].R_GFD_v / 100;
  1332. break;
  1333. case 2:
  1334. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] = temp;
  1335. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][MCU_DATA] = Module_Info.gfd_chk[1].R_GFD_v / 100;
  1336. break;
  1337. case 9:
  1338. bGfd_Correct[1] = 1;
  1339. Module_Info.GFDcoeff[1].gain_volt = 1;
  1340. Module_Info.GFDcoeff[1].offset_volt = 0;
  1341. break;
  1342. case 10:
  1343. Module_Info.memory.Module_Config.op_bits.read = ON;
  1344. break;
  1345. case 11:
  1346. bGfd_Correct[1] = 1;
  1347. break;
  1348. default:
  1349. break;
  1350. }
  1351. break;
  1352. case Battery1_input_voltage:
  1353. switch(uart_rx_buffer[7])
  1354. {
  1355. case 1:
  1356. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][METER_DATA] = temp;
  1357. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA] = (uint16_t) ((double)adc_value.ADC3_IN8.value * vsense1 / 10.0);
  1358. break;
  1359. case 2:
  1360. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[1][METER_DATA] = temp;
  1361. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[1][MCU_DATA] = (uint16_t) ((double)adc_value.ADC3_IN8.value * vsense1 / 10.0);
  1362. break;
  1363. // reset coefficient to orginal.
  1364. case 9:
  1365. Module_Info.DCINcoeff.gain_volt = 1;
  1366. Module_Info.DCINcoeff.offset_volt = 0;
  1367. break;
  1368. case 10:
  1369. Module_Info.memory.Module_Config.op_bits.read = ON;
  1370. break;
  1371. default:
  1372. break;
  1373. }
  1374. break;
  1375. }
  1376. Module_Info.memory.Module_Config.op_bits.update = ON;
  1377. break;
  1378. /*-----------------------------------------
  1379. Firmware update message
  1380. ------------------------------------------*/
  1381. case PROTOCOL_MESSAGE_UPGRADE_START:
  1382. tx_len = 8;
  1383. tx[0] = 0xaa;
  1384. tx[1] = PROTOCOL_ADDR;
  1385. tx[2] = uart_rx_buffer[1];
  1386. tx[3] = PROTOCOL_MESSAGE_UPGRADE_START;
  1387. tx[4] = 0x01;
  1388. tx[5] = 0x00;
  1389. // binCRCTarget = (uart_rx_buffer[6] << 24) | (uart_rx_buffer[6] << 16) | (uart_rx_buffer[6] << 8) | (uart_rx_buffer[6] << 0);
  1390. flashdestination = NEW_CODE_ADDRESS;
  1391. if (FLASH_If_Erase(ADDR_FLASH_SECTOR_9, 3) == FLASHIF_OK)
  1392. {
  1393. #if defined(DEBUG) || defined(RTOS_STAT)
  1394. // DEBUG_INFO("Firmware transfer start, earase flash success....\n\r");
  1395. #endif
  1396. tx[6] = 0x01;
  1397. tx[7] = 0x01;
  1398. }
  1399. else
  1400. {
  1401. #if defined(DEBUG) || defined(RTOS_STAT)
  1402. // DEBUG_INFO("Firmware transfer start, earase flash fail....\n\r");
  1403. #endif
  1404. tx[6] = 0x00;
  1405. tx[7] = 0x00;
  1406. }
  1407. break;
  1408. case PROTOCOL_MESSAGE_UPGRADE_TRANS:
  1409. tx_len = 8;
  1410. tx[0] = 0xaa;
  1411. tx[1] = PROTOCOL_ADDR;
  1412. tx[2] = uart_rx_buffer[1];
  1413. tx[3] = PROTOCOL_MESSAGE_UPGRADE_TRANS;
  1414. tx[4] = 0x01;
  1415. tx[5] = 0x00;
  1416. flashdestination = NEW_CODE_ADDRESS + ((uart_rx_buffer[6] << 0) | (uart_rx_buffer[7] << 8) | (uart_rx_buffer[8] << 16) | (uart_rx_buffer[9] << 24));
  1417. if (FLASH_If_Write(flashdestination, (uint32_t *)&uart_rx_buffer[10], ((((uart_rx_buffer[4]) | (uart_rx_buffer[5]) << 8) - 4) >> 2)) == FLASHIF_OK)
  1418. {
  1419. #if defined(DEBUG) || defined(RTOS_STAT)
  1420. // DEBUG_INFO("Firmware transfer start address, length:0x%x, %d...Pass\n\r", flashdestination, (((uart_rx_buffer[4]) | (uart_rx_buffer[5])<<8)-4));
  1421. #endif
  1422. tx[6] = 0x01;
  1423. tx[7] = 0x01;
  1424. }
  1425. else
  1426. {
  1427. #if defined(DEBUG) || defined(RTOS_STAT)
  1428. // DEBUG_INFO("Firmware transfer start address, length:0x%x, %d...Fail\n\r", flashdestination, (((uart_rx_buffer[4]) | (uart_rx_buffer[5])<<8)-4));
  1429. #endif
  1430. tx[6] = 0x00;
  1431. tx[7] = 0x00;
  1432. }
  1433. break;
  1434. case PROTOCOL_MESSAGE_UPGRADE_STOP:
  1435. tx_len = 8;
  1436. tx[0] = 0xaa;
  1437. tx[1] = PROTOCOL_ADDR;
  1438. tx[2] = uart_rx_buffer[1];
  1439. tx[3] = PROTOCOL_MESSAGE_UPGRADE_STOP;
  1440. tx[4] = 0x01;
  1441. tx[5] = 0x00;
  1442. flash = NEW_CODE_ADDRESS;
  1443. crc32 = HAL_CRC_Calculate(&hcrc, (uint32_t *)flash, ((FLASH_AP_LENGTH - 4) >> 2));
  1444. flash = ((uint32_t)(NEW_CODE_ADDRESS + FLASH_AP_LENGTH - 4));
  1445. #if defined(DEBUG) || defined(RTOS_STAT)
  1446. // DEBUG_INFO("Firmware transfer end, AP CRC crc32, flash: 0x%x, 0x%x\r\n", crc32, *((uint32_t *)flash) );
  1447. #endif
  1448. if (crc32 == *((uint32_t *)flash))
  1449. {
  1450. if (FLASH_If_Write(UPGRADE_REQ_ADDRESS, (uint32_t *)&endFlag[0], 1) == FLASHIF_OK)
  1451. {
  1452. #if defined(DEBUG) || defined(RTOS_STAT)
  1453. // DEBUG_INFO("Firmware Confirm Tag write ok..\n\r");
  1454. #endif
  1455. tx[6] = 0x01;
  1456. tx[7] = 0x01;
  1457. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_SET);
  1458. osDelay(2);
  1459. HAL_UART_Transmit(&IAP_USART, (uint8_t *)tx, tx_len, 0xffff);
  1460. osDelay(2);
  1461. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_RESET);
  1462. osDelay(100);
  1463. NVIC_SystemReset();
  1464. }
  1465. else
  1466. {
  1467. #if defined(DEBUG) || defined(RTOS_STAT)
  1468. // DEBUG_INFO("Firmware Confirm Tag write fail...\n\r");
  1469. #endif
  1470. tx[6] = 0x00;
  1471. tx[7] = 0x00;
  1472. }
  1473. }
  1474. else
  1475. {
  1476. #if defined(DEBUG) || defined(RTOS_STAT)
  1477. // DEBUG_INFO("Firmware crc32 compare fail...\n\r");
  1478. #endif
  1479. tx[6] = 0x00;
  1480. tx[7] = 0x00;
  1481. }
  1482. break;
  1483. case PROTOCOL_MESSAGE_UPGRADE_ABOARD:
  1484. #if defined(DEBUG) || defined(RTOS_STAT)
  1485. // DEBUG_INFO("Firmware update transfer aboard...\n\r");
  1486. #endif
  1487. tx_len = 8;
  1488. tx[0] = 0xaa;
  1489. tx[1] = PROTOCOL_ADDR;
  1490. tx[2] = uart_rx_buffer[1];
  1491. tx[3] = PROTOCOL_MESSAGE_UPGRADE_ABOARD;
  1492. tx[4] = 0x01;
  1493. tx[5] = 0x00;
  1494. tx[6] = 0x01;
  1495. tx[7] = 0x01;
  1496. break;
  1497. default:
  1498. /* Todo: bin file receive aboard */
  1499. #if defined(DEBUG) || defined(RTOS_STAT)
  1500. // DEBUG_INFO("Protocol message unknow...\n\r");
  1501. #endif
  1502. tx_len = 8;
  1503. tx[0] = 0xaa;
  1504. tx[1] = PROTOCOL_ADDR;
  1505. tx[2] = uart_rx_buffer[1];
  1506. tx[3] = uart_rx_buffer[3];
  1507. tx[4] = 0x01;
  1508. tx[5] = 0x00;
  1509. tx[6] = 0x00;
  1510. tx[7] = 0x00;
  1511. break;
  1512. }
  1513. }
  1514. else
  1515. {
  1516. #if defined(DEBUG) || defined(RTOS_STAT)
  1517. // DEBUG_INFO("Protocol check sum is wrong...\n\r");
  1518. #endif
  1519. tx_len = 8;
  1520. tx[0] = 0xaa;
  1521. tx[1] = PROTOCOL_ADDR;
  1522. tx[2] = uart_rx_buffer[1];
  1523. tx[3] = uart_rx_buffer[3];
  1524. tx[4] = 0x01;
  1525. tx[5] = 0x00;
  1526. tx[6] = 0x00;
  1527. tx[7] = 0x00;
  1528. }
  1529. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_SET);
  1530. osDelay(2);
  1531. HAL_UART_Transmit(&IAP_USART, (uint8_t *)tx, tx_len, 0xffff);
  1532. osDelay(2);
  1533. HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_RESET);
  1534. for (int i = 0; i < uart_rx_len; i++)
  1535. uart_rx_buffer[i] = 0;
  1536. uart_rx_len = 0;
  1537. }
  1538. uart_recv_end_flag = 0;
  1539. HAL_UART_Receive_DMA(&IAP_USART, uart_rx_buffer, UART_BUFFER_SIZE);
  1540. }
  1541. osDelay(1);
  1542. }
  1543. /* USER CODE END Uart1Task */
  1544. }
  1545. /* USER CODE BEGIN Header_Adc1Task */
  1546. /**
  1547. * @brief Function implementing the adc1Task thread.
  1548. * @param argument: Not used
  1549. * @retval None
  1550. */
  1551. /* USER CODE END Header_Adc1Task */
  1552. void Adc1Task(void const * argument)
  1553. {
  1554. /* USER CODE BEGIN Adc1Task */
  1555. uint16_t i;
  1556. /* Infinite loop */
  1557. for (;;)
  1558. {
  1559. for (i = 0;i < ADC1_CHANEL_COUNT;i++)
  1560. {
  1561. ADC1_Value[i] = 0;
  1562. }
  1563. for (i = 0; i < (ADC1_CHANEL_COUNT * ADC1_SAMPLE_COUNT);)
  1564. {
  1565. ADC1_Value[0] += ADC1_Buf[i++];
  1566. ADC1_Value[1] += ADC1_Buf[i++];
  1567. ADC1_Value[2] += ADC1_Buf[i++];
  1568. ADC1_Value[3] += ADC1_Buf[i++];
  1569. ADC1_Value[4] += ADC1_Buf[i++];
  1570. ADC1_Value[5] += ADC1_Buf[i++];
  1571. ADC1_Value[6] += ADC1_Buf[i++];
  1572. ADC1_Value[7] += ADC1_Buf[i++];
  1573. ADC1_Value[8] += ADC1_Buf[i++];
  1574. }
  1575. for (i = 0;i < ADC1_CHANEL_COUNT;i++)
  1576. {
  1577. ADC1_Value[i] /= ADC1_SAMPLE_COUNT;
  1578. }
  1579. // Smooth Filter
  1580. adc_filter_move_avg(&adc_value.ADC1_IN0, ADC1_Value[0]);
  1581. adc_filter_move_avg(&adc_value.ADC1_IN1, ADC1_Value[1]);
  1582. adc_filter_move_avg(&adc_value.ADC1_IN2, ADC1_Value[2]);
  1583. adc_filter_move_avg(&adc_value.ADC1_IN3, ADC1_Value[3]);
  1584. adc_filter_move_avg(&adc_value.ADC1_IN4, ADC1_Value[4]);
  1585. adc_filter_move_avg(&adc_value.ADC1_IN5, ADC1_Value[5]);
  1586. adc_filter_move_avg(&adc_value.ADC1_IN6, ADC1_Value[6]);
  1587. adc_filter_move_avg(&adc_value.ADC1_IN7, ADC1_Value[7]);
  1588. adc_filter_move_avg(&adc_value.ADC1_IN8, ADC1_Value[8]);
  1589. // output result
  1590. Module_Info.SMR1_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN0.value * vsense1 * Module_Info.DCVcoeff[0].gain_volt) + Module_Info.DCVcoeff[0].offset_volt) / 10;
  1591. Module_Info.SMR2_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN2.value * vsense1 * Module_Info.DCVcoeff[1].gain_volt) + Module_Info.DCVcoeff[1].offset_volt) / 10;
  1592. Module_Info.SMR3_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN5.value * vsense1 * Module_Info.DCVcoeff[2].gain_volt) + Module_Info.DCVcoeff[2].offset_volt) / 10;
  1593. Module_Info.SMR4_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN6.value * vsense1 * Module_Info.DCVcoeff[3].gain_volt) + Module_Info.DCVcoeff[3].offset_volt) / 10;
  1594. Module_Info.SMR5_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN7.value * vsense1 * Module_Info.DCVcoeff[4].gain_volt) + Module_Info.DCVcoeff[4].offset_volt) / 10;
  1595. Module_Info.SMR6_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN8.value * vsense1 * Module_Info.DCVcoeff[5].gain_volt) + Module_Info.DCVcoeff[5].offset_volt) / 10;
  1596. c_vadc[0] = (float)(adc_value.ADC1_IN1.value * v_div);
  1597. c_vadc[1] = (float)(adc_value.ADC1_IN3.value * v_div);
  1598. Module_Info.SMR1_Relay_C = (uint32_t)(c_vadc[0] * vsense3) / 10;
  1599. Module_Info.SMR2_Relay_C = (uint32_t)(c_vadc[1] * vsense3) / 10;
  1600. // }
  1601. Module_Info.Vref_165 = (float)(adc_value.ADC1_IN4.value * v_div);
  1602. osDelay(1);
  1603. }
  1604. /* USER CODE END Adc1Task */
  1605. }
  1606. /* USER CODE BEGIN Header_Adc2Task */
  1607. /**
  1608. * @brief Function implementing the adc2Task thread.
  1609. * @param argument: Not used
  1610. * @retval None
  1611. */
  1612. /* USER CODE END Header_Adc2Task */
  1613. void Adc2Task(void const * argument)
  1614. {
  1615. /* USER CODE BEGIN Adc2Task */
  1616. uint16_t i, j;
  1617. /* Infinite loop */
  1618. for (;;)
  1619. {
  1620. // AC_Contactor off, will stop AC Converstion Calcuate.
  1621. // because of AC_Contactor on/off, the AC_Value will be wrong (746v).
  1622. // Sense 3-Phases voltage before AC-Contracor.
  1623. if (bADC2_Done)
  1624. {
  1625. for (i = 0, j = 0; i < (ADC2_CHANEL_COUNT * ADC2_SAMPLE_COUNT); i += ADC2_CHANEL_COUNT)
  1626. {
  1627. L1_ADC_Each_Value[j] = ADC2_Buf[(i + 0)];
  1628. L2_ADC_Each_Value[j] = ADC2_Buf[(i + 1)];
  1629. L3_ADC_Each_Value[j] = ADC2_Buf[(i + 2)];
  1630. j++;
  1631. }
  1632. HAL_ADC_Start_DMA(&hadc2, ADC2_Buf, (ADC2_SAMPLE_COUNT * ADC2_CHANEL_COUNT));
  1633. ADCSineCalculate2(L1_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[0], vsense2, 0);
  1634. ADCSineCalculate2(L2_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[1], vsense2, 1);
  1635. ADCSineCalculate2(L3_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[2], vsense2, 2);
  1636. // smooth filter
  1637. adc_filter_move_avg(&adc_value.ADC2_IN0, AC_Sine[0].Vrms);
  1638. adc_filter_move_avg(&adc_value.ADC2_IN1, AC_Sine[1].Vrms);
  1639. adc_filter_move_avg(&adc_value.ADC2_IN2, AC_Sine[2].Vrms);
  1640. // Patch the AC_GAIN
  1641. for (i = 0; i < 3; i++)
  1642. {
  1643. switch (i)
  1644. {
  1645. case 0:
  1646. AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN0.value / 10), i);
  1647. break;
  1648. case 1:
  1649. AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN1.value / 10), i);
  1650. break;
  1651. case 2:
  1652. AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN2.value / 10), i);
  1653. break;
  1654. default:
  1655. break;
  1656. }
  1657. }
  1658. // worng filiter
  1659. for (i = 0; i < 3; i++)
  1660. {
  1661. if (AC_Sine[i].Vrms_AVG >= 6000)
  1662. AC_Sine[i].Vrms_AVG = 0;
  1663. }
  1664. // Buffer clean
  1665. // memset(&ADC2_Buf[0], 0x00, ADC2_CHANEL_COUNT * ADC2_SAMPLE_COUNT);
  1666. // memset(&L1_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
  1667. // memset(&L2_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
  1668. // memset(&L3_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
  1669. // DMA restart
  1670. bADC2_Done = OFF;
  1671. }
  1672. osDelay(1);
  1673. }
  1674. /* USER CODE END Adc2Task */
  1675. }
  1676. /* USER CODE BEGIN Header_Adc3Task */
  1677. /**
  1678. * @brief Function implementing the adc3Task thread.
  1679. * @param argument: Not used
  1680. * @retval None
  1681. */
  1682. /* USER CODE END Header_Adc3Task */
  1683. void Adc3Task(void const * argument)
  1684. {
  1685. /* USER CODE BEGIN Adc3Task */
  1686. /* Infinite loop */
  1687. // Fail : <= 100ohm * 950v = 95K ohm
  1688. // Warning : <= 475K ohm & > 95K ohm
  1689. // Pass : > 500ohm * 950v = 475K ohm
  1690. for (;;)
  1691. {
  1692. float temp[2], Vref_165_Offset[2];
  1693. uint16_t i;
  1694. for (i = 0, ADC3_Value[0] = 0, ADC3_Value[1] = 0; i < (ADC3_CHANEL_COUNT * ADC3_SAMPLE_COUNT);)
  1695. {
  1696. ADC3_Value[0] += ADC3_Buf[i++];
  1697. ADC3_Value[1] += ADC3_Buf[i++];
  1698. ADC3_Value[2] += ADC3_Buf[i++];
  1699. }
  1700. ADC3_Value[2] /= ADC3_SAMPLE_COUNT;
  1701. // Smooth Filter
  1702. adc_filter_move_avg(&adc_value.ADC3_IN8, ADC3_Value[2]);
  1703. Module_Info.BAT_Voltage = (uint32_t) (((double)adc_value.ADC3_IN8.value * vsense1
  1704. * Module_Info.DCINcoeff.gain_volt) + Module_Info.DCINcoeff.offset_volt) / 10;
  1705. if ((Module_Info.gfd_chk[0].Csu_State > 0) || (bGfd_Correct[0] == 1))
  1706. {
  1707. ADC3_Value[0] /= 100;
  1708. Module_Info.SMR_Gfd_Sense[0] = (float)ADC3_Value[0] * v_div;
  1709. // if (Module_Info.SMR_Gfd_Sense[0] >= GFD_SENSE_CENTER_VOLTAGE){
  1710. if (Module_Info.SMR_Gfd_Sense[0] >= Module_Info.Vref_165){
  1711. // temp[0] = Module_Info.SMR_Gfd_Sense[0] - GFD_SENSE_CENTER_VOLTAGE;
  1712. temp[0] = Module_Info.SMR_Gfd_Sense[0] - Module_Info.Vref_165;
  1713. // Vref_165_Offset[0] = Module_Info.Vref_165 - GFD_SENSE_CENTER_VOLTAGE;
  1714. }else{
  1715. // temp[0] = GFD_SENSE_CENTER_VOLTAGE - Module_Info.SMR_Gfd_Sense[0];
  1716. temp[0] = Module_Info.Vref_165 - Module_Info.SMR_Gfd_Sense[0] ;
  1717. // Vref_165_Offset[0] = GFD_SENSE_CENTER_VOLTAGE - Module_Info.Vref_165;
  1718. }
  1719. // Vref_165_Offset[0] = Module_Info.Vref_165 - GFD_SENSE_CENTER_VOLTAGE;
  1720. // temp[0] -= Vref_165_Offset[0];
  1721. // Module_Info.SMR_Gfd_Diff[0] = temp[0];
  1722. temp5 = Vref_165_Offset[0];
  1723. temp6 = temp[0];
  1724. if (Module_Info.SMR1_Relay_V > 100) // > 10v
  1725. {
  1726. Module_Info.gfd_chk[0].R_GFD = (uint32_t)((double)Module_Info.SMR1_Relay_V / 10.0 * GFD_RESISTOR_COEFFICIENT / temp[0]) - 52018;
  1727. // 21-06-04 Henry
  1728. if (Module_Info.gfd_chk[0].R_GFD > 1000000)
  1729. Module_Info.gfd_chk[0].R_GFD = 1000000;
  1730. nGfd_Temp[0][(nGfd_Idx[0]++)] = (uint32_t)((double)Module_Info.gfd_chk[0].R_GFD * Module_Info.GFDcoeff[0].gain_volt);
  1731. nGfd_Temp[0][nGfd_Idx[0]] = (uint32_t)(((double)nGfd_Temp[0][nGfd_Idx[0]])+(Module_Info.GFDcoeff[0].offset_volt * 100.0));
  1732. }
  1733. else
  1734. Module_Info.gfd_chk[0].R_GFD_v = Module_Info.gfd_chk[0].R_GFD = 0;
  1735. R_GFD_Total[0] = 0;
  1736. for (int j = 0; j < GFD_FILTER_LIMIT; j++)
  1737. {
  1738. R_GFD_Total[0] += nGfd_Temp[0][j];
  1739. }
  1740. Module_Info.gfd_chk[0].R_GFD_v = R_GFD_Total[0] / GFD_FILTER_LIMIT;
  1741. if (nGfd_Idx[0] > (GFD_FILTER_LIMIT - 1))
  1742. nGfd_Idx[0] = 0;
  1743. }
  1744. if ((Module_Info.gfd_chk[1].Csu_State > 0) || (bGfd_Correct[1] == 1))
  1745. {
  1746. ADC3_Value[1] /= 100;
  1747. Module_Info.SMR_Gfd_Sense[1] = (float)ADC3_Value[1] * v_div;
  1748. // if (Module_Info.SMR_Gfd_Sense[1] >= GFD_SENSE_CENTER_VOLTAGE)
  1749. if (Module_Info.SMR_Gfd_Sense[1] >= Module_Info.Vref_165){
  1750. // temp[1] = Module_Info.SMR_Gfd_Sense[1] - GFD_SENSE_CENTER_VOLTAGE;
  1751. temp[1] = Module_Info.SMR_Gfd_Sense[1] - Module_Info.Vref_165;
  1752. }else{
  1753. // temp[1] = GFD_SENSE_CENTER_VOLTAGE - Module_Info.SMR_Gfd_Sense[1];
  1754. temp[1] = Module_Info.Vref_165 - Module_Info.SMR_Gfd_Sense[1] ;
  1755. }
  1756. // Vref_165_Offset[1] =Vref_165_Offset[0];
  1757. // temp[1] -= Vref_165_Offset[1];
  1758. // Module_Info.SMR_Gfd_Diff[1] = temp[1];
  1759. if (Module_Info.SMR2_Relay_V > 100) // > 10v
  1760. {
  1761. Module_Info.gfd_chk[1].R_GFD = (uint32_t)((double)Module_Info.SMR2_Relay_V / 10.0 * GFD_RESISTOR_COEFFICIENT / temp[1]) - 50018;
  1762. // 21-06-04 Henry
  1763. if (Module_Info.gfd_chk[1].R_GFD > 1000000)
  1764. Module_Info.gfd_chk[1].R_GFD = 1000000;
  1765. nGfd_Temp[1][(nGfd_Idx[1]++)] = (uint32_t)((double)Module_Info.gfd_chk[1].R_GFD * Module_Info.GFDcoeff[1].gain_volt);
  1766. nGfd_Temp[1][nGfd_Idx[1]] = (uint32_t)(((double)nGfd_Temp[1][nGfd_Idx[1]])+(Module_Info.GFDcoeff[1].offset_volt * 100.0));
  1767. }
  1768. else
  1769. Module_Info.gfd_chk[1].R_GFD_v = Module_Info.gfd_chk[1].R_GFD = 0;
  1770. R_GFD_Total[1] = 0;
  1771. for (int j = 0; j < GFD_FILTER_LIMIT; j++)
  1772. {
  1773. R_GFD_Total[1] += nGfd_Temp[1][j];
  1774. }
  1775. Module_Info.gfd_chk[1].R_GFD_v = R_GFD_Total[1] / GFD_FILTER_LIMIT;
  1776. if (nGfd_Idx[1] > (GFD_FILTER_LIMIT -1))
  1777. nGfd_Idx[1] = 0;
  1778. }
  1779. osDelay(1);
  1780. }
  1781. /* USER CODE END Adc3Task */
  1782. }
  1783. /* USER CODE BEGIN Header_GpioTask */
  1784. /**
  1785. * @brief Function implementing the gpioTask thread.
  1786. * @param argument: Not used
  1787. * @retval None
  1788. */
  1789. /* USER CODE END Header_GpioTask */
  1790. void GpioTask(void const * argument)
  1791. {
  1792. /* USER CODE BEGIN GpioTask */
  1793. /* Infinite loop */
  1794. for (;;)
  1795. {
  1796. HAL_IWDG_Refresh(&hiwdg);
  1797. #if 0
  1798. // Output test
  1799. IOdebug();
  1800. #endif
  1801. if (OpFlag.bRelay_Config_Change == ON)
  1802. {
  1803. OpFlag.bRelay_Config_Change = OFF;
  1804. // =================( SMR1_Relay_n )=======================
  1805. if (Module_Info.Relay_IO.flags.SMR1_relay_n == ON){
  1806. if (!Exti.EXTI_SMR1_Flag || (Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1807. Exti.EXTI_SMR1_Flag = false;
  1808. EXTI_SMR1_Count= 0;
  1809. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_SET);
  1810. printf(" 1N ON\r\n");
  1811. if(!RelayStatus.SMR1_relay_n)
  1812. {
  1813. osDelay(Multi_Relay_Delay_Time);
  1814. RelayStatus.SMR1_relay_n = true;
  1815. }
  1816. }else if(Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count < WeldingCMDDelay){ //Reset count
  1817. EXTI_SMR1_Count = 0;
  1818. }
  1819. }
  1820. else{
  1821. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  1822. RelayStatus.SMR1_relay_n = false;
  1823. printf(" 1N OFF\r\n");
  1824. }
  1825. // =================( SMR1_Relay_p )=======================
  1826. if (Module_Info.Relay_IO.flags.SMR1_relay_p == ON){
  1827. if (!Exti.EXTI_SMR1_Flag || (Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1828. Exti.EXTI_SMR1_Flag = false;
  1829. EXTI_SMR1_Count= 0;
  1830. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_SET);
  1831. printf(" 1P ON\r\n");
  1832. if(!RelayStatus.SMR1_relay_p)
  1833. {
  1834. osDelay(Multi_Relay_Delay_Time);
  1835. RelayStatus.SMR1_relay_p = true;
  1836. }
  1837. }else if(Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count < WeldingCMDDelay){ //Reset count
  1838. EXTI_SMR1_Count = 0;
  1839. }
  1840. }
  1841. else
  1842. {
  1843. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  1844. RelayStatus.SMR1_relay_p = false;
  1845. printf(" 1P OFF\r\n");
  1846. }
  1847. // =================( SMR2_Relay_n )=======================
  1848. if (Module_Info.Relay_IO.flags.SMR2_relay_n == ON){
  1849. if (!Exti.EXTI_SMR2_Flag || (Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1850. Exti.EXTI_SMR2_Flag = false;
  1851. EXTI_SMR2_Count= 0;
  1852. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_SET);
  1853. printf(" 2N ON\r\n");
  1854. if(!RelayStatus.SMR2_relay_n)
  1855. {
  1856. osDelay(Multi_Relay_Delay_Time);
  1857. RelayStatus.SMR2_relay_n = true;
  1858. }
  1859. }else if(Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count < WeldingCMDDelay){ //Reset count
  1860. EXTI_SMR2_Count = 0;
  1861. }
  1862. }
  1863. else
  1864. {
  1865. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  1866. RelayStatus.SMR2_relay_n = false;
  1867. printf(" 2N OFF\r\n");
  1868. }
  1869. // =================( SMR2_Relay_p )=======================
  1870. if (Module_Info.Relay_IO.flags.SMR2_relay_p == ON){
  1871. if (!Exti.EXTI_SMR2_Flag || (Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1872. Exti.EXTI_SMR2_Flag = false;
  1873. EXTI_SMR2_Count= 0;
  1874. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_SET);
  1875. printf(" 2P ON\r\n");
  1876. if(!RelayStatus.SMR2_relay_p)
  1877. {
  1878. osDelay(Multi_Relay_Delay_Time);
  1879. RelayStatus.SMR2_relay_p = true;
  1880. }
  1881. }else if(Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count < WeldingCMDDelay){ //Reset count
  1882. EXTI_SMR2_Count = 0;
  1883. }
  1884. }
  1885. else
  1886. {
  1887. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  1888. RelayStatus.SMR2_relay_p = false;
  1889. printf(" 2P OFF\r\n");
  1890. }
  1891. // =================( SMR3_Relay_n )=======================
  1892. if (Module_Info.Relay_IO.flags.SMR3_relay_n == ON){
  1893. if (!Exti.EXTI_SMR3_Flag || (Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1894. Exti.EXTI_SMR3_Flag = false;
  1895. EXTI_SMR3_Count= 0;
  1896. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_SET);
  1897. printf(" 3N ON\r\n");
  1898. if(!RelayStatus.SMR3_relay_n)
  1899. {
  1900. osDelay(Multi_Relay_Delay_Time);
  1901. RelayStatus.SMR3_relay_n = true;
  1902. }
  1903. }else if(Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count < WeldingCMDDelay){ //Reset count
  1904. EXTI_SMR3_Count = 0;
  1905. }
  1906. }
  1907. else
  1908. {
  1909. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  1910. RelayStatus.SMR3_relay_n = false;
  1911. printf(" 3N OFF\r\n");
  1912. }
  1913. // =================( SMR3_Relay_p )=======================
  1914. if (Module_Info.Relay_IO.flags.SMR3_relay_p == ON){
  1915. if (!Exti.EXTI_SMR3_Flag || (Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1916. Exti.EXTI_SMR3_Flag = false;
  1917. EXTI_SMR3_Count= 0;
  1918. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_SET);
  1919. printf(" 3P ON\r\n");
  1920. if(!RelayStatus.SMR3_relay_p)
  1921. {
  1922. osDelay(Multi_Relay_Delay_Time);
  1923. RelayStatus.SMR3_relay_p = true;
  1924. }
  1925. }else if(Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count < WeldingCMDDelay){ //Reset count
  1926. EXTI_SMR3_Count = 0;
  1927. }
  1928. }
  1929. else
  1930. {
  1931. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  1932. RelayStatus.SMR3_relay_p = false;
  1933. printf(" 3P OFF\r\n");
  1934. }
  1935. // =================( SMR4_Relay_n )=======================
  1936. if (Module_Info.Relay_IO.flags.SMR4_relay_n == ON){
  1937. if (!Exti.EXTI_SMR4_Flag || (Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1938. Exti.EXTI_SMR4_Flag = false;
  1939. EXTI_SMR4_Count= 0;
  1940. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_SET);
  1941. printf(" 4N ON\r\n");
  1942. if(!RelayStatus.SMR4_relay_n)
  1943. {
  1944. osDelay(Multi_Relay_Delay_Time);
  1945. RelayStatus.SMR4_relay_n = true;
  1946. }
  1947. }else if(Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count < WeldingCMDDelay){ //Reset count
  1948. EXTI_SMR4_Count = 0;
  1949. }
  1950. }
  1951. else
  1952. {
  1953. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  1954. RelayStatus.SMR4_relay_n = false;
  1955. printf(" 4N OFF\r\n");
  1956. }
  1957. // =================( SMR4_Relay_p )=======================
  1958. if (Module_Info.Relay_IO.flags.SMR4_relay_p == ON){
  1959. if (!Exti.EXTI_SMR4_Flag || (Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1960. Exti.EXTI_SMR4_Flag = false;
  1961. EXTI_SMR4_Count= 0;
  1962. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_SET);
  1963. printf(" 4P ON\r\n");
  1964. if(!RelayStatus.SMR4_relay_p)
  1965. {
  1966. osDelay(Multi_Relay_Delay_Time);
  1967. RelayStatus.SMR4_relay_p = true;
  1968. }
  1969. }else if(Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count < WeldingCMDDelay){ //Reset count
  1970. EXTI_SMR4_Count = 0;
  1971. }
  1972. }
  1973. else
  1974. {
  1975. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  1976. RelayStatus.SMR4_relay_p = false;
  1977. printf(" 4P OFF\r\n");
  1978. }
  1979. // =================( SMR5_Relay_n )=======================
  1980. if (Module_Info.Relay_IO.flags.SMR5_relay_n == ON){
  1981. if (!Exti.EXTI_SMR5_Flag || (Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  1982. Exti.EXTI_SMR5_Flag = false;
  1983. EXTI_SMR5_Count= 0;
  1984. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_SET);
  1985. printf(" 5N ON\r\n");
  1986. if(!RelayStatus.SMR5_relay_n)
  1987. {
  1988. osDelay(Multi_Relay_Delay_Time);
  1989. RelayStatus.SMR5_relay_n = true;
  1990. }
  1991. }else if(Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count < WeldingCMDDelay){ //Reset count
  1992. EXTI_SMR5_Count = 0;
  1993. }
  1994. }
  1995. else
  1996. {
  1997. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  1998. RelayStatus.SMR5_relay_n = false;
  1999. printf(" 5N OFF\r\n");
  2000. }
  2001. // =================( SMR5_Relay_p )=======================
  2002. if (Module_Info.Relay_IO.flags.SMR5_relay_p == ON){
  2003. if (!Exti.EXTI_SMR5_Flag || (Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2004. Exti.EXTI_SMR5_Flag = false;
  2005. EXTI_SMR5_Count= 0;
  2006. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2007. printf(" 5P ON\r\n");
  2008. if(!RelayStatus.SMR5_relay_p)
  2009. {
  2010. osDelay(Multi_Relay_Delay_Time);
  2011. RelayStatus.SMR5_relay_p = true;
  2012. }
  2013. }else if(Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count < WeldingCMDDelay){ //Reset count
  2014. EXTI_SMR5_Count = 0;
  2015. }
  2016. }
  2017. else
  2018. {
  2019. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2020. RelayStatus.SMR5_relay_p = false;
  2021. printf(" 5P OFF\r\n");
  2022. }
  2023. // =================( SMR6_Relay_n )=======================
  2024. if (Module_Info.Relay_IO.flags.SMR6_relay_n == ON){
  2025. if (!Exti.EXTI_SMR6_Flag || (Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
  2026. Exti.EXTI_SMR6_Flag = false;
  2027. EXTI_SMR6_Count= 0;
  2028. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_SET);
  2029. printf(" 6N ON\r\n");
  2030. if(!RelayStatus.SMR6_relay_n)
  2031. {
  2032. osDelay(Multi_Relay_Delay_Time);
  2033. RelayStatus.SMR6_relay_n = true;
  2034. }
  2035. }else if(Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count < WeldingCMDDelay){ //Reset count
  2036. EXTI_SMR6_Count = 0;
  2037. }
  2038. }
  2039. else
  2040. {
  2041. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2042. RelayStatus.SMR6_relay_n = false;
  2043. printf(" 6N OFF\r\n");
  2044. }
  2045. // =================( SMR6_Relay_p )=======================
  2046. if (Module_Info.Relay_IO.flags.SMR6_relay_p == ON){
  2047. if (!Exti.EXTI_SMR6_Flag || (Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count >=10)){ //ignore DCM relay command 1s when Relay welding
  2048. Exti.EXTI_SMR6_Flag = false;
  2049. EXTI_SMR6_Count= 0;
  2050. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_SET);
  2051. printf(" 6P ON\r\n");
  2052. if(!RelayStatus.SMR6_relay_p)
  2053. {
  2054. osDelay(Multi_Relay_Delay_Time);
  2055. RelayStatus.SMR6_relay_p = true;
  2056. }
  2057. }else if(Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count < WeldingCMDDelay){ //Reset count
  2058. EXTI_SMR6_Count = 0;
  2059. }
  2060. }
  2061. else
  2062. {
  2063. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2064. RelayStatus.SMR6_relay_p = false;
  2065. printf(" 6P OFF\r\n");
  2066. }
  2067. // =================( Precharge1 )==============================
  2068. if (Module_Info.Relay_IO.flags.Precharge1 == ON)
  2069. {
  2070. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_SET);
  2071. printf("Pre-charge 1 ON\r\n");
  2072. }
  2073. else
  2074. {
  2075. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_RESET);
  2076. printf("Pre-charge 1 OFF\r\n");
  2077. }
  2078. // =================( Precharge2 )==============================
  2079. if (Module_Info.Relay_IO.flags.Precharge2 == ON)
  2080. {
  2081. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_SET);
  2082. printf("Pre-charge 2 ON\r\n");
  2083. }
  2084. else
  2085. {
  2086. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_RESET);
  2087. printf("Pre-charge 2 OFF\r\n");
  2088. }
  2089. // =================( AC_Contactor )=======================
  2090. if (Module_Info.Relay_IO.flags.AC_Contactor == ON)
  2091. {
  2092. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_SET);
  2093. printf("AC Contactor ON\r\n");
  2094. }
  2095. else
  2096. {
  2097. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
  2098. printf("AC Contactor OFF\r\n");
  2099. }
  2100. }
  2101. osDelay(1);
  2102. }
  2103. /* USER CODE END GpioTask */
  2104. }
  2105. /* USER CODE BEGIN Header_MemoryTask */
  2106. /**
  2107. * @brief Function implementing the memoryTask thread.
  2108. * @param argument: Not used
  2109. * @retval None
  2110. */
  2111. /* USER CODE END Header_MemoryTask */
  2112. void MemoryTask(void const * argument)
  2113. {
  2114. /* USER CODE BEGIN MemoryTask */
  2115. Module_Info.memory.Module_Config.op_bits.read = ON;
  2116. __IO uint32_t flash;
  2117. int i;
  2118. /* Infinite loop */
  2119. for (;;)
  2120. {
  2121. /*
  2122. Charger config operation
  2123. */
  2124. if (Module_Info.memory.Module_Config.op_bits.read) // Memory read
  2125. {
  2126. // Read data from block
  2127. // for(uint16_t idx=0; idx<(MEMORY_LENGTH_CONFIG>>2); idx++)
  2128. GainCaliFlag = true;
  2129. for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++)
  2130. {
  2131. flash = ADDR_FLASH_SECTOR_4 + (idx * 4);
  2132. Module_Info.memory.Module_Config.data.value[idx] = *(uint32_t *)flash;
  2133. if ((Module_Info.memory.Module_Config.data.value[idx] == 0xffffffff) ||
  2134. (Module_Info.memory.Module_Config.data.value[idx] == 0))
  2135. {
  2136. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3)
  2137. break;
  2138. else
  2139. GainCaliFlag = false;
  2140. Module_Info.memory.Module_Config.data.value[idx] = mem_def_data[idx];
  2141. }
  2142. }
  2143. // coefficient DATA
  2144. for (i = 0; i < DC_CORRECT_GAIN_MAX_NUM; i++)
  2145. {
  2146. if (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][MCU_DATA] >
  2147. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][MCU_DATA]) // Make sure memory have calibration valid value
  2148. {
  2149. CLC_Corr_Gain_Par(Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][METER_DATA],
  2150. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][METER_DATA],
  2151. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][MCU_DATA],
  2152. Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][MCU_DATA],
  2153. &Module_Info.DCVcoeff[i].gain_volt, &Module_Info.DCVcoeff[i].offset_volt);
  2154. }
  2155. else
  2156. {
  2157. Module_Info.DCVcoeff[i].gain_volt = 1;
  2158. Module_Info.DCVcoeff[i].offset_volt = 0;
  2159. }
  2160. }
  2161. for (i = 0; i < GFD_CORRECT_GAIN_MAX_NUM; i++)
  2162. {
  2163. if (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][MCU_DATA] >
  2164. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][MCU_DATA])
  2165. {
  2166. CLC_Corr_Gain_Par(Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][METER_DATA],
  2167. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][METER_DATA],
  2168. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][MCU_DATA],
  2169. Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][MCU_DATA],
  2170. &Module_Info.GFDcoeff[i].gain_volt, &Module_Info.GFDcoeff[i].offset_volt);
  2171. }
  2172. else
  2173. {
  2174. Module_Info.GFDcoeff[i].gain_volt = 1;
  2175. Module_Info.GFDcoeff[i].offset_volt = 0;
  2176. }
  2177. }
  2178. if( Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA] >
  2179. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][MCU_DATA] )
  2180. {
  2181. CLC_Corr_Gain_Par( Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][METER_DATA],
  2182. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][METER_DATA],
  2183. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA],
  2184. Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][MCU_DATA],
  2185. &Module_Info.DCINcoeff.gain_volt, &Module_Info.DCINcoeff.offset_volt);
  2186. }
  2187. else
  2188. {
  2189. Module_Info.DCINcoeff.gain_volt = 1;
  2190. Module_Info.DCINcoeff.offset_volt = 0;
  2191. }
  2192. Module_Info.memory.Module_Config.op_bits.read = OFF;
  2193. // DEBUG_INFO("Read MEM_ADDR_EVSE_CONFIG block(4k byte) pass.\r\n");
  2194. // Module_Info.memory.Module_Config.op_bits.update = 1;
  2195. // for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++)
  2196. // {
  2197. // Module_Info.memory.Module_Config.data.value[idx] = 0;
  2198. // }
  2199. }
  2200. if (Module_Info.memory.Module_Config.op_bits.update) // Memory update
  2201. {
  2202. // Erase block data
  2203. if (FLASH_If_Erase(ADDR_FLASH_SECTOR_4, 1) == FLASHIF_OK)
  2204. {
  2205. #ifdef DEBUG
  2206. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k bytes) pass.\r\n");
  2207. #endif
  2208. // Write data to block
  2209. if (FLASH_If_Write(ADDR_FLASH_SECTOR_4, (uint32_t *)Module_Info.memory.Module_Config.data.value, MEMORY_LENGTH_CONFIG >> 2) == FLASHIF_OK)
  2210. {
  2211. // DEBUG_INFO("Write MEM_ADDR_EVSE_CONFIG block(4k bytes) pass.\r\n");
  2212. }
  2213. else
  2214. {
  2215. // DEBUG_INFO("Write MEM_ADDR_EVSE_CONFIG block(4k bytes) fail.\r\n");
  2216. }
  2217. Module_Info.memory.Module_Config.op_bits.update = OFF;
  2218. }
  2219. else
  2220. {
  2221. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k bytes) fail.\r\n");
  2222. }
  2223. }
  2224. if (Module_Info.memory.Module_Config.op_bits.clear) // Memory clear
  2225. {
  2226. // Erase block data
  2227. if (FLASH_If_Erase(ADDR_FLASH_SECTOR_4, 1) == FLASHIF_OK)
  2228. {
  2229. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k byte) pass.\r\n");
  2230. Module_Info.memory.Module_Config.op_bits.clear = OFF;
  2231. }
  2232. else
  2233. {
  2234. // DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k byte) fail.\r\n");
  2235. }
  2236. }
  2237. osDelay(1);
  2238. }
  2239. /* USER CODE END MemoryTask */
  2240. }
  2241. /* USER CODE BEGIN Header_Inkey_Task */
  2242. /**
  2243. * @brief Function implementing the InkeyTask thread.
  2244. * @param argument: Not used
  2245. * @retval None
  2246. */
  2247. /* USER CODE END Header_Inkey_Task */
  2248. void Inkey_Task(void const * argument)
  2249. {
  2250. /* USER CODE BEGIN Inkey_Task */
  2251. /* Infinite loop */
  2252. for (;;)
  2253. {
  2254. // if( (AC_Sine[0].Vrms_AVG < 1600) ||
  2255. // (AC_Sine[1].Vrms_AVG < 1600) ||
  2256. // (AC_Sine[2].Vrms_AVG < 1600) )
  2257. // {
  2258. // if(Counter.nAC_Drop > 10)
  2259. // HAL_GPIO_WritePin(CSU_IO_HIGH_GPIO_Port, CSU_IO_HIGH_Pin, GPIO_PIN_RESET);
  2260. // else
  2261. // Counter.nAC_Drop++;
  2262. // }
  2263. // else
  2264. // {
  2265. // Counter.nAC_Drop = 0;
  2266. // HAL_GPIO_WritePin(CSU_IO_HIGH_GPIO_Port, CSU_IO_HIGH_Pin, GPIO_PIN_SET);
  2267. // }
  2268. // InterLock bit Detect ....
  2269. // if(HAL_GPIO_ReadPin(Relay_Interlock_GPIO_Port, Relay_Interlock_Pin) == 1)
  2270. // {
  2271. // Counter.nInterLock++;
  2272. // if(Counter.nInterLock >5)
  2273. // OpFlag.bInterLock = ON;
  2274. // }
  2275. // else
  2276. // {
  2277. // Counter.nInterLock = OpFlag.bInterLock = OFF;
  2278. // }
  2279. //
  2280. // if( OpFlag.bInterLock == ON )
  2281. // {
  2282. // OpFlag.bInterLock= OFF;
  2283. //
  2284. // HAL_GPIO_WritePin(Parallel_RLY_n_Enable_GPIO_Port, Parallel_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2285. // HAL_GPIO_WritePin(Parallel_RLY_p_Enable_GPIO_Port, Parallel_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2286. // HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2287. // HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2288. // HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2289. // HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2290. // HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
  2291. // HAL_GPIO_WritePin(Precharge_Enable_GPIO_Port, Precharge_Enable_Pin, GPIO_PIN_RESET);
  2292. //
  2293. // osDelay(10);
  2294. // }
  2295. //
  2296. osDelay(1);
  2297. }
  2298. /* USER CODE END Inkey_Task */
  2299. }
  2300. /* USER CODE BEGIN Header_Gfd_Left_Task */
  2301. /**
  2302. * @brief Function implementing the gfd_left_Task thread.
  2303. * @param argument: Not used
  2304. * @retval None
  2305. */
  2306. /* USER CODE END Header_Gfd_Left_Task */
  2307. void Gfd_Left_Task(void const * argument)
  2308. {
  2309. /* USER CODE BEGIN Gfd_Left_Task */
  2310. /* Infinite loop */
  2311. // Fail : <= 100ohm * 950v = 95K ohm
  2312. // Warning : <= 475K ohm & > 95K ohm
  2313. // Pass : > 500ohm * 950v = 475K ohm
  2314. for (;;)
  2315. {
  2316. uint16_t _delay, temp2;
  2317. switch (Module_Info.gfd_chk[0].Csu_State)
  2318. {
  2319. case 0: // idle
  2320. _delay = 1000;
  2321. if (bGfd_Correct[0] == 0)
  2322. {
  2323. Module_Info.gfd_chk[0].bResult_Gfd = GFD_UNKNOW;
  2324. Module_Info.gfd_chk[0].Rfd_State = 0;
  2325. Module_Info.gfd_chk[0].bFirstGfd = 1;
  2326. HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_RESET);
  2327. HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_RESET);
  2328. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2329. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2330. }
  2331. else
  2332. {
  2333. HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
  2334. HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
  2335. }
  2336. break;
  2337. case 1: // Cable check -- 500v
  2338. switch (Module_Info.gfd_chk[0].Rfd_State)
  2339. {
  2340. case 0:
  2341. // ********* On Up-Down Bridge
  2342. _delay = WAIT_FOR_RESISTER_CALC;
  2343. if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_UNKNOW)
  2344. {
  2345. HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
  2346. HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
  2347. // 20.04.23
  2348. if (Module_Info.gfd_chk[0].bFirstGfd == 1)
  2349. {
  2350. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2351. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2352. Module_Info.gfd_chk[0].Rfd_State = 2;
  2353. }
  2354. else
  2355. Module_Info.gfd_chk[0].Rfd_State++;
  2356. }
  2357. break;
  2358. case 1:
  2359. _delay = WAIT_FOR_RESISTER_CALC_LONG;
  2360. if (!((Module_Info.SMR_Gfd_Sense[0] > GFD_SENSE_VOLTAGE_DOWN_LIMIT) && (Module_Info.SMR_Gfd_Sense[0] < GFD_SENSE_VOLTAGE_UP_LIMIT) && (Module_Info.SMR1_Relay_V < GFD_WORKING_VOLTAGE)))
  2361. {
  2362. #if (GFD_SELF_TEST == 1)
  2363. Module_Info.gfd_chk[0].Rfd_State++;
  2364. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2365. // Self_Test_1_DC+
  2366. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  2367. #else
  2368. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2369. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2370. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2371. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2372. Module_Info.gfd_chk[0].Rfd_State = 5;
  2373. #endif
  2374. }
  2375. else // Not Match to Ground Test condiction.
  2376. {
  2377. Module_Info.gfd_chk[0].R_GFD = 1000000; // 1000K Ohm
  2378. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2379. Module_Info.gfd_chk[0].Rfd_State = 0;
  2380. }
  2381. break;
  2382. case 2:
  2383. _delay = 10;
  2384. // begin isolation test ....Self_test_1
  2385. // SMR1_Relay_V >= 200v (2000)
  2386. // Isolation Test Voltage is 500v
  2387. if (Module_Info.SMR1_Relay_V >= ISOLATION_TEST_VOLTAGE)
  2388. temp2 = Module_Info.SMR1_Relay_V - ISOLATION_TEST_VOLTAGE;
  2389. else
  2390. temp2 = ISOLATION_TEST_VOLTAGE - Module_Info.SMR1_Relay_V;
  2391. if (temp2 < LINE_VOLTAGE_TOLERANCE) // ABS(10V)
  2392. {
  2393. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2394. if (Module_Info.gfd_chk[0].Gfd_Running_Count > 4)
  2395. {
  2396. if (Module_Info.gfd_chk[0].bFirstGfd == 1)
  2397. {
  2398. Module_Info.gfd_chk[0].Rfd_State = 5;
  2399. }
  2400. else
  2401. {
  2402. Module_Info.gfd_chk[0].Rfd_State++;
  2403. }
  2404. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2405. }
  2406. }
  2407. else
  2408. {
  2409. Module_Info.gfd_chk[0].Rfd_State = 0;
  2410. }
  2411. break;
  2412. case 3:
  2413. _delay = WAIT_FOR_RESISTER_CALC_LONG;
  2414. if (Module_Info.gfd_chk[0].R_GFD_v <= GFD_SELF_TEST_RESISTOR)
  2415. {
  2416. // Self_Test_1_DC-
  2417. HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2418. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  2419. Module_Info.gfd_chk[0].Rfd_State++;
  2420. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2421. }
  2422. else
  2423. {
  2424. // Need to many tims then gfd fail.
  2425. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2426. if (Module_Info.gfd_chk[0].Gfd_Running_Count > 4)
  2427. {
  2428. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2429. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2430. // 20.03.30 henry
  2431. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD_v;
  2432. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2433. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2434. Module_Info.gfd_chk[0].Rfd_State = 0;
  2435. }
  2436. }
  2437. break;
  2438. case 4:
  2439. _delay = WAIT_FOR_RESISTER_CALC;
  2440. if (Module_Info.gfd_chk[0].R_GFD_v <= GFD_SELF_TEST_RESISTOR)
  2441. {
  2442. HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2443. Module_Info.gfd_chk[0].Rfd_State++;
  2444. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2445. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2446. }
  2447. else
  2448. {
  2449. // Need to many tims then gfd fail.
  2450. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2451. if (Module_Info.gfd_chk[0].Gfd_Running_Count > 4)
  2452. {
  2453. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2454. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2455. // 20.03.30 henry
  2456. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD_v;
  2457. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2458. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2459. Module_Info.gfd_chk[0].Rfd_State = 0;
  2460. }
  2461. }
  2462. break;
  2463. case 5:
  2464. _delay = WAIT_FOR_RESISTER_CALC;
  2465. if (Module_Info.gfd_chk[0].R_GFD_v <= ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR))
  2466. {
  2467. if (Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE)
  2468. {
  2469. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2470. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2471. }
  2472. if (Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_TEST_TIMES)
  2473. {
  2474. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2475. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2476. // 20.03.30 henry
  2477. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD_v;
  2478. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2479. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2480. Module_Info.gfd_chk[0].Rfd_State = 0;
  2481. }
  2482. }
  2483. else
  2484. {
  2485. if ((Module_Info.gfd_chk[0].R_GFD_v <= (GFD_RESISTOR_PRE_WARNING * EVSE_MAX_OUTPUT_VOLTAGE)) && (Module_Info.gfd_chk[0].R_GFD_v > ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR)))
  2486. {
  2487. // 21.09.30 GFD action on above 200v
  2488. if (Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE)
  2489. {
  2490. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2491. Module_Info.gfd_chk[0].Gfd_Warning_Count++;
  2492. }
  2493. if (Module_Info.gfd_chk[0].Gfd_Warning_Count > GFD_TEST_TIMES)
  2494. {
  2495. // 20.04.23 henry
  2496. if (Module_Info.gfd_chk[0].bFirstGfd == 1)
  2497. {
  2498. // Gfd = Fail.
  2499. Module_Info.gfd_chk[0].bFirstGfd = 0;
  2500. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2501. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2502. // 20.06.18 Vern , don't do Self_test
  2503. Module_Info.gfd_chk[0].Rfd_State++;
  2504. // 20.03.30 henry
  2505. // Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD_v;
  2506. // Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2507. // Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2508. //
  2509. // Module_Info.gfd_chk[0].Rfd_State = 0;
  2510. }
  2511. else
  2512. {
  2513. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2514. Module_Info.gfd_chk[0].Rfd_State++; // 20.03.30 henry
  2515. }
  2516. }
  2517. }
  2518. else
  2519. {
  2520. // Gfd = Pass.
  2521. if (Module_Info.gfd_chk[0].bFirstGfd == 1)
  2522. {
  2523. Module_Info.gfd_chk[0].bFirstGfd = 0;
  2524. Module_Info.gfd_chk[0].bResult_Gfd = GFD_UNKNOW;
  2525. Module_Info.gfd_chk[0].Rfd_State = 1;
  2526. }
  2527. else
  2528. {
  2529. Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
  2530. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2531. Module_Info.gfd_chk[0].Rfd_State++; // 20.03.30 henry
  2532. }
  2533. }
  2534. }
  2535. break;
  2536. default:
  2537. if ((Module_Info.gfd_chk[0].bResult_Gfd == GFD_UNKNOW) || (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL))
  2538. {
  2539. Module_Info.gfd_chk[0].Rfd_State = 0;
  2540. }
  2541. else
  2542. {
  2543. Module_Info.gfd_chk[0].Rfd_State = 10;
  2544. Module_Info.gfd_chk[0].Csu_State = 2;
  2545. }
  2546. break;
  2547. }
  2548. break;
  2549. case 2:
  2550. case 3:
  2551. switch (Module_Info.gfd_chk[0].Rfd_State)
  2552. {
  2553. case 10:
  2554. // ********* On Up-Down Bridge
  2555. _delay = 1;
  2556. // HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
  2557. // HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
  2558. Module_Info.gfd_chk[0].Rfd_State++;
  2559. break;
  2560. case 11:
  2561. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2562. if (!((Module_Info.SMR_Gfd_Sense[0] > GFD_SENSE_VOLTAGE_DOWN_LIMIT) && (Module_Info.SMR_Gfd_Sense[0] < GFD_SENSE_VOLTAGE_UP_LIMIT) && (Module_Info.SMR1_Relay_V < GFD_WORKING_VOLTAGE)))
  2563. {
  2564. Module_Info.gfd_chk[0].Rfd_State++;
  2565. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2566. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2567. }
  2568. else // Not Match to Ground Test condiction.
  2569. {
  2570. Module_Info.gfd_chk[0].R_GFD = 1000000; // 1000K Ohm
  2571. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2572. Module_Info.gfd_chk[0].Rfd_State = 10;
  2573. }
  2574. break;
  2575. case 12:
  2576. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2577. if (Module_Info.gfd_chk[0].R_GFD_v <= ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR))
  2578. {
  2579. if (Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE)
  2580. {
  2581. Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
  2582. Module_Info.gfd_chk[0].Gfd_Running_Count++;
  2583. }
  2584. if (Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_TEST_TIMES)
  2585. {
  2586. Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
  2587. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
  2588. // 20.03.30 henry
  2589. Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD_v;
  2590. Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
  2591. Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
  2592. Module_Info.gfd_chk[0].Rfd_State = 0;
  2593. }
  2594. }
  2595. else
  2596. {
  2597. if ((Module_Info.gfd_chk[0].R_GFD_v <= (GFD_RESISTOR_PRE_WARNING * EVSE_MAX_OUTPUT_VOLTAGE)) && (Module_Info.gfd_chk[0].R_GFD_v > ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR)))
  2598. {
  2599. // 21.09.30 GFD action on above 200v
  2600. if (Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE)
  2601. {
  2602. Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
  2603. Module_Info.gfd_chk[0].Gfd_Warning_Count++;
  2604. }
  2605. if (Module_Info.gfd_chk[0].Gfd_Warning_Count > GFD_TEST_TIMES)
  2606. {
  2607. Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
  2608. Module_Info.gfd_chk[0].Rfd_State++;
  2609. }
  2610. }
  2611. else
  2612. {
  2613. Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
  2614. Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
  2615. Module_Info.gfd_chk[0].Rfd_State++;
  2616. }
  2617. }
  2618. break;
  2619. default:
  2620. if (Module_Info.gfd_chk[0].bResult_Gfd != GFD_FAIL)
  2621. Module_Info.gfd_chk[0].Rfd_State = 10;
  2622. break;
  2623. }
  2624. break;
  2625. default:
  2626. break;
  2627. }
  2628. if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
  2629. {
  2630. _delay = 100;
  2631. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2632. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2633. bRelayFeedback = 1;
  2634. }
  2635. vTaskDelay(_delay / portTICK_RATE_MS);
  2636. }
  2637. /* USER CODE END Gfd_Left_Task */
  2638. }
  2639. /* USER CODE BEGIN Header_Gfd_Right_Task */
  2640. /**
  2641. * @brief Function implementing the gfd_right_Task thread.
  2642. * @param argument: Not used
  2643. * @retval None
  2644. */
  2645. /* USER CODE END Header_Gfd_Right_Task */
  2646. void Gfd_Right_Task(void const * argument)
  2647. {
  2648. /* USER CODE BEGIN Gfd_Right_Task */
  2649. /* Infinite loop */
  2650. // Fail : <= 100ohm * 950v = 95K ohm
  2651. // Warning : <= 475K ohm & > 95K ohm
  2652. // Pass : > 500ohm * 950v = 475K
  2653. for (;;)
  2654. {
  2655. uint16_t _delay, temp2;
  2656. switch (Module_Info.gfd_chk[1].Csu_State)
  2657. {
  2658. case 0: // idle
  2659. _delay = 1000;
  2660. if (bGfd_Correct[1] == 0)
  2661. {
  2662. Module_Info.gfd_chk[1].bResult_Gfd = GFD_UNKNOW;
  2663. Module_Info.gfd_chk[1].Rfd_State = 0;
  2664. Module_Info.gfd_chk[1].bFirstGfd = 1;
  2665. HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_RESET);
  2666. HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_RESET);
  2667. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2668. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2669. }
  2670. else
  2671. {
  2672. HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_SET);
  2673. HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_SET);
  2674. }
  2675. break;
  2676. case 1: // Cable check -- 500v
  2677. switch (Module_Info.gfd_chk[1].Rfd_State)
  2678. {
  2679. case 0:
  2680. // ********* On Up-Down Bridge
  2681. _delay = WAIT_FOR_RESISTER_CALC;
  2682. if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_UNKNOW)
  2683. {
  2684. HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_SET);
  2685. HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_SET);
  2686. // 20.04.23
  2687. if (Module_Info.gfd_chk[1].bFirstGfd == 1)
  2688. {
  2689. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2690. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  2691. Module_Info.gfd_chk[1].Rfd_State = 2;
  2692. }
  2693. else
  2694. Module_Info.gfd_chk[1].Rfd_State++;
  2695. }
  2696. break;
  2697. case 1:
  2698. _delay = WAIT_FOR_RESISTER_CALC_LONG;
  2699. if (!((Module_Info.SMR_Gfd_Sense[1] > GFD_SENSE_VOLTAGE_DOWN_LIMIT) && (Module_Info.SMR_Gfd_Sense[1] < GFD_SENSE_VOLTAGE_UP_LIMIT) && (Module_Info.SMR2_Relay_V < GFD_WORKING_VOLTAGE)))
  2700. {
  2701. #if (GFD_SELF_TEST == 1)
  2702. Module_Info.gfd_chk[1].Rfd_State++;
  2703. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2704. // Self_Test_2_DC+
  2705. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_SET);
  2706. #else
  2707. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2708. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2709. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2710. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  2711. Module_Info.gfd_chk[1].Rfd_State = 5;
  2712. #endif
  2713. }
  2714. else // Not Match to Ground Test condiction.
  2715. {
  2716. Module_Info.gfd_chk[1].R_GFD = 1000000; // 1000K Ohm
  2717. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  2718. Module_Info.gfd_chk[1].Rfd_State = 0;
  2719. }
  2720. break;
  2721. case 2:
  2722. _delay = 10;
  2723. // begin isolation test ....Self_test_1
  2724. // SMR1_Relay_V >= 200v (2000)
  2725. // Isolation Test Voltage is 500v
  2726. if (Module_Info.SMR2_Relay_V >= ISOLATION_TEST_VOLTAGE)
  2727. temp2 = Module_Info.SMR2_Relay_V - ISOLATION_TEST_VOLTAGE;
  2728. else
  2729. temp2 = ISOLATION_TEST_VOLTAGE - Module_Info.SMR2_Relay_V;
  2730. if (temp2 < LINE_VOLTAGE_TOLERANCE) // ABS(10V)
  2731. {
  2732. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  2733. if (Module_Info.gfd_chk[1].Gfd_Running_Count > 4)
  2734. {
  2735. if (Module_Info.gfd_chk[1].bFirstGfd == 1)
  2736. {
  2737. Module_Info.gfd_chk[1].Rfd_State = 5;
  2738. }
  2739. else
  2740. {
  2741. Module_Info.gfd_chk[1].Rfd_State++;
  2742. }
  2743. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2744. }
  2745. }
  2746. else
  2747. {
  2748. Module_Info.gfd_chk[1].Rfd_State = 0;
  2749. }
  2750. break;
  2751. case 3:
  2752. _delay = WAIT_FOR_RESISTER_CALC_LONG;
  2753. if (Module_Info.gfd_chk[1].R_GFD_v <= GFD_SELF_TEST_RESISTOR)
  2754. {
  2755. // Self_Test_2_DC-
  2756. HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
  2757. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_SET);
  2758. Module_Info.gfd_chk[1].Rfd_State++;
  2759. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2760. }
  2761. else
  2762. {
  2763. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  2764. if (Module_Info.gfd_chk[1].Gfd_Running_Count > 4)
  2765. {
  2766. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  2767. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  2768. // 20.03.30 henry
  2769. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD_v;
  2770. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  2771. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  2772. Module_Info.gfd_chk[1].Rfd_State = 0;
  2773. }
  2774. }
  2775. break;
  2776. case 4:
  2777. _delay = WAIT_FOR_RESISTER_CALC;
  2778. if (Module_Info.gfd_chk[1].R_GFD_v <= GFD_SELF_TEST_RESISTOR)
  2779. {
  2780. HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
  2781. Module_Info.gfd_chk[1].Rfd_State++;
  2782. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2783. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  2784. }
  2785. else
  2786. {
  2787. // Need to many tims then gfd fail.
  2788. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  2789. if (Module_Info.gfd_chk[1].Gfd_Running_Count > 4)
  2790. {
  2791. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  2792. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  2793. // 20.03.30 henry
  2794. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD_v;
  2795. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  2796. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  2797. Module_Info.gfd_chk[1].Rfd_State = 0;
  2798. }
  2799. }
  2800. break;
  2801. case 5:
  2802. _delay = WAIT_FOR_RESISTER_CALC;
  2803. if (Module_Info.gfd_chk[1].R_GFD_v <= ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR))
  2804. {
  2805. if (Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE)
  2806. {
  2807. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  2808. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  2809. }
  2810. if (Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_TEST_TIMES)
  2811. {
  2812. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  2813. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  2814. // 20.03.30 henry
  2815. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD_v;
  2816. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  2817. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  2818. Module_Info.gfd_chk[1].Rfd_State = 0;
  2819. }
  2820. }
  2821. else
  2822. {
  2823. if ((Module_Info.gfd_chk[1].R_GFD_v <= (GFD_RESISTOR_PRE_WARNING * EVSE_MAX_OUTPUT_VOLTAGE)) && (Module_Info.gfd_chk[1].R_GFD_v > ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR)))
  2824. {
  2825. // 21.09.30 GFD action on above 200v
  2826. if (Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE)
  2827. {
  2828. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2829. Module_Info.gfd_chk[1].Gfd_Warning_Count++;
  2830. }
  2831. if (Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_TEST_TIMES)
  2832. {
  2833. // 20.04.23 henry
  2834. if (Module_Info.gfd_chk[1].bFirstGfd == 1)
  2835. {
  2836. // Gfd = Fail.
  2837. Module_Info.gfd_chk[1].bFirstGfd = 0;
  2838. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  2839. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  2840. // 20.06.18 Vern Get Warning, don't do Self_test
  2841. Module_Info.gfd_chk[1].Rfd_State++;
  2842. // 20.03.30 henry
  2843. // Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD_v;
  2844. // Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  2845. // Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  2846. //
  2847. // Module_Info.gfd_chk[1].Rfd_State = 0;
  2848. }
  2849. else
  2850. {
  2851. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  2852. Module_Info.gfd_chk[1].Rfd_State++; // 20.03.30 henry
  2853. }
  2854. }
  2855. }
  2856. else
  2857. {
  2858. // Gfd = Pass.
  2859. if (Module_Info.gfd_chk[1].bFirstGfd == 1)
  2860. {
  2861. Module_Info.gfd_chk[1].bFirstGfd = 0;
  2862. Module_Info.gfd_chk[1].bResult_Gfd = GFD_UNKNOW;
  2863. Module_Info.gfd_chk[1].Rfd_State = 1;
  2864. }
  2865. else
  2866. {
  2867. Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
  2868. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  2869. Module_Info.gfd_chk[1].Rfd_State++; // 20.03.30 henry
  2870. }
  2871. }
  2872. }
  2873. break;
  2874. default:
  2875. if ((Module_Info.gfd_chk[1].bResult_Gfd == GFD_UNKNOW) || (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL))
  2876. {
  2877. Module_Info.gfd_chk[1].Rfd_State = 0;
  2878. }
  2879. else
  2880. {
  2881. Module_Info.gfd_chk[1].Rfd_State = 10;
  2882. }
  2883. break;
  2884. }
  2885. break;
  2886. case 2:
  2887. case 3:
  2888. switch (Module_Info.gfd_chk[1].Rfd_State)
  2889. {
  2890. case 10:
  2891. // ********* On Up-Down Bridge
  2892. _delay = 1;
  2893. Module_Info.gfd_chk[1].Rfd_State++;
  2894. break;
  2895. case 11:
  2896. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2897. if (!((Module_Info.SMR_Gfd_Sense[1] > GFD_SENSE_VOLTAGE_DOWN_LIMIT) && (Module_Info.SMR_Gfd_Sense[1] < GFD_SENSE_CENTER_VOLTAGE) && (Module_Info.SMR2_Relay_V < GFD_WORKING_VOLTAGE)))
  2898. {
  2899. Module_Info.gfd_chk[1].Rfd_State++;
  2900. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2901. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  2902. }
  2903. else // Not Match to Ground Test condiction.
  2904. {
  2905. Module_Info.gfd_chk[1].R_GFD = 1000000; // 1000K Ohm
  2906. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  2907. Module_Info.gfd_chk[1].Rfd_State = 10;
  2908. }
  2909. break;
  2910. case 12:
  2911. _delay = WAIT_FOR_RESISTER_CALC_FAST;
  2912. if (Module_Info.gfd_chk[1].R_GFD_v <= ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR))
  2913. {
  2914. if (Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE)
  2915. {
  2916. Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
  2917. Module_Info.gfd_chk[1].Gfd_Running_Count++;
  2918. }
  2919. if (Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_TEST_TIMES)
  2920. {
  2921. Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
  2922. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
  2923. // 20.03.30 henry
  2924. Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD_v;
  2925. Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
  2926. Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
  2927. Module_Info.gfd_chk[1].Rfd_State = 0;
  2928. }
  2929. }
  2930. else
  2931. {
  2932. if ((Module_Info.gfd_chk[1].R_GFD_v <= (GFD_RESISTOR_PRE_WARNING * EVSE_MAX_OUTPUT_VOLTAGE)) && (Module_Info.gfd_chk[1].R_GFD_v > ((GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) + GFD_EXTRA_FAIL_RESISTOR)))
  2933. {
  2934. // 21.09.30 GFD action on above 200v
  2935. if (Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE)
  2936. {
  2937. Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
  2938. Module_Info.gfd_chk[1].Gfd_Warning_Count++;
  2939. }
  2940. if (Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_TEST_TIMES)
  2941. {
  2942. Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
  2943. Module_Info.gfd_chk[1].Rfd_State++;
  2944. }
  2945. }
  2946. else
  2947. {
  2948. Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
  2949. Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
  2950. Module_Info.gfd_chk[1].Rfd_State++;
  2951. }
  2952. }
  2953. break;
  2954. default:
  2955. if (Module_Info.gfd_chk[1].bResult_Gfd != GFD_FAIL)
  2956. Module_Info.gfd_chk[1].Rfd_State = 10;
  2957. break;
  2958. }
  2959. break;
  2960. default:
  2961. break;
  2962. }
  2963. if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
  2964. {
  2965. _delay = 100;
  2966. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  2967. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  2968. bRelayFeedback = 1;
  2969. }
  2970. vTaskDelay(_delay / portTICK_RATE_MS);
  2971. }
  2972. /* USER CODE END Gfd_Right_Task */
  2973. }
  2974. /* USER CODE BEGIN Header_SF_Test_Task */
  2975. /**
  2976. * @brief Function implementing the sf_test_Task thread.
  2977. * @param argument: Not used
  2978. * @retval None
  2979. */
  2980. /* USER CODE END Header_SF_Test_Task */
  2981. void SF_Test_Task(void const * argument)
  2982. {
  2983. /* USER CODE BEGIN SF_Test_Task */
  2984. /* Infinite loop */
  2985. uint16_t temp;
  2986. for (;;)
  2987. {
  2988. if (sf_t.SF_Config.SF_Act)
  2989. {
  2990. //Check AC voltage bit 0 ~ 2
  2991. //CheckACVoltage:
  2992. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  2993. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  2994. sf_t.SF_Config.SF_State++;
  2995. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  2996. sf_t.SF_Config.SF_State++;
  2997. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  2998. sf_t.SF_Config.SF_State++;
  2999. }else{
  3000. for (int n = 0; n < 3; n++)
  3001. {
  3002. printf("AC %d:%d\r\n",n,AC_Sine[n].Vrms_AVG);
  3003. if (AC_Sine[n].Vrms_AVG > 2200)
  3004. {temp = AC_Sine[n].Vrms_AVG - 2200;
  3005. }else{
  3006. temp = 2200 - AC_Sine[n].Vrms_AVG;
  3007. }
  3008. if (temp >= 200){
  3009. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3010. }else{
  3011. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3012. }
  3013. sf_t.SF_Config.SF_State++;
  3014. }
  3015. }
  3016. // Check SMR1_Voltage bit 3
  3017. //CheckSMR1Voltage:
  3018. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3019. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3020. sf_t.SF_Config.SF_State++;
  3021. }else{
  3022. printf("SMR1 V:%d\r\n",Module_Info.SMR1_Relay_V);
  3023. if (Module_Info.SMR1_Relay_V > 1500){
  3024. temp = Module_Info.SMR1_Relay_V - 1500;
  3025. }else{
  3026. temp = 1500 - Module_Info.SMR1_Relay_V;
  3027. }
  3028. if (temp >= 30){
  3029. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3030. }else{
  3031. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3032. }
  3033. sf_t.SF_Config.SF_State++;
  3034. }
  3035. // Check SMR2_Voltage bit 4
  3036. //CheckSMR2Voltage:
  3037. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3038. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3039. sf_t.SF_Config.SF_State++;
  3040. }else{
  3041. printf("SMR2 V:%d\r\n",Module_Info.SMR2_Relay_V);
  3042. if (Module_Info.SMR2_Relay_V > 1500)
  3043. temp = Module_Info.SMR2_Relay_V - 1500;
  3044. else
  3045. temp = 1500 - Module_Info.SMR2_Relay_V;
  3046. if (temp >= 30)
  3047. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3048. else
  3049. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3050. sf_t.SF_Config.SF_State++;
  3051. }
  3052. // Check SMR3_Voltage bit 5
  3053. //CheckSMR3Voltage:
  3054. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3055. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3056. sf_t.SF_Config.SF_State++;
  3057. }else{
  3058. printf("SMR3 V:%d\r\n",Module_Info.SMR3_Relay_V);
  3059. if (Module_Info.SMR3_Relay_V > 1500)
  3060. temp = Module_Info.SMR3_Relay_V - 1500;
  3061. else
  3062. temp = 1500 - Module_Info.SMR3_Relay_V;
  3063. if (temp >= 30)
  3064. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3065. else
  3066. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3067. sf_t.SF_Config.SF_State++;
  3068. }
  3069. // Check SMR4_Voltage bit 6
  3070. //CheckSMR4Voltage:
  3071. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3072. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3073. sf_t.SF_Config.SF_State++;
  3074. }else{
  3075. printf("SMR4V :%d\r\n",Module_Info.SMR4_Relay_V);
  3076. if (Module_Info.SMR4_Relay_V > 1500)
  3077. temp = Module_Info.SMR4_Relay_V - 1500;
  3078. else
  3079. temp = 1500 - Module_Info.SMR4_Relay_V;
  3080. if (temp >= 30)
  3081. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3082. else
  3083. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3084. sf_t.SF_Config.SF_State++;
  3085. }
  3086. // Check SMR5_Voltage bit 7
  3087. //CheckSMR5Voltage:
  3088. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3089. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3090. sf_t.SF_Config.SF_State++;
  3091. }else{
  3092. printf("SMR5 V:%d\r\n",Module_Info.SMR5_Relay_V);
  3093. if (Module_Info.SMR5_Relay_V > 1500)
  3094. temp = Module_Info.SMR5_Relay_V - 1500;
  3095. else
  3096. temp = 1500 - Module_Info.SMR5_Relay_V;
  3097. if (temp >= 30)
  3098. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3099. else
  3100. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3101. sf_t.SF_Config.SF_State++;
  3102. }
  3103. // Check SMR6_Voltage bit 8
  3104. //CheckSMR6Voltage:
  3105. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3106. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3107. sf_t.SF_Config.SF_State++;
  3108. }else{
  3109. printf("SMR6 V:%d\r\n",Module_Info.SMR6_Relay_V);
  3110. if (Module_Info.SMR6_Relay_V > 1500)
  3111. temp = Module_Info.SMR6_Relay_V - 1500;
  3112. else
  3113. temp = 1500 - Module_Info.SMR6_Relay_V;
  3114. if (temp >= 30)
  3115. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3116. else
  3117. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3118. sf_t.SF_Config.SF_State++;
  3119. }
  3120. // Check SMR6_Voltage bit 9
  3121. //CheckDCInVoltage:
  3122. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3123. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3124. sf_t.SF_Config.SF_State++;
  3125. }else{
  3126. printf("DC In1:%d\r\n",Module_Info.BAT_Voltage);
  3127. if (Module_Info.BAT_Voltage > 1500)
  3128. temp = Module_Info.BAT_Voltage - 1500;
  3129. else
  3130. temp = 1500 - Module_Info.BAT_Voltage;
  3131. if (temp >= 50)
  3132. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3133. else
  3134. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3135. sf_t.SF_Config.SF_State++;
  3136. }
  3137. //Check IO bit 10~32
  3138. //CheckIO:
  3139. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3140. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3141. sf_t.SF_Config.SF_State++;
  3142. }else{
  3143. nTestIO(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin, sf_t.SF_Config.SF_State++);
  3144. }
  3145. nTestIO(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3146. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3147. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3148. sf_t.SF_Config.SF_State++;
  3149. }else{
  3150. nTestIO(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin, sf_t.SF_Config.SF_State++);
  3151. }
  3152. nTestIO(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3153. nTestIO(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3154. nTestIO(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3155. nTestIO(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3156. nTestIO(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3157. nTestIO(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3158. nTestIO(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3159. nTestIO(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3160. nTestIO(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3161. nTestIO(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3162. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3163. if(CSRHB_VER == 1){
  3164. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3165. sf_t.SF_Config.SF_State++;
  3166. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3167. sf_t.SF_Config.SF_State++;
  3168. }else{
  3169. nTestIO(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3170. nTestIO(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3171. }
  3172. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3173. sf_t.SF_Config.SF_State++;
  3174. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3175. sf_t.SF_Config.SF_State++;
  3176. }else{
  3177. nTestIO(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
  3178. nTestIO(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
  3179. nTestIO(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin, sf_t.SF_Config.SF_State++);
  3180. nTestIO(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin, sf_t.SF_Config.SF_State++);
  3181. }
  3182. nTestEXT_INT(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, &EXTI_TestFlag1, sf_t.SF_Config.SF_State++);
  3183. nTestEXT_INT(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, &EXTI_TestFlag2, sf_t.SF_Config.SF_State++);
  3184. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3185. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3186. sf_t.SF_Config.SF_State++;
  3187. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3188. sf_t.SF_Config.SF_State++;
  3189. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3190. sf_t.SF_Config.SF_State++;
  3191. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3192. sf_t.SF_Config.SF_State++;
  3193. }else{
  3194. nTestEXT_INT(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, &EXTI_TestFlag3, sf_t.SF_Config.SF_State++);
  3195. nTestEXT_INT(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, &EXTI_TestFlag4, sf_t.SF_Config.SF_State++);
  3196. nTestEXT_INT(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, &EXTI_TestFlag5, sf_t.SF_Config.SF_State++);
  3197. nTestEXT_INT(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, &EXTI_TestFlag6, sf_t.SF_Config.SF_State++);
  3198. }
  3199. // Check SMR1_Current bit 33
  3200. //CheckSMR1Current:
  3201. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3202. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3203. sf_t.SF_Config.SF_State++;
  3204. }else{
  3205. printf("SMR1 C:%d\r\n",Module_Info.SMR1_Relay_C);
  3206. if (Module_Info.SMR1_Relay_C > 1180)
  3207. temp = Module_Info.SMR1_Relay_C - 1180;
  3208. else
  3209. temp = 1180 - Module_Info.SMR1_Relay_C;
  3210. // In Range( 118A +- 5A )
  3211. if (temp >= 50)
  3212. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3213. else
  3214. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3215. sf_t.SF_Config.SF_State++;
  3216. }
  3217. // Check SMR2_Current bit 34
  3218. //CheckSMR2Current:
  3219. if(nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3){
  3220. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3221. sf_t.SF_Config.SF_State++;
  3222. }else{
  3223. printf("SMR2 C:%d\r\n",Module_Info.SMR2_Relay_C);
  3224. if (Module_Info.SMR2_Relay_C > 1180)
  3225. temp = Module_Info.SMR2_Relay_C - 1180;
  3226. else
  3227. temp = 1180 - Module_Info.SMR2_Relay_C;
  3228. // In Range( 118A +- 5A )
  3229. if (temp >= 50)
  3230. sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
  3231. else
  3232. sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
  3233. sf_t.SF_Config.SF_State++;
  3234. }
  3235. //CheckFinish:
  3236. sf_t.SF_Config.SF_Act = 0; // Turn Off
  3237. if (sf_t.SF_Config.data.value > 0)
  3238. {
  3239. sf_t.SF_Config.SF_test_status = 0; // Fail
  3240. }
  3241. else
  3242. {
  3243. sf_t.SF_Config.SF_test_status = 1; // Pass
  3244. }
  3245. }
  3246. osDelay(1);
  3247. }
  3248. /* USER CODE END SF_Test_Task */
  3249. }
  3250. /* USER CODE BEGIN Header_LedTask */
  3251. /**
  3252. * @brief Function implementing the _ledTask_ thread.
  3253. * @param argument: Not used
  3254. * @retval None
  3255. */
  3256. /* USER CODE END Header_LedTask */
  3257. void LedTask(void const * argument)
  3258. {
  3259. /* USER CODE BEGIN LedTask */
  3260. /* Infinite loop */
  3261. for (;;)
  3262. {
  3263. if (dir == 0)
  3264. {
  3265. if (pwmVal < 500)
  3266. {
  3267. if (GainCaliFlag)
  3268. pwmVal++;
  3269. else
  3270. pwmVal += 20;
  3271. __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_2, pwmVal);
  3272. }
  3273. else
  3274. {
  3275. dir = 1;
  3276. if (GainCaliFlag)
  3277. osDelay(400);
  3278. else
  3279. osDelay(100);
  3280. }
  3281. }
  3282. else
  3283. {
  3284. if (pwmVal > 0)
  3285. {
  3286. if (GainCaliFlag)
  3287. pwmVal--;
  3288. else
  3289. pwmVal -= 20;
  3290. __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_2, pwmVal);
  3291. }
  3292. else
  3293. {
  3294. dir = 0;
  3295. if (GainCaliFlag)
  3296. osDelay(400);
  3297. else
  3298. osDelay(100);
  3299. }
  3300. }
  3301. osDelay(1);
  3302. }
  3303. /* USER CODE END LedTask */
  3304. }
  3305. /* USER CODE BEGIN Header_canTask */
  3306. /**
  3307. * @brief Function implementing the CANTask thread.
  3308. * @param argument: Not used
  3309. * @retval None
  3310. */
  3311. /* USER CODE END Header_canTask */
  3312. void canTask(void const * argument)
  3313. {
  3314. /* USER CODE BEGIN canTask */
  3315. CAN1_sFilterConfig.FilterBank = 0;
  3316. CAN1_sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
  3317. CAN1_sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
  3318. // CAN1_sFilterConfig.FilterIdHigh =(0x0450 << 3) >> 16;
  3319. // CAN1_sFilterConfig.FilterIdLow = (0x0450 << 3) | CAN_ID_EXT;
  3320. // CAN1_sFilterConfig.FilterMaskIdHigh =(0x0450 << 3) >> 16;
  3321. // CAN1_sFilterConfig.FilterMaskIdLow =(0x0450 << 3) ;
  3322. CAN1_sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
  3323. CAN1_sFilterConfig.FilterActivation = ENABLE;
  3324. CAN1_sFilterConfig.SlaveStartFilterBank = 0;
  3325. if(HAL_CAN_ConfigFilter(&hcan1, &CAN1_sFilterConfig) != HAL_OK)
  3326. {
  3327. #ifdef DEBUG
  3328. DEBUG_ERROR("CAN1 filter initialization fail...\r\n");
  3329. #endif
  3330. /* Filter configuration Error */
  3331. Error_Handler();
  3332. }
  3333. if (HAL_CAN_Start(&hcan1) != HAL_OK)
  3334. {
  3335. #ifdef DEBUG
  3336. DEBUG_ERROR("CAN1 start fail...\r\n");
  3337. #endif
  3338. /* Start Error */
  3339. Error_Handler();
  3340. }
  3341. if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING) != HAL_OK)
  3342. {
  3343. #ifdef DEBUG
  3344. DEBUG_ERROR("CAN1 activateNotification fail...\r\n");
  3345. #endif
  3346. /* Notification Error */
  3347. Error_Handler();
  3348. }
  3349. //CAN1_RX_EndFlag = 1; for 2 board can test
  3350. /* Infinite loop */
  3351. for(;;)
  3352. {
  3353. if(CAN1_RX_EndFlag){
  3354. if(HAL_CAN_GetTxMailboxesFreeLevel( &hcan1 ) != 0){
  3355. CAN1_TxHeader.ExtId = 0x456;
  3356. CAN1_TxHeader.IDE = CAN_ID_EXT; // IDE = CAN_ID_EXT means Extended ID message.
  3357. //CAN1_TxHeader.SRR = 0; //stm32 hal lib not .SRR
  3358. CAN1_TxHeader.RTR = 0; // Not an RTR message.
  3359. CAN1_TxHeader.DLC = 1; // Send one byte of data.
  3360. CAN1_TxData[0] = 0xAA;
  3361. // CAN1_TxData[1] = 0x22;
  3362. // CAN1_TxData[2] = 0x33;
  3363. // CAN1_TxData[3] = 0x44;
  3364. // CAN1_TxData[4] = 0x55;
  3365. // CAN1_TxData[5] = 0x66;
  3366. // CAN1_TxData[6] = 0x77;
  3367. // CAN1_TxData[7] +=1;
  3368. if (HAL_CAN_AddTxMessage(&hcan1, &CAN1_TxHeader, CAN1_TxData, &CAN1_TxMailbox) != HAL_OK)
  3369. {
  3370. Error_Handler();
  3371. }
  3372. CAN1_RX_EndFlag = 0;
  3373. // osDelay(1000);
  3374. }
  3375. }
  3376. // osDelay(1000);
  3377. // if(HAL_CAN_GetTxMailboxesFreeLevel( &hcan1 ) != 0){
  3378. // CAN1_TxHeader.ExtId = 0x123;
  3379. // CAN1_TxHeader.IDE = CAN_ID_EXT; // IDE = CAN_ID_EXT means Extended ID message.
  3380. // //CAN1_TxHeader.SRR = 0; //stm32 hal lib not .SRR
  3381. // CAN1_TxHeader.RTR = 0; // Not an RTR message.
  3382. // CAN1_TxHeader.DLC = 8; // Send one byte of data.
  3383. // CAN1_TxData[0] = 0xAA;
  3384. // CAN1_TxData[1] = 0xBB;
  3385. // CAN1_TxData[2] = 0xCC;
  3386. // CAN1_TxData[3] = 0xDD;
  3387. // CAN1_TxData[4] = 0xEE;
  3388. // CAN1_TxData[5] = 0xFF;
  3389. // CAN1_TxData[6] = 0x11;
  3390. // CAN1_TxData[7] = 0x22;
  3391. // if (HAL_CAN_AddTxMessage(&hcan1, &CAN1_TxHeader, CAN1_TxData, &CAN1_TxMailbox) != HAL_OK)
  3392. // {
  3393. // Error_Handler();
  3394. // }
  3395. // }
  3396. osDelay(1);
  3397. }
  3398. /* USER CODE END canTask */
  3399. }
  3400. /* Private application code --------------------------------------------------*/
  3401. /* USER CODE BEGIN Application */
  3402. /**
  3403. * @brief Sets the selected data port bits.
  3404. * @param GPIOx: where x can be (A..G) to select the GPIO peripheral.
  3405. * @param GPIO_Pin: specifies the port bits to be written.
  3406. * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
  3407. * @retval None
  3408. */
  3409. // void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
  3410. //{
  3411. // /* Check the parameters */
  3412. // assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
  3413. // assert_param(IS_GPIO_PIN(GPIO_Pin));
  3414. //
  3415. // GPIOx->BSRR = GPIO_Pin;
  3416. // }
  3417. /**
  3418. * @brief Clears the selected data port bits.
  3419. * @param GPIOx: where x can be (A..G) to select the GPIO peripheral.
  3420. * @param GPIO_Pin: specifies the port bits to be written.
  3421. * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
  3422. * @retval None
  3423. */
  3424. // void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
  3425. //{
  3426. // /* Check the parameters */
  3427. // assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
  3428. // assert_param(IS_GPIO_PIN(GPIO_Pin));
  3429. //
  3430. // GPIOx->BRR = GPIO_Pin;
  3431. // }
  3432. void nTestIO(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem)
  3433. {
  3434. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
  3435. HAL_Delay(Multi_Relay_Delay_Time);
  3436. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_RESET)
  3437. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3438. else{
  3439. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3440. return;
  3441. }
  3442. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
  3443. HAL_Delay(Multi_Relay_Delay_Time);
  3444. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_SET)
  3445. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3446. else
  3447. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3448. }
  3449. void nTestIO1(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem)
  3450. {
  3451. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
  3452. HAL_Delay(Multi_Relay_Delay_Time);
  3453. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_SET)
  3454. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3455. else{
  3456. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3457. return;
  3458. }
  3459. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
  3460. HAL_Delay(Multi_Relay_Delay_Time);
  3461. if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_RESET)
  3462. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3463. else
  3464. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3465. }
  3466. void nTestEXT_INT(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin,uint8_t *flag,uint8_t nItem)
  3467. {
  3468. *flag = 0;
  3469. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
  3470. HAL_Delay(Multi_Relay_Delay_Time);
  3471. if(*flag){
  3472. sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
  3473. }else{
  3474. sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
  3475. }
  3476. HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
  3477. HAL_Delay(Multi_Relay_Delay_Time);
  3478. }
  3479. uint8_t isValidCheckSum(void)
  3480. {
  3481. uint8_t result = OFF;
  3482. uint8_t chksum = 0x00;
  3483. if (uart_rx_buffer[0] == PROTOCOL_HEAD)
  3484. {
  3485. for (int idx = 0; idx < (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)); idx++)
  3486. {
  3487. chksum ^= uart_rx_buffer[(6 + idx)];
  3488. }
  3489. if (chksum == uart_rx_buffer[(6 + (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)))])
  3490. result = ON;
  3491. }
  3492. return result;
  3493. }
  3494. // two points
  3495. void CLC_Corr_Gain_Par(uint16_t SpecData_H, uint16_t SpecData_L, uint16_t MCUData_H, uint16_t MCUData_L, float *GainA, float *GainB)
  3496. {
  3497. *GainA = (float)((float)(SpecData_H - SpecData_L) / (float)(MCUData_H - MCUData_L));
  3498. *GainB = (float)(SpecData_H - (float)(*GainA * MCUData_H));
  3499. }
  3500. // three points
  3501. uint16_t acVolCalWithGain(uint16_t orgValue, uint8_t phase)
  3502. {
  3503. uint16_t result = 0;
  3504. if ((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) &&
  3505. (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]) &&
  3506. (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))
  3507. {
  3508. // If denominator not equal 0, calculate orgValue with Lagrange polynomial
  3509. result = (uint16_t)((((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][METER_DATA] +
  3510. (((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][METER_DATA] +
  3511. (((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][METER_DATA]);
  3512. }
  3513. else
  3514. {
  3515. // If denominator equal 0, pass orgValue as result
  3516. result = orgValue;
  3517. }
  3518. return result;
  3519. }
  3520. void CSRHB_Ver_Check(void)
  3521. {
  3522. CSRHB_VER = 0;
  3523. CSRHB_VER = HAL_GPIO_ReadPin(CSRHB_VER_GPIO_Port, CSRHB_VER_Pin);
  3524. printf("CSRHB%s\n\r", CSRHB_VER ? "00 Rev02 (5 Relay)":"01 Rev01 (6 Relay)");
  3525. }
  3526. void IOdebug(void)
  3527. {
  3528. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_SET);
  3529. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_SET);
  3530. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_SET);
  3531. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_SET);
  3532. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_SET);
  3533. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_SET);
  3534. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_SET);
  3535. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_SET);
  3536. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_SET);
  3537. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_SET);
  3538. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_SET);
  3539. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_SET);
  3540. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_SET);
  3541. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_SET);
  3542. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_SET);
  3543. HAL_GPIO_WritePin(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, GPIO_PIN_SET);
  3544. HAL_GPIO_WritePin(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, GPIO_PIN_SET);
  3545. HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
  3546. HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
  3547. osDelay(200);
  3548. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  3549. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  3550. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  3551. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  3552. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  3553. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  3554. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  3555. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  3556. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  3557. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  3558. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  3559. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  3560. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  3561. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  3562. // printf("RELAY ON:%llx\r\n", Module_Info.Relay_Status.All);
  3563. printf("RELAY ON:S1:%x S2:%x S3:%x S4:%x\r\n",Module_Info.Relay_Status.Status[0],Module_Info.Relay_Status.Status[1],Module_Info.Relay_Status.Status[2],Module_Info.Relay_Status.Status[3]);
  3564. printf("RELAY ON:S5:%x S6:%x S7:%x\r\n\r\n",Module_Info.Relay_Status.Status[4],Module_Info.Relay_Status.Status[5],Module_Info.Relay_Status.Status[6]);
  3565. osDelay(1800);
  3566. HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3567. HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3568. HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3569. HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3570. HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3571. HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3572. HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3573. HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3574. HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3575. HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3576. HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_RESET);
  3577. HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_RESET);
  3578. HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_RESET);
  3579. HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_RESET);
  3580. HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
  3581. HAL_GPIO_WritePin(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, GPIO_PIN_RESET);
  3582. HAL_GPIO_WritePin(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, GPIO_PIN_RESET);
  3583. HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
  3584. HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
  3585. osDelay(200);
  3586. Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
  3587. Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
  3588. Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
  3589. Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
  3590. Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
  3591. Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
  3592. Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
  3593. Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
  3594. Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
  3595. Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
  3596. Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
  3597. Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
  3598. Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
  3599. Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
  3600. // printf("RELAY OFF:%llx\r\n", Module_Info.Relay_Status.All);
  3601. printf("RELAY OFF:S1:%x S2:%x S3:%x S4:%x\r\n",Module_Info.Relay_Status.Status[0],Module_Info.Relay_Status.Status[1],Module_Info.Relay_Status.Status[2],Module_Info.Relay_Status.Status[3]);
  3602. printf("RELAY OFF:S5:%x S6:%x S7:%x\r\n\r\n",Module_Info.Relay_Status.Status[4],Module_Info.Relay_Status.Status[5],Module_Info.Relay_Status.Status[6]);
  3603. osDelay(1800);
  3604. }
  3605. /* USER CODE END Application */