/* USER CODE BEGIN Header */
/**
******************************************************************************
* File Name : freertos.c
* Description : Code for freertos applications
******************************************************************************
* @attention
*
*
© Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "FreeRTOS.h"
#include "task.h"
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include
#include "adc.h"
#include "crc.h"
#include "flash_if.h"
#include "sine.h"
#include "usart.h"
#include "tim.h"
#include "can.h"
#include "math.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define PROTOCOL_HEAD 0xaa
#define PROTOCOL_ADDR (nBoard_Addr) // 0x01:AUX PWR 0x02: FAN BD 0x03:RLY BD 0xff:Any
#define PROTOCOL_ADDR_BROADCAST 0xff
#define PROTOCOL_MESSAGE_QUERY_FW_VER 0x01
#define PROTOCOL_MESSAGE_QUERY_HW_VER 0x02
#define PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE 0x03
#define PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE 0x04
#define PROTOCOL_MESSAGE_QUERY_FAN_SPEED 0x05
#define PROTOCOL_MESSAGE_QUERY_TEMPERATURE 0x06
#define PROTOCOL_MESSAGE_QUERY_AUX_POWER_VOLTAGE 0x07
#define PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE 0x09
#define PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS 0x0A
#define PROTOCOL_MESSAGE_QUERY_ALARM_LOG 0x22
#define PROTOCOL_MESSAGE_QUERY_SN 0x23
#define PROTOCOL_MESSAGE_QUERY_MODEL_NAME 0x24
#define PROTOCOL_MESSAGE_QUERY_PARAMETER 0x25
#define PROTOCOL_MESSAGE_QUERY_ALARM_CODE 0x29
#define PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN 0x38
#define PROTOCOL_MESSAGE_QUERY_OUTPUT_RELAY_OUTPUT_STATUS 0x3A
#define PROTOCOL_MESSAGE_QUERY_BRIDGE_RELAY_OUTPUT_STATUS 0x3B
#define PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS 0x3C
#define PROTOCOL_MESSAGE_CONFIG_FAN_SPEED 0x81
#define PROTOCOL_MESSAGE_CONFIG_SN 0x82
#define PROTOCOL_MESSAGE_CONFIG_MODEL_NAME 0x83
#define PROTOCOL_MESSAGE_CONFIG_PARAMETER 0x84
#define PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT 0x86
#define PROTOCOL_MESSAGE_CONFIG_GFD_VALUE 0x8B
#define PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST 0x92
#define PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT 0x98
#define PROTOCOL_MESSAGE_CONFIG_BRIDGE_RELAY_OUTPUT 0x99
#define PROTOCOL_MESSAGE_CONFIG_GFD_MODE 0x9F
#define PROTOCOL_MESSAGE_UPGRADE_START 0xe0
#define PROTOCOL_MESSAGE_UPGRADE_ABOARD 0xe1
#define PROTOCOL_MESSAGE_UPGRADE_TRANS 0xe2
#define PROTOCOL_MESSAGE_UPGRADE_STOP 0xe3
#define USER_MESSAGE_QUERY_SENSE_GFD 0xF1
#define USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE 0xF2
#define Multi_Relay_Delay_Time 200 //unit:ms
#define WeldingCMDDelay 10 //unit:100ms
#define BridgeBoard (nBoard_Addr == MainBridge1 || nBoard_Addr == MainBridge2 || nBoard_Addr == MainBridge3 || nBoard_Addr == MainBridge4)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN Variables */
// RB v4.0
// const uint32_t mem_def_data[20]={0xaf00984, 0x89807f9, 0x64005d5, 0xaf00989, 0x8980802, \
// 0x64005da, 0xaf00986, 0x8980800, 0x64005db, 0x251c2516,
// 0x5dc05e5, 0x251c250f,0x5dc05dd, 0x128e12c0, 0x3b604ae,
// 0x128e1284, 0x3b604a4, 0, 0, 0 };
// RB v4.0 (base on the situation of removing diode condition.)
//L1~L3 SMR1~SMR6 GFD-L~FGD-R
const uint32_t mem_def_data[27] = {0x0AEF0A2B, 0x08960800, 0x063F05D4, //L1 3 point
0x0AEF0A29, 0x089607FF, 0x063F05D3, //L2 3 point
0x0AEF0A29, 0x08960802, 0x063F05D5, //L3 3 point
0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR1,SMR2 DCV 2 point
0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR3,SMR4 DCV 2 point
0x251C2505, 0x05DC05DD, 0x251C250F, 0x05DC05DB, //SMR5,SMR6 DCV 2 point
0x128E13E4, 0x03B604CF, 0x128E139D, 0x03B604D0, //LGFD,RGFD 2 point
0x251C2505, 0x05DC05DD //DC IN 2 point
};
__IO uint32_t flashdestination;
__IO uint32_t newdestination;
//uint8_t test;
uint8_t test[8];
uint8_t CSRHB_VER;
/* USER CODE END Variables */
osThreadId defaultTaskHandle;
osThreadId uart1TaskHandle;
osThreadId adc1TaskHandle;
osThreadId adc2TaskHandle;
osThreadId adc3TaskHandle;
osThreadId gpioTaskHandle;
osThreadId memoryTaskHandle;
osThreadId InkeyTaskHandle;
osThreadId gfd_left_TaskHandle;
osThreadId gfd_right_TaskHandle;
osThreadId sf_test_TaskHandle;
osThreadId _ledTask_Handle;
osThreadId CANTaskHandle;
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN FunctionPrototypes */
void CSRHB_Ver_Check(void);
uint8_t isValidCheckSum(void);
void CLC_Corr_Gain_Par(uint16_t SpecData_H, uint16_t SpecData_L, uint16_t MCUData_H, uint16_t MCUData_L, float *GainA, float *GainB);
uint16_t acVolCalWithGain(uint16_t orgValue, uint8_t phase);
void nTestIO(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
void nTestIO1(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
void nTestEXT_INT(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, uint8_t *flag, uint8_t nItem);
void nTestIO_2(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin,
GPIO_TypeDef *GPIO_out2_port, uint16_t GPIO_out2_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem);
void IOdebug(void);
void CalcuteGFDMaxMinValue(uint8_t gunindex);
void SetGfdMode(void);
void UartCMDtest(void);
/* USER CODE END FunctionPrototypes */
void StartDefaultTask(void const * argument);
void Uart1Task(void const * argument);
void Adc1Task(void const * argument);
void Adc2Task(void const * argument);
void Adc3Task(void const * argument);
void GpioTask(void const * argument);
void MemoryTask(void const * argument);
void Inkey_Task(void const * argument);
void Gfd_Left_Task(void const * argument);
void Gfd_Right_Task(void const * argument);
void SF_Test_Task(void const * argument);
void LedTask(void const * argument);
void canTask(void const * argument);
void MX_FREERTOS_Init(void); /* (MISRA C 2004 rule 8.1) */
/* GetIdleTaskMemory prototype (linked to static allocation support) */
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize );
/* USER CODE BEGIN GET_IDLE_TASK_MEMORY */
static StaticTask_t xIdleTaskTCBBuffer;
static StackType_t xIdleStack[configMINIMAL_STACK_SIZE];
void vApplicationGetIdleTaskMemory(StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize)
{
*ppxIdleTaskTCBBuffer = &xIdleTaskTCBBuffer;
*ppxIdleTaskStackBuffer = &xIdleStack[0];
*pulIdleTaskStackSize = configMINIMAL_STACK_SIZE;
/* place for user code */
}
/* USER CODE END GET_IDLE_TASK_MEMORY */
/**
* @brief FreeRTOS initialization
* @param None
* @retval None
*/
void MX_FREERTOS_Init(void) {
/* USER CODE BEGIN Init */
// Version info configuration
memset(&Module_Info.Soft_Ver_Ptr[0], 0x00, ARRAY_SIZE(Module_Info.Soft_Ver_Ptr));
memset(&Module_Info.Hard_Ver_Ptr[0], 0x00, ARRAY_SIZE(Module_Info.Hard_Ver_Ptr));
sprintf((char *)Module_Info.Soft_Ver_Ptr, "T1.03.R3");
if(nBoard_Addr == MainRelay1){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_1 ");
}else if(nBoard_Addr == MainRelay2){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_2 ");
}else if(nBoard_Addr == GunRelay){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHO_G ");
}else if(nBoard_Addr == MainBridge1){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_1 ");
}else if(nBoard_Addr == MainBridge2){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_2 ");
}else if(nBoard_Addr == MainBridge3){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_3 ");
}else if(nBoard_Addr == MainBridge4){
sprintf((char *)Module_Info.Hard_Ver_Ptr, "CSRHB_4 ");
}else{
sprintf((char *)Module_Info.Hard_Ver_Ptr, "Undefine");
}
/* USER CODE END Init */
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadDef(defaultTask, StartDefaultTask, osPriorityIdle, 0, 128);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* definition and creation of uart1Task */
osThreadDef(uart1Task, Uart1Task, osPriorityAboveNormal, 0, 1024);
uart1TaskHandle = osThreadCreate(osThread(uart1Task), NULL);
/* definition and creation of adc1Task */
osThreadDef(adc1Task, Adc1Task, osPriorityNormal, 0, 512);
adc1TaskHandle = osThreadCreate(osThread(adc1Task), NULL);
/* definition and creation of adc2Task */
osThreadDef(adc2Task, Adc2Task, osPriorityNormal, 0, 1024);
adc2TaskHandle = osThreadCreate(osThread(adc2Task), NULL);
/* definition and creation of adc3Task */
osThreadDef(adc3Task, Adc3Task, osPriorityNormal, 0, 256);
adc3TaskHandle = osThreadCreate(osThread(adc3Task), NULL);
/* definition and creation of gpioTask */
osThreadDef(gpioTask, GpioTask, osPriorityNormal, 0, 256);
gpioTaskHandle = osThreadCreate(osThread(gpioTask), NULL);
/* definition and creation of memoryTask */
osThreadDef(memoryTask, MemoryTask, osPriorityIdle, 0, 256);
memoryTaskHandle = osThreadCreate(osThread(memoryTask), NULL);
/* definition and creation of InkeyTask */
// osThreadDef(InkeyTask, Inkey_Task, osPriorityAboveNormal, 0, 128);
// InkeyTaskHandle = osThreadCreate(osThread(InkeyTask), NULL);
/* definition and creation of gfd_left_Task */
osThreadDef(gfd_left_Task, Gfd_Left_Task, osPriorityAboveNormal, 0, 256);
gfd_left_TaskHandle = osThreadCreate(osThread(gfd_left_Task), NULL);
/* definition and creation of gfd_right_Task */
osThreadDef(gfd_right_Task, Gfd_Right_Task, osPriorityAboveNormal, 0, 256);
gfd_right_TaskHandle = osThreadCreate(osThread(gfd_right_Task), NULL);
/* definition and creation of sf_test_Task */
osThreadDef(sf_test_Task, SF_Test_Task, osPriorityNormal, 0, 128);
sf_test_TaskHandle = osThreadCreate(osThread(sf_test_Task), NULL);
/* definition and creation of _ledTask_ */
osThreadDef(_ledTask_, LedTask, osPriorityIdle, 0, 128);
_ledTask_Handle = osThreadCreate(osThread(_ledTask_), NULL);
/* definition and creation of CANTask */
osThreadDef(CANTask, canTask, osPriorityAboveNormal, 0, 256);
CANTaskHandle = osThreadCreate(osThread(CANTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
}
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const * argument)
{
/* USER CODE BEGIN StartDefaultTask */
/* Infinite loop */
printf("FW Ver:%s\n\r", Module_Info.Soft_Ver_Ptr);
printf("PCB Define:%s\n\r", Module_Info.Hard_Ver_Ptr);
CSRHB_Ver_Check();
Gfd.IsolationVoltage = 5000;
printf("Initial IsolationVoltage:%dV\n\r",Gfd.IsolationVoltage/10);
for (;;)
{
if (bRelayFeedback == 1)
{
bRelayFeedback = 0;
Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
}
#if (DEBUG_PRINTF == 1)
Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
printf("Relay Set = %014llx \n\r",Module_Info.Relay_IO.All);
printf("Relay Status = %014llx \n\r\n\r",Module_Info.Relay_Status.All);
printf("Dip_Switch = %d \n\r", Module_Info.gfd_chk[1].R_GFD_v);
printf(" ADC1 = %d ADC2 = %d ADC3 = %d ADC4 = %d ADC5 = %d \n\r", adc_value.ADC1_IN0.value,
adc_value.ADC1_IN1.value,adc_value.ADC1_IN2.value,adc_value.ADC1_IN3.value,adc_value.ADC1_IN4.value);
printf(" ADC6 = %d ADC7 = %d ADC8 = %d ADC9 = %d \n\r", adc_value.ADC1_IN5.value,
adc_value.ADC1_IN6.value,adc_value.ADC1_IN7.value,adc_value.ADC1_IN8.value);
printf("SMR6 = %d \n\r",Module_Info.SMR6_Relay_V);
printf(" CT1 = %d , CT2 = %d , ADC_1 = %f, ADC_2 = %f \n\r", Module_Info.SMR1_Relay_C,
Module_Info.SMR2_Relay_C, c_vadc[0], c_vadc[1]); // 100A = 1000
vTaskDelay(2000 / portTICK_RATE_MS);
#else
osDelay(1);
#endif
}
/* USER CODE END StartDefaultTask */
}
/* USER CODE BEGIN Header_Uart1Task */
/**
* @brief Function implementing the uart1Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Uart1Task */
void Uart1Task(void const * argument)
{
/* USER CODE BEGIN Uart1Task */
/* Infinite loop */
uint8_t tx[UART_BUFFER_SIZE];
uint8_t tx_len;
uint8_t chksum = 0;
uint8_t endFlag[4] = {0x55, 0xaa, 0x55, 0xaa};
uint32_t flash, crc32;
uint16_t temp;
uint16_t nSMR1_Sense, nSMR2_Sense, nSMR3_Sense,nSMR4_Sense,nSMR5_Sense,nSMR6_Sense,nVer165, SMR1_Gfd_Sense, SMR2_Gfd_Sense;
// uint16_t delay = 100;
for (;;)
{
UartCMDtest();
if (uart_recv_end_flag == 1)
{
// printf(" %x %x %x %x %x %x\n\r", uart_rx_buffer[0],uart_rx_buffer[1],uart_rx_buffer[2],uart_rx_buffer[3],uart_rx_buffer[4],uart_rx_buffer[5]);
chksum = 0;
if ((uart_rx_buffer[2] == PROTOCOL_ADDR) || (uart_rx_buffer[2] == PROTOCOL_ADDR_BROADCAST))
{
if (isValidCheckSum() == ON)
{
switch (uart_rx_buffer[3])
{
case USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE:
tx_len = 35;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = USER_MESSAGE_QUERY_SENSE_DC_VOLTAGE;
tx[4] = 28;
tx[5] = 0;
tx[6] = ((Module_Info.SMR1_Relay_C >> 0) & 0xff);
tx[7] = ((Module_Info.SMR1_Relay_C >> 8) & 0xff);
tx[8] = ((Module_Info.SMR2_Relay_C >> 0) & 0xff);
tx[9] = ((Module_Info.SMR2_Relay_C >> 8) & 0xff);
tx[10] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
tx[11] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
tx[12] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
tx[13] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
tx[14] = ((Module_Info.SMR3_Relay_V >> 0) & 0xff);
tx[15] = ((Module_Info.SMR3_Relay_V >> 8) & 0xff);
tx[16] = ((Module_Info.SMR4_Relay_V >> 0) & 0xff);
tx[17] = ((Module_Info.SMR4_Relay_V >> 8) & 0xff);
tx[18] = ((Module_Info.SMR5_Relay_V >> 0) & 0xff);
tx[19] = ((Module_Info.SMR5_Relay_V >> 8) & 0xff);
tx[20] = ((Module_Info.SMR6_Relay_V >> 0) & 0xff);
tx[21] = ((Module_Info.SMR6_Relay_V >> 8) & 0xff);
nSMR1_Sense = (uint16_t)adc_value.ADC1_IN0.value;
nSMR2_Sense = (uint16_t)adc_value.ADC1_IN2.value;
nSMR3_Sense = (uint16_t)adc_value.ADC1_IN5.value;
nSMR4_Sense = (uint16_t)adc_value.ADC1_IN6.value;
nSMR5_Sense = (uint16_t)adc_value.ADC1_IN7.value;
nSMR6_Sense = (uint16_t)adc_value.ADC1_IN8.value;
tx[22] = ((nSMR1_Sense >> 0) & 0xff);
tx[23] = ((nSMR1_Sense >> 8) & 0xff);
tx[24] = ((nSMR2_Sense >> 0) & 0xff);
tx[25] = ((nSMR2_Sense >> 8) & 0xff);
tx[26] = ((nSMR3_Sense >> 0) & 0xff);
tx[27] = ((nSMR3_Sense >> 8) & 0xff);
tx[28] = ((nSMR4_Sense >> 0) & 0xff);
tx[29] = ((nSMR4_Sense >> 8) & 0xff);
tx[30] = ((nSMR5_Sense >> 0) & 0xff);
tx[31] = ((nSMR5_Sense >> 8) & 0xff);
tx[32] = ((nSMR6_Sense >> 0) & 0xff);
tx[33] = ((nSMR6_Sense >> 8) & 0xff);
//tx[18] = ((Module_Info.BAT_Voltage >> 0) & 0xff);
//tx[19] = ((Module_Info.BAT_Voltage >> 8) & 0xff);
//tx[20] = ((nBat1_Sense >> 0) & 0xff);
//tx[21] = ((nBat1_Sense >> 8) & 0xff);
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[34] = chksum;
break;
case USER_MESSAGE_QUERY_SENSE_GFD:
tx_len = 29;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = USER_MESSAGE_QUERY_SENSE_GFD;
tx[4] = 22;
tx[5] = 0x00;
if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
{
tx[6] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
tx[7] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 8) & 0xff);
tx[8] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 0) & 0xff);
tx[9] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 8) & 0xff);
tx[11] = Module_Info.gfd_chk[0].Rfd_State_Fail;
}
else
{
tx[6] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
tx[7] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 8) & 0xff);
tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
tx[11] = Module_Info.gfd_chk[0].Rfd_State;
}
tx[10] = Module_Info.gfd_chk[0].bResult_Gfd;
if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
{
tx[12] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
tx[13] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 8) & 0xff);
tx[14] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 0) & 0xff);
tx[15] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 8) & 0xff);
tx[17] = Module_Info.gfd_chk[1].Rfd_State_Fail;
}
else
{
tx[12] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
tx[13] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 8) & 0xff);
tx[14] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
tx[15] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
tx[17] = Module_Info.gfd_chk[1].Rfd_State;
}
tx[16] = Module_Info.gfd_chk[1].bResult_Gfd;
// Verf_165
nVer165 = (uint16_t)(Module_Info.Vref_165 * 100.0);
tx[18] = ((nVer165 >> 0) & 0xff);
tx[19] = ((nVer165 >> 8) & 0xff);
SMR1_Gfd_Sense = (uint16_t)(Module_Info.SMR_Gfd_Sense[0] * 100.0);
SMR2_Gfd_Sense = (uint16_t)(Module_Info.SMR_Gfd_Sense[1] * 100.0);
// SMR1_Gfd_Diff = (uint16_t)(Module_Info.SMR_Gfd_Diff[0] * 100.0);
// SMR2_Gfd_Diff = (uint16_t)(Module_Info.SMR_Gfd_Diff[1] * 100.0);
tx[20] = ((SMR1_Gfd_Sense >> 0) & 0xff);
tx[21] = ((SMR1_Gfd_Sense >> 8) & 0xff);
tx[22] = ((SMR2_Gfd_Sense >> 0) & 0xff);
tx[23] = ((SMR2_Gfd_Sense >> 8) & 0xff);
// tx[24] = ((SMR1_Gfd_Diff >> 0) & 0xff);
// tx[25] = ((SMR1_Gfd_Diff >> 8) & 0xff);
// tx[26] = ((SMR2_Gfd_Diff >> 0) & 0xff);
// tx[27] = ((SMR2_Gfd_Diff >> 8) & 0xff);
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[28] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_FW_VER:
tx_len = 15;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_FW_VER;
tx[4] = 0x08;
tx[5] = 0x00;
for (int idx = 0; idx < 8; idx++)
tx[(6 + idx)] = Module_Info.Soft_Ver_Ptr[idx];
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
chksum ^= tx[(6 + idx)];
tx[14] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_HW_VER:
tx_len = 15;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_HW_VER;
tx[4] = 0x08;
tx[5] = 0x00;
for (int idx = 0; idx < 8; idx++)
tx[(6 + idx)] = Module_Info.Hard_Ver_Ptr[idx];
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
chksum ^= tx[(6 + idx)];
tx[14] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE:
tx_len = 14;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_PRESENT_INPUT_VOLTAGE;
tx[4] = 0x07;
tx[5] = 0x00;
tx[6] = 0;
tx[7] = ((AC_Sine[0].Vrms_AVG >> 0) & 0xff);
tx[8] = ((AC_Sine[0].Vrms_AVG >> 8) & 0xff);
tx[9] = ((AC_Sine[1].Vrms_AVG >> 0) & 0xff);
tx[10] = ((AC_Sine[1].Vrms_AVG >> 8) & 0xff);
tx[11] = ((AC_Sine[2].Vrms_AVG >> 0) & 0xff);
tx[12] = ((AC_Sine[2].Vrms_AVG >> 8) & 0xff);
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
chksum ^= tx[6 + idx];
tx[13] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN:
tx_len = 11;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_BATTERY_VOLTAGE_IN;
tx[4] = 0x04;
tx[5] = 0x00;
tx[6] = ((Module_Info.BAT_Voltage>>0) & 0xff);
tx[7] = ((Module_Info.BAT_Voltage>>8) & 0xff);
tx[8] = tx[9] = 0;
for(int idx=0;idx<(tx[4] | (tx[5]<<8));idx++)
{
chksum ^= tx[6 + idx];
}
tx[10] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE:
tx_len = 23;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_PRESENT_OUTPUT_VOLTAGE;
tx[4] = 16;
tx[5] = 0x00;
tx[6] = ((Module_Info.SMR1_Relay_C >> 0) & 0xff);
tx[7] = ((Module_Info.SMR1_Relay_C >> 8) & 0xff);
tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
tx[10] = ((Module_Info.SMR2_Relay_C >> 0) & 0xff);
tx[11] = ((Module_Info.SMR2_Relay_C >> 8) & 0xff);
tx[12] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
tx[13] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
tx[14] = ((Module_Info.SMR3_Relay_V >> 0) & 0xff);
tx[15] = ((Module_Info.SMR3_Relay_V >> 8) & 0xff);
tx[16] = ((Module_Info.SMR4_Relay_V >> 0) & 0xff);
tx[17] = ((Module_Info.SMR4_Relay_V >> 8) & 0xff);
tx[18] = ((Module_Info.SMR5_Relay_V >> 0) & 0xff);
tx[19] = ((Module_Info.SMR5_Relay_V >> 8) & 0xff);
tx[20] = ((Module_Info.SMR6_Relay_V >> 0) & 0xff);
tx[21] = ((Module_Info.SMR6_Relay_V >> 8) & 0xff);
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[22] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_OUTPUT_RELAY_OUTPUT_STATUS:
tx_len = 14;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = uart_rx_buffer[3];
tx[4] = 7;
tx[5] = 0;
// Read Relay Feedback Pins ......
Module_Info.Relay_Status.flags.AC_Contactor = ~HAL_GPIO_ReadPin(AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
tx[6] = (Module_Info.Relay_Status.All & 0xff);
tx[7] = (Module_Info.Relay_Status.All >> 8) & 0xff;
tx[8] = (Module_Info.Relay_Status.All >> 16) & 0xff;
tx[9] = (Module_Info.Relay_Status.All >> 24) & 0xff;
tx[10] = (Module_Info.Relay_Status.All >> 32) & 0xff;
tx[11] = (Module_Info.Relay_Status.All >> 40) & 0xff;
tx[12] = (Module_Info.Relay_Status.All >> 48) & 0xff;
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[13] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_BRIDGE_RELAY_OUTPUT_STATUS:
tx_len = 13;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = uart_rx_buffer[3];
tx[4] = 6;
tx[5] = 0;
// Read Relay Feedback Pins ......
Module_Info.Relay_Status.flags.AC_Contactor = ~HAL_GPIO_ReadPin(AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
tx[6] = (Module_Info.Relay_Status.All & 0xff);
tx[7] = (Module_Info.Relay_Status.All >> 8) & 0xff;
tx[8] = (Module_Info.Relay_Status.All >> 16) & 0xff;
tx[9] = (Module_Info.Relay_Status.All >> 24) & 0xff;
tx[10] = (Module_Info.Relay_Status.All >> 32) & 0xff;
tx[11] = (Module_Info.Relay_Status.All >> 40) & 0xff;
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[12] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE:
tx_len = 19;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_GFD_ADC_VALUE;
tx[4] = 12;
tx[5] = 0x00;
if (Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
{
tx[6] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
tx[7] = (((Module_Info.gfd_chk[0].R_GFD_Fail / 1000) >> 8) & 0xff);
tx[8] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 0) & 0xff);
tx[9] = ((Module_Info.gfd_chk[0].SMR_Voltage_Fail >> 8) & 0xff);
tx[11] = Module_Info.gfd_chk[0].Rfd_State_Fail;
}
else
{
tx[6] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
tx[7] = (((Module_Info.gfd_chk[0].R_GFD_v / 1000) >> 8) & 0xff);
tx[8] = ((Module_Info.SMR1_Relay_V >> 0) & 0xff);
tx[9] = ((Module_Info.SMR1_Relay_V >> 8) & 0xff);
tx[11] = Module_Info.gfd_chk[0].Rfd_State;
}
tx[10] = Module_Info.gfd_chk[0].bResult_Gfd;
if (Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
{
tx[12] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 0) & 0xff); // Gfd Resistor
tx[13] = (((Module_Info.gfd_chk[1].R_GFD_Fail / 1000) >> 8) & 0xff);
tx[14] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 0) & 0xff);
tx[15] = ((Module_Info.gfd_chk[1].SMR_Voltage_Fail >> 8) & 0xff);
tx[17] = Module_Info.gfd_chk[1].Rfd_State_Fail;
}
else
{
tx[12] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 0) & 0xff); // Gfd Resistor
tx[13] = (((Module_Info.gfd_chk[1].R_GFD_v / 1000) >> 8) & 0xff);
tx[14] = ((Module_Info.SMR2_Relay_V >> 0) & 0xff);
tx[15] = ((Module_Info.SMR2_Relay_V >> 8) & 0xff);
tx[17] = Module_Info.gfd_chk[1].Rfd_State;
}
tx[16] = Module_Info.gfd_chk[1].bResult_Gfd;
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[18] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_INPUT_GPIO_STATUS;
tx[4] = 1;
tx[5] = 0;
tx[6] = Module_Info.Gpio_status.All;
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[7] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_SN:
tx_len = 27;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_SN;
tx[4] = 0x14;
tx[5] = 0x00;
memcpy(&tx[6], Module_Info.SN, 20);
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[26] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_ALARM_CODE:
tx_len = 13;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_ALARM_CODE;
tx[4] = 6;
tx[5] = 0;
// === Data ===
tx[6] = 0;
tx[7] = 0;
tx[8] = 0;
tx[9] = (Module_Info.Alarm_CSU.All) & 0xff;
tx[10] = (Module_Info.Alarm_CSU.All >> 8) & 0xff;
tx[11] = 0;
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[12] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS:
tx_len = 13;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_SELF_TEST_STATUS;
tx[4] = 6;
tx[5] = 0;
tx[6] = sf_t.SF_Config.SF_test_status;
tx[7] = sf_t.SF_Config.data.value & 0xff;
tx[8] = (sf_t.SF_Config.data.value >> 8) & 0xff;
tx[9] = (sf_t.SF_Config.data.value >> 16) & 0xff;
tx[10] = (sf_t.SF_Config.data.value >> 24) & 0xff;
tx[11] = (sf_t.SF_Config.data.value >> 32) & 0xff;
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[6 + idx];
}
tx[12] = chksum;
break;
case PROTOCOL_MESSAGE_QUERY_PARAMETER:
tx_len = 11;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_QUERY_PARAMETER;
tx[4] = 4;
tx[5] = 0;
tx[6] = uart_rx_buffer[6];
tx[7] = uart_rx_buffer[7];
// === Data ===
switch (uart_rx_buffer[6])
{
case Input_L1_AC_voltage:
switch (uart_rx_buffer[7])
{
case 1: // METER_DATA , MCU_DATA
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] >> 8) & 0xff;
break;
case 3:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] >> 8) & 0xff;
break;
default:
tx[8] = 0;
tx[9] = 0;
break;
}
break;
case Input_L2_AC_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] >> 8) & 0xff;
break;
case 3:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case Input_L3_AC_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] >> 8) & 0xff;
break;
case 3:
tx[8] = Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case SMR1_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case SMR2_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case SMR3_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case SMR4_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case SMR5_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case SMR6_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case GFD_Resister_Left:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
case GFD_Resister_Right:
switch (uart_rx_buffer[7])
{
case 1:
tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] >> 8) & 0xff;
break;
case 2:
tx[8] = Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] & 0xff;
tx[9] = (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] >> 8) & 0xff;
break;
default:
break;
}
break;
default:
break;
}
for (int idx = 0; idx < (tx[4] | (tx[5] << 8)); idx++)
{
chksum ^= tx[(6 + idx)];
}
tx[10] = chksum;
break;
/*--------------------------------------------
Config message
--------------------------------------------*/
case PROTOCOL_MESSAGE_CONFIG_MODEL_NAME:
nGun = 0;
for (int i=7; i<=9; i++){
if(uart_rx_buffer[(6+i)] != '0')
nGun += 1;
}
for (int i = 0;i<14;i++){
ModelName[i] = uart_rx_buffer[(6+i)];
}
ModelName[14] = 0;
if(memcmp(ModelName,Module_Info.memory.Module_Config.data.item.Modelname,14) != 0){
memcpy(Module_Info.memory.Module_Config.data.item.Modelname,ModelName,14);
Module_Info.memory.Module_Config.op_bits.update = ON;
Module_Info.memory.Module_Config.op_bits.modelname = ON;
}
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_MODEL_NAME;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
tx[7] = 0x01;
break;
case PROTOCOL_MESSAGE_CONFIG_OUTPUT_RELAY_OUTPUT:
Module_Info.Relay_IO.All = (((uint64_t)uart_rx_buffer[12] << 48) | ((uint64_t)uart_rx_buffer[11] << 40) | ((uint64_t)uart_rx_buffer[10]<< 32) |
((uint64_t)uart_rx_buffer[9] << 24) | ((uint64_t)uart_rx_buffer[8] << 16) | ((uint64_t)uart_rx_buffer[7]<< 8) |
((uint64_t)uart_rx_buffer[6] )) ;
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = uart_rx_buffer[3];
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
tx[7] = 0x01;
OpFlag.bRelay_Config_Change = ON;
break;
case PROTOCOL_MESSAGE_CONFIG_BRIDGE_RELAY_OUTPUT:
Module_Info.Relay_IO.All = (((uint64_t)uart_rx_buffer[11] << 40) | ((uint64_t)uart_rx_buffer[10] << 32) | ((uint64_t)uart_rx_buffer[9]<< 24) |
((uint64_t)uart_rx_buffer[8] << 16) | ((uint64_t)uart_rx_buffer[7] << 8) | ((uint64_t)uart_rx_buffer[6]));
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = uart_rx_buffer[3];
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
tx[7] = 0x01;
OpFlag.bRelay_Config_Change = ON;
break;
case PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT:
Module_Info.Gpio_status.All = uart_rx_buffer[6];
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_GPIO_OUTPUT;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
tx[7] = 0x01;
break;
case PROTOCOL_MESSAGE_CONFIG_SN:
for (int idx = 0; idx < ((uart_rx_buffer[4] | uart_rx_buffer[5] << 8) >> 1); idx++)
Module_Info.SN[idx] = uart_rx_buffer[(idx + 6)];
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_SN;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
tx[7] = 0x01;
break;
case PROTOCOL_MESSAGE_CONFIG_GFD_VALUE:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_GFD_VALUE;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
switch (uart_rx_buffer[6])
{
case 0: // Left gun
Module_Info.gfd_chk[0].Csu_State = uart_rx_buffer[7];
tx[7] = 0x01;
break;
case 1: // Right gun
Module_Info.gfd_chk[1].Csu_State = uart_rx_buffer[7];
tx[7] = 0x01;
break;
default:
Module_Info.gfd_chk[0].Csu_State = 0;
Module_Info.gfd_chk[1].Csu_State = 0;
tx[7] = 0x00;
break;
}
break;
case PROTOCOL_MESSAGE_CONFIG_GFD_MODE:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_GFD_MODE;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
switch(uart_rx_buffer[6])
{
case 0: // Left gun
Gfd.GfdMode[0] = uart_rx_buffer[7];
tx[7] = 0x01;
if(Gfd.GfdOldMode[0] != Gfd.GfdMode[0]){
Gfd.GfdOldMode[0] = Gfd.GfdMode[0];
if(Gfd.GfdMode[0] !=0){
printf("Set SMR1 GFD Mode : %s\n\r", Gfd.GfdMode[0] == GFD_BALANCE ? "Balance" : "Unbalance");
}else{
printf("Set SMR1 GFD Mode : OFF\n\r");
}
}
break;
case 1: // Right gun
Gfd.GfdMode[1] = uart_rx_buffer[7];
tx[7] = 0x01;
if(Gfd.GfdOldMode[1] != Gfd.GfdMode[1]){
Gfd.GfdOldMode[1] = Gfd.GfdMode[1];
if(Gfd.GfdMode[1] !=0){
printf("Set SMR2 GFD Mode : %s\n\r", Gfd.GfdMode[1] == GFD_BALANCE ? "Balance" : "Unbalance");
}else{
printf("Set SMR2 GFD Mode : OFF\n\r");
}
}
break;
default:
Module_Info.gfd_chk[0].Csu_State = 0;
Module_Info.gfd_chk[1].Csu_State = 0;
tx[7] = 0x00;
break;
}
break;
case PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_RUN_SELF_TEST;
tx[4] = 1;
tx[5] = 0;
tx[6] = sf_t.SF_Config.SF_Act = 1;
tx[7] = 1;
sf_t.SF_Config.SF_State = 0;
sf_t.SF_Config.data.value = 0;
sf_t.SF_Config.SF_test_status = 2; // Unknow
break;
case PROTOCOL_MESSAGE_CONFIG_PARAMETER:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_CONFIG_PARAMETER;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
// Default the result.
tx[7] = 0x01;
temp = uart_rx_buffer[8] | (uart_rx_buffer[9] << 8);
switch (uart_rx_buffer[6])
{
case Input_L1_AC_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.Correction_Volt[0][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[0][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
break;
case 2:
Module_Info.memory.Module_Config.data.item.Correction_Volt[1][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[1][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
break;
case 3:
Module_Info.memory.Module_Config.data.item.Correction_Volt[2][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[2][MCU_DATA] = adc_value.ADC2_IN0.value / 10;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case Input_L2_AC_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.Correction_Volt[3][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[3][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
break;
case 2:
Module_Info.memory.Module_Config.data.item.Correction_Volt[4][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[4][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
break;
case 3:
Module_Info.memory.Module_Config.data.item.Correction_Volt[5][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[5][MCU_DATA] = adc_value.ADC2_IN1.value / 10;
break;
default:
break;
}
break;
case Input_L3_AC_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.Correction_Volt[6][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[6][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
break;
case 2:
Module_Info.memory.Module_Config.data.item.Correction_Volt[7][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[7][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
break;
case 3:
Module_Info.memory.Module_Config.data.item.Correction_Volt[8][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.Correction_Volt[8][MCU_DATA] = adc_value.ADC2_IN2.value / 10;
break;
default:
break;
}
break;
case SMR1_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[0][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN0.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[1][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN0.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCVcoeff[0].gain_volt = 1;
Module_Info.DCVcoeff[0].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case SMR2_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[2][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN2.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[3][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN2.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCVcoeff[1].gain_volt = 1;
Module_Info.DCVcoeff[1].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case SMR3_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[4][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN5.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[5][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN5.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCVcoeff[2].gain_volt = 1;
Module_Info.DCVcoeff[2].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case SMR4_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[6][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN6.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[7][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN6.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCVcoeff[3].gain_volt = 1;
Module_Info.DCVcoeff[3].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case SMR5_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[8][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN7.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[9][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN7.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCVcoeff[4].gain_volt = 1;
Module_Info.DCVcoeff[4].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case SMR6_output_voltage:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[10][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN8.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[11][MCU_DATA] = (uint16_t)((double)adc_value.ADC1_IN8.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCVcoeff[5].gain_volt = 1;
Module_Info.DCVcoeff[5].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
case GFD_Resister_Left:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[0][MCU_DATA] = Module_Info.gfd_chk[0].R_GFD_v / 100;
break;
case 2:
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[1][MCU_DATA] = Module_Info.gfd_chk[0].R_GFD_v / 100;
break;
case 9:
bGfd_Correct[0] = 1;
Module_Info.GFDcoeff[0].gain_volt = 1;
Module_Info.GFDcoeff[0].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
case 11:
bGfd_Correct[0] = 1;
break;
default:
break;
}
break;
case GFD_Resister_Right:
switch (uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[2][MCU_DATA] = Module_Info.gfd_chk[1].R_GFD_v / 100;
break;
case 2:
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[3][MCU_DATA] = Module_Info.gfd_chk[1].R_GFD_v / 100;
break;
case 9:
bGfd_Correct[1] = 1;
Module_Info.GFDcoeff[1].gain_volt = 1;
Module_Info.GFDcoeff[1].offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
case 11:
bGfd_Correct[1] = 1;
break;
default:
break;
}
break;
case Battery1_input_voltage:
switch(uart_rx_buffer[7])
{
case 1:
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA] = (uint16_t) ((double)adc_value.ADC3_IN8.value * vsense1 / 10.0);
break;
case 2:
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[1][METER_DATA] = temp;
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[1][MCU_DATA] = (uint16_t) ((double)adc_value.ADC3_IN8.value * vsense1 / 10.0);
break;
// reset coefficient to orginal.
case 9:
Module_Info.DCINcoeff.gain_volt = 1;
Module_Info.DCINcoeff.offset_volt = 0;
break;
case 10:
Module_Info.memory.Module_Config.op_bits.read = ON;
break;
default:
break;
}
break;
}
Module_Info.memory.Module_Config.op_bits.update = ON;
break;
/*-----------------------------------------
Firmware update message
------------------------------------------*/
case PROTOCOL_MESSAGE_UPGRADE_START:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_UPGRADE_START;
tx[4] = 0x01;
tx[5] = 0x00;
// binCRCTarget = (uart_rx_buffer[6] << 24) | (uart_rx_buffer[6] << 16) | (uart_rx_buffer[6] << 8) | (uart_rx_buffer[6] << 0);
flashdestination = NEW_CODE_ADDRESS;
if (FLASH_If_Erase(ADDR_FLASH_SECTOR_9, 3) == FLASHIF_OK)
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware transfer start, earase flash success....\n\r");
#endif
tx[6] = 0x01;
tx[7] = 0x01;
}
else
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware transfer start, earase flash fail....\n\r");
#endif
tx[6] = 0x00;
tx[7] = 0x00;
}
break;
case PROTOCOL_MESSAGE_UPGRADE_TRANS:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_UPGRADE_TRANS;
tx[4] = 0x01;
tx[5] = 0x00;
flashdestination = NEW_CODE_ADDRESS + ((uart_rx_buffer[6] << 0) | (uart_rx_buffer[7] << 8) | (uart_rx_buffer[8] << 16) | (uart_rx_buffer[9] << 24));
if (FLASH_If_Write(flashdestination, (uint32_t *)&uart_rx_buffer[10], ((((uart_rx_buffer[4]) | (uart_rx_buffer[5]) << 8) - 4) >> 2)) == FLASHIF_OK)
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware transfer start address, length:0x%x, %d...Pass\n\r", flashdestination, (((uart_rx_buffer[4]) | (uart_rx_buffer[5])<<8)-4));
#endif
tx[6] = 0x01;
tx[7] = 0x01;
}
else
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware transfer start address, length:0x%x, %d...Fail\n\r", flashdestination, (((uart_rx_buffer[4]) | (uart_rx_buffer[5])<<8)-4));
#endif
tx[6] = 0x00;
tx[7] = 0x00;
}
break;
case PROTOCOL_MESSAGE_UPGRADE_STOP:
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_UPGRADE_STOP;
tx[4] = 0x01;
tx[5] = 0x00;
flash = NEW_CODE_ADDRESS;
crc32 = HAL_CRC_Calculate(&hcrc, (uint32_t *)flash, ((FLASH_AP_LENGTH - 4) >> 2));
flash = ((uint32_t)(NEW_CODE_ADDRESS + FLASH_AP_LENGTH - 4));
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware transfer end, AP CRC crc32, flash: 0x%x, 0x%x\r\n", crc32, *((uint32_t *)flash) );
#endif
if (crc32 == *((uint32_t *)flash))
{
if (FLASH_If_Write(UPGRADE_REQ_ADDRESS, (uint32_t *)&endFlag[0], 1) == FLASHIF_OK)
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware Confirm Tag write ok..\n\r");
#endif
tx[6] = 0x01;
tx[7] = 0x01;
HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_SET);
osDelay(2);
HAL_UART_Transmit(&IAP_USART, (uint8_t *)tx, tx_len, 0xffff);
osDelay(2);
HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_RESET);
osDelay(100);
NVIC_SystemReset();
}
else
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware Confirm Tag write fail...\n\r");
#endif
tx[6] = 0x00;
tx[7] = 0x00;
}
}
else
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware crc32 compare fail...\n\r");
#endif
tx[6] = 0x00;
tx[7] = 0x00;
}
break;
case PROTOCOL_MESSAGE_UPGRADE_ABOARD:
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Firmware update transfer aboard...\n\r");
#endif
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = PROTOCOL_MESSAGE_UPGRADE_ABOARD;
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x01;
tx[7] = 0x01;
break;
default:
/* Todo: bin file receive aboard */
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Protocol message unknow...\n\r");
#endif
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = uart_rx_buffer[3];
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x00;
tx[7] = 0x00;
break;
}
}
else
{
#if defined(DEBUG) || defined(RTOS_STAT)
// DEBUG_INFO("Protocol check sum is wrong...\n\r");
#endif
tx_len = 8;
tx[0] = 0xaa;
tx[1] = PROTOCOL_ADDR;
tx[2] = uart_rx_buffer[1];
tx[3] = uart_rx_buffer[3];
tx[4] = 0x01;
tx[5] = 0x00;
tx[6] = 0x00;
tx[7] = 0x00;
}
HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_SET);
osDelay(2);
HAL_UART_Transmit(&IAP_USART, (uint8_t *)tx, tx_len, 0xffff);
osDelay(2);
HAL_GPIO_WritePin(RS485_DE_GPIO_Port, RS485_DE_Pin, GPIO_PIN_RESET);
for (int i = 0; i < uart_rx_len; i++)
uart_rx_buffer[i] = 0;
uart_rx_len = 0;
}
uart_recv_end_flag = 0;
HAL_UART_Receive_DMA(&IAP_USART, uart_rx_buffer, UART_BUFFER_SIZE);
}
osDelay(1);
}
/* USER CODE END Uart1Task */
}
/* USER CODE BEGIN Header_Adc1Task */
/**
* @brief Function implementing the adc1Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Adc1Task */
void Adc1Task(void const * argument)
{
/* USER CODE BEGIN Adc1Task */
uint16_t i;
/* Infinite loop */
for (;;)
{
if(bADC1_Done)
{
bADC1_Done = OFF;
for (i = 0;i < ADC1_CHANEL_COUNT;i++)
{
ADC1_Value[i] = 0;
}
for (i = 0; i < (ADC1_CHANEL_COUNT * ADC1_SAMPLE_COUNT);)
{
ADC1_Value[0] += ADC1_Buf[i++];
ADC1_Value[1] += ADC1_Buf[i++];
ADC1_Value[2] += ADC1_Buf[i++];
ADC1_Value[3] += ADC1_Buf[i++];
ADC1_Value[4] += ADC1_Buf[i++];
ADC1_Value[5] += ADC1_Buf[i++];
ADC1_Value[6] += ADC1_Buf[i++];
ADC1_Value[7] += ADC1_Buf[i++];
ADC1_Value[8] += ADC1_Buf[i++];
}
for (i = 0;i < ADC1_CHANEL_COUNT;i++)
{
ADC1_Value[i] /= ADC1_SAMPLE_COUNT;
}
HAL_ADC_Start_DMA(&hadc1, ADC1_Buf, (ADC1_SAMPLE_COUNT * ADC1_CHANEL_COUNT));
// Smooth Filter
adc_filter_move_avg(&adc_value.ADC1_IN0, ADC1_Value[0]);
adc_filter_move_avg(&adc_value.ADC1_IN1, ADC1_Value[1]);
adc_filter_move_avg(&adc_value.ADC1_IN2, ADC1_Value[2]);
adc_filter_move_avg(&adc_value.ADC1_IN3, ADC1_Value[3]);
adc_filter_move_avg(&adc_value.ADC1_IN4, ADC1_Value[4]);
adc_filter_move_avg(&adc_value.ADC1_IN5, ADC1_Value[5]);
adc_filter_move_avg(&adc_value.ADC1_IN6, ADC1_Value[6]);
adc_filter_move_avg(&adc_value.ADC1_IN7, ADC1_Value[7]);
adc_filter_move_avg(&adc_value.ADC1_IN8, ADC1_Value[8]);
// output result
Module_Info.SMR1_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN0.value * vsense1 * Module_Info.DCVcoeff[0].gain_volt) + Module_Info.DCVcoeff[0].offset_volt) / 10;
Module_Info.SMR2_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN2.value * vsense1 * Module_Info.DCVcoeff[1].gain_volt) + Module_Info.DCVcoeff[1].offset_volt) / 10;
Module_Info.SMR3_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN5.value * vsense1 * Module_Info.DCVcoeff[2].gain_volt) + Module_Info.DCVcoeff[2].offset_volt) / 10;
Module_Info.SMR4_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN6.value * vsense1 * Module_Info.DCVcoeff[3].gain_volt) + Module_Info.DCVcoeff[3].offset_volt) / 10;
Module_Info.SMR5_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN7.value * vsense1 * Module_Info.DCVcoeff[4].gain_volt) + Module_Info.DCVcoeff[4].offset_volt) / 10;
Module_Info.SMR6_Relay_V = (uint32_t)(((double)adc_value.ADC1_IN8.value * vsense1 * Module_Info.DCVcoeff[5].gain_volt) + Module_Info.DCVcoeff[5].offset_volt) / 10;
c_vadc[0] = (float)(adc_value.ADC1_IN1.value * v_div);
c_vadc[1] = (float)(adc_value.ADC1_IN3.value * v_div);
Module_Info.SMR1_Relay_C = (uint32_t)(c_vadc[0] * vsense3) / 10;
Module_Info.SMR2_Relay_C = (uint32_t)(c_vadc[1] * vsense3) / 10;
// }
Module_Info.Vref_165 = (float)(adc_value.ADC1_IN4.value * v_div);
}
osDelay(1);
}
/* USER CODE END Adc1Task */
}
/* USER CODE BEGIN Header_Adc2Task */
/**
* @brief Function implementing the adc2Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Adc2Task */
void Adc2Task(void const * argument)
{
/* USER CODE BEGIN Adc2Task */
uint16_t i, j;
/* Infinite loop */
for (;;)
{
// AC_Contactor off, will stop AC Converstion Calcuate.
// because of AC_Contactor on/off, the AC_Value will be wrong (746v).
// Sense 3-Phases voltage before AC-Contracor.
if (bADC2_Done)
{
for (i = 0, j = 0; i < (ADC2_CHANEL_COUNT * ADC2_SAMPLE_COUNT); i += ADC2_CHANEL_COUNT)
{
L1_ADC_Each_Value[j] = ADC2_Buf[(i + 0)];
L2_ADC_Each_Value[j] = ADC2_Buf[(i + 1)];
L3_ADC_Each_Value[j] = ADC2_Buf[(i + 2)];
j++;
}
HAL_ADC_Start_DMA(&hadc2, ADC2_Buf, (ADC2_SAMPLE_COUNT * ADC2_CHANEL_COUNT));
ADCSineCalculate2(L1_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[0], vsense2, 0);
ADCSineCalculate2(L2_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[1], vsense2, 1);
ADCSineCalculate2(L3_ADC_Each_Value, ADC2_SAMPLE_COUNT, 212, &AC_Sine[2], vsense2, 2);
// smooth filter
adc_filter_move_avg(&adc_value.ADC2_IN0, AC_Sine[0].Vrms);
adc_filter_move_avg(&adc_value.ADC2_IN1, AC_Sine[1].Vrms);
adc_filter_move_avg(&adc_value.ADC2_IN2, AC_Sine[2].Vrms);
// Patch the AC_GAIN
for (i = 0; i < 3; i++)
{
switch (i)
{
case 0:
AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN0.value / 10), i);
break;
case 1:
AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN1.value / 10), i);
break;
case 2:
AC_Sine[i].Vrms_AVG = acVolCalWithGain((adc_value.ADC2_IN2.value / 10), i);
break;
default:
break;
}
}
// worng filiter
for (i = 0; i < 3; i++)
{
if (AC_Sine[i].Vrms_AVG >= 6000)
AC_Sine[i].Vrms_AVG = 0;
}
// Buffer clean
// memset(&ADC2_Buf[0], 0x00, ADC2_CHANEL_COUNT * ADC2_SAMPLE_COUNT);
// memset(&L1_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
// memset(&L2_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
// memset(&L3_ADC_Each_Value[0], 0x00, ADC2_SAMPLE_COUNT);
// DMA restart
bADC2_Done = OFF;
}
osDelay(1);
}
/* USER CODE END Adc2Task */
}
/* USER CODE BEGIN Header_Adc3Task */
/**
* @brief Function implementing the adc3Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Adc3Task */
void Adc3Task(void const * argument)
{
/* USER CODE BEGIN Adc3Task */
/* Infinite loop */
// Fail : <= 100ohm * 950v = 95K ohm
// Warning : <= 475K ohm & > 95K ohm
// Pass : > 500ohm * 950v = 475K ohm
for (;;)
{
float temp[2];
uint16_t i;
uint8_t gunindex;
uint32_t Relay_V;
// uint32_t R_GFD_Total[2];
if(bADC3_Done)
{
bADC3_Done = OFF;
for(i = 0, ADC3_Value[0]=0, ADC3_Value[1]=0, ADC3_Value[2]=0; i < (ADC3_CHANEL_COUNT*ADC3_SAMPLE_COUNT); )
{
ADC3_Value[0] += ADC3_Buf[i++];
ADC3_Value[1] += ADC3_Buf[i++];
ADC3_Value[2] += ADC3_Buf[i++];
}
ADC3_Value[0] /= ADC3_SAMPLE_COUNT; // GFD 1
ADC3_Value[1] /= ADC3_SAMPLE_COUNT; // GFD 2
ADC3_Value[2] /= ADC3_SAMPLE_COUNT; // Bat_Voltage
HAL_ADC_Start_DMA(&hadc3, ADC3_Buf, (ADC3_SAMPLE_COUNT * ADC3_CHANEL_COUNT));
// Smooth Filter
adc_filter_move_avg(&adc_value.ADC3_IN8, ADC3_Value[2]);
Module_Info.BAT_Voltage = (uint32_t) (((double)adc_value.ADC3_IN8.value * vsense1
* Module_Info.DCINcoeff.gain_volt) + Module_Info.DCINcoeff.offset_volt) / 10;
for(gunindex = 0 ; gunindex < 2 ; gunindex++){
if(gunindex == 0)
Relay_V = Module_Info.SMR1_Relay_V;
else
Relay_V = Module_Info.SMR2_Relay_V;
if(Gfd.operation[gunindex] == GFD_BALANCE && Gfd.SCBwaitfg[gunindex] == 0){
if(Module_Info.gfd_chk[gunindex].Csu_State != IDLE || bGfd_Correct[gunindex] == 1){
Module_Info.SMR_Gfd_Sense[gunindex] =(float) ADC3_Value[gunindex] * v_div;
if(Gfd.GfdAvgCount[gunindex] < 2){
Gfd.TotalGFDvalue[gunindex] += Module_Info.SMR_Gfd_Sense[gunindex];
Gfd.Gfdcount[gunindex]++;
}else{
if(Gfd.Gfdcount[gunindex] > Gfd.maxcount[gunindex])
Gfd.maxcount[gunindex] = Gfd.Gfdcount[gunindex];
if(Gfd.Gfdcount[gunindex] < Gfd.mincount[gunindex])
Gfd.mincount[gunindex] = Gfd.Gfdcount[gunindex];
if(Gfd.TotalGFDvalue[gunindex] > Gfd.maxgfdcount[gunindex])
Gfd.maxgfdcount[gunindex] = Gfd.TotalGFDvalue[gunindex];
if(Gfd.TotalGFDvalue[gunindex] < Gfd.mingfdcount[gunindex])
Gfd.mingfdcount[gunindex] = Gfd.TotalGFDvalue[gunindex];
Module_Info.SMR_Gfd_Sense[gunindex] = Gfd.TotalGFDvalue[gunindex] / Gfd.Gfdcount[gunindex];
Gfd.TotalGFDvalue[gunindex] = 0;
Gfd.Gfdcount[gunindex] = 0;
Gfd.GfdAvgCount[gunindex] = 0;
}
if(Relay_V > GFD_WORKING_VOLTAGE) // > 50v
{
if(Gfd.UpBridgeMaxV[gunindex] == 0){
Gfd.UpBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Gfd.UpBridgeMinV[gunindex] == 0){
Gfd.UpBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Module_Info.SMR_Gfd_Sense[gunindex] > Gfd.UpBridgeMaxV[gunindex]){
Gfd.UpBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Module_Info.SMR_Gfd_Sense[gunindex] < Gfd.UpBridgeMinV[gunindex]){
Gfd.UpBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
temp[gunindex] = fabs(Module_Info.SMR_Gfd_Sense[gunindex] - Module_Info.Vref_165);
Module_Info.gfd_chk[gunindex].R_GFD = (uint32_t) ((double) Relay_V / 10.0 * GFD_RESISTOR_COEFFICIENT / temp[gunindex]) - 50018;
// if(Module_Info.gfd_chk[gunindex].R_GFD > 1000000)
// Module_Info.gfd_chk[gunindex].R_GFD = 1000000;
CalcuteGFDMaxMinValue(gunindex);
}
}
}
}
if(Gfd.operation[0] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[0].Csu_State != IDLE || bGfd_Correct[0] == 1){
Module_Info.SMR_Gfd_Sense[0] =(float) ADC3_Value[0] * v_div;
if(Gfd.Gfdtimer < GFD_SWITCH_TIME-2 || (Gfd.Gfdtimer > GFD_SWITCH_TIME && Gfd.Gfdtimer < (GFD_SWITCH_TIME*2)-2)){
Gfd.TotalGFDvalue[0] = 0;
Gfd.Gfdcount[0] = 0;
}
if(Gfd.Gfdtimer >= GFD_SWITCH_TIME-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME ||
Gfd.Gfdtimer >= (GFD_SWITCH_TIME*2)-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME*2){
Gfd.TotalGFDvalue[0] += Module_Info.SMR_Gfd_Sense[0];
Gfd.Gfdcount[0]++;
}else if(Gfd.Gfdtimer >= GFD_SWITCH_TIME && Gfd.Gfdtimer < GFD_SWITCH_TIME+1 ||
Gfd.Gfdtimer >= GFD_SWITCH_TIME*2){
Module_Info.SMR_Gfd_Sense[0] = Gfd.TotalGFDvalue[0] / Gfd.Gfdcount[0];
}
if(Gfd.Gfdtimer >= GFD_SWITCH_TIME) // > 50v
{
//Re+=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U2;
//Re-=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U1
//U1 = |1.65-vadc+| / 8.2
//U2 = |1.65-vadc-| / 8.2
if(Gfd.Gfdtimer == GFD_SWITCH_TIME*2){
if(Module_Info.gfd_chk[1].Csu_State == IDLE){
Gfd.Gfdtimer = 0;
Gfd.GfdSwitch = 0;
}
// printf("2\n\r");
if(Module_Info.SMR1_Relay_V > GFD_WORKING_VOLTAGE){
if(Gfd.UpBridgeMaxV[0] == 0){
Gfd.UpBridgeMaxV[0] = Module_Info.SMR_Gfd_Sense[0];
}
if(Gfd.UpBridgeMinV[0] == 0){
Gfd.UpBridgeMinV[0] = Module_Info.SMR_Gfd_Sense[0];
}
if(Module_Info.SMR_Gfd_Sense[0] > Gfd.UpBridgeMaxV[0]){
Gfd.UpBridgeMaxV[0] = Module_Info.SMR_Gfd_Sense[0];
}
if(Module_Info.SMR_Gfd_Sense[0] < Gfd.UpBridgeMinV[0]){
Gfd.UpBridgeMinV[0] = Module_Info.SMR_Gfd_Sense[0];
}
Module_Info.gfd_chk[0].UP_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[0];
Module_Info.gfd_chk[0].U2_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[0].UP_BRIDGE_OP_V)/8.2;
if(Module_Info.gfd_chk[0].U1_V != 0){
Module_Info.gfd_chk[0].R_GFD = (uint32_t)(((Module_Info.SMR1_Relay_V /10 * Rsense) - (R1+Rsense)*(Module_Info.gfd_chk[0].U1_V + Module_Info.gfd_chk[0].U2_V))/Module_Info.gfd_chk[0].U2_V);
Module_Info.gfd_chk[0].P2PE_GFD = Module_Info.gfd_chk[0].R_GFD;
// Module_Info.gfd_chk[0].R_GFD = (uint32_t)(((Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[0].U1_V + Module_Info.gfd_chk[0].U2_V))/Module_Info.gfd_chk[0].U1_V);
// Module_Info.gfd_chk[0].N2PE_GFD = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].U1_V = 0;
CalcuteGFDMaxMinValue(0);
}
}else{
// printf("1V:%d T:%d\n\r",Module_Info.SMR1_Relay_V,Gfd.Gfdtimer);
}
}else if(Gfd.Gfdtimer == GFD_SWITCH_TIME){
if(Module_Info.SMR1_Relay_V > GFD_WORKING_VOLTAGE){
// printf("1\n\r");
Module_Info.gfd_chk[0].DN_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[0];
Module_Info.gfd_chk[0].U1_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[0].DN_BRIDGE_OP_V)/8.2;
if(Module_Info.gfd_chk[0].U2_V != 0){
Module_Info.gfd_chk[0].R_GFD = (uint32_t)(((Module_Info.SMR1_Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[0].U1_V + Module_Info.gfd_chk[0].U2_V))/Module_Info.gfd_chk[0].U1_V);
Module_Info.gfd_chk[0].N2PE_GFD = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].U2_V = 0;
CalcuteGFDMaxMinValue(0);
}
}else{
// printf("1V:%d T:%d\n\r",Module_Info.SMR1_Relay_V,Gfd.Gfdtimer);
}
}
}
}
}
if(Gfd.operation[1] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[1].Csu_State != IDLE || bGfd_Correct[1] == 1){
Module_Info.SMR_Gfd_Sense[1] =(float) ADC3_Value[1] * v_div;
if((Gfd.Gfdtimer > GFD_SWITCH_TIME*2 && Gfd.Gfdtimer < (GFD_SWITCH_TIME*3)-2) ||
(Gfd.Gfdtimer > GFD_SWITCH_TIME*3 && Gfd.Gfdtimer < (GFD_SWITCH_TIME*4)-2)){
Gfd.TotalGFDvalue[1] = 0;
Gfd.Gfdcount[1] = 0;
}
if(Gfd.Gfdtimer >= (GFD_SWITCH_TIME*3)-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME*3 ||
Gfd.Gfdtimer >= (GFD_SWITCH_TIME*4)-2 && Gfd.Gfdtimer < GFD_SWITCH_TIME*4){
Gfd.TotalGFDvalue[1] += Module_Info.SMR_Gfd_Sense[1];
Gfd.Gfdcount[1]++;
}else if(Gfd.Gfdtimer >= (GFD_SWITCH_TIME*3) && Gfd.Gfdtimer < (GFD_SWITCH_TIME*3)+1 ||
Gfd.Gfdtimer >= (GFD_SWITCH_TIME*4)){
Module_Info.SMR_Gfd_Sense[1] =Gfd.TotalGFDvalue[1] / Gfd.Gfdcount[1];
}
if(Gfd.Gfdtimer >= (GFD_SWITCH_TIME*3))
{
//Re+=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U2;
//Re-=(Vo*Rsence-(R1+Rsence)*(U1+U2))/U1
//U1 = |1.65-vadc+| / 8.2
//U2 = |1.65-vadc-| / 8.2
if(Gfd.Gfdtimer == (GFD_SWITCH_TIME*4)){
// printf("4\n\r");
if(Module_Info.gfd_chk[0].Csu_State == IDLE){
Gfd.Gfdtimer = (GFD_SWITCH_TIME*2);
Gfd.GfdSwitch = 2;
}else{
Gfd.Gfdtimer = 0;
Gfd.GfdSwitch = 0;
}
if(Module_Info.SMR2_Relay_V > GFD_WORKING_VOLTAGE){
if(Gfd.UpBridgeMaxV[1] == 0){
Gfd.UpBridgeMaxV[1] = Module_Info.SMR_Gfd_Sense[1];
}
if(Gfd.UpBridgeMinV[1] == 0){
Gfd.UpBridgeMinV[1] = Module_Info.SMR_Gfd_Sense[1];
}
if(Module_Info.SMR_Gfd_Sense[1] > Gfd.UpBridgeMaxV[1]){
Gfd.UpBridgeMaxV[1] = Module_Info.SMR_Gfd_Sense[1];
}
if(Module_Info.SMR_Gfd_Sense[1] < Gfd.UpBridgeMinV[1]){
Gfd.UpBridgeMinV[1] = Module_Info.SMR_Gfd_Sense[1];
}
Module_Info.gfd_chk[1].UP_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[1];
Module_Info.gfd_chk[1].U2_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[1].UP_BRIDGE_OP_V)/8.2;
if(Module_Info.gfd_chk[1].U1_V != 0){
Module_Info.gfd_chk[1].R_GFD = (uint32_t)(((Module_Info.SMR2_Relay_V /10 * Rsense) - (R1+Rsense)*(Module_Info.gfd_chk[1].U1_V + Module_Info.gfd_chk[1].U2_V))/Module_Info.gfd_chk[1].U2_V);
Module_Info.gfd_chk[1].P2PE_GFD = Module_Info.gfd_chk[1].R_GFD;
// Module_Info.gfd_chk[1].R_GFD = (uint32_t)(((Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[1].U1_V + Module_Info.gfd_chk[1].U2_V))/Module_Info.gfd_chk[1].U1_V);
// Module_Info.gfd_chk[1].N2PE_GFD = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].U1_V = 0;
CalcuteGFDMaxMinValue(1);
}
}else{
// printf("2V:%d T:%d\n\r",Module_Info.SMR2_Relay_V,Gfd.Gfdtimer);
}
}else if(Gfd.Gfdtimer == (GFD_SWITCH_TIME*3)){
// printf("3\n\r");
if(Module_Info.SMR2_Relay_V > GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].DN_BRIDGE_OP_V = Module_Info.SMR_Gfd_Sense[1];
Module_Info.gfd_chk[1].U1_V = fabs(Module_Info.Vref_165 - Module_Info.gfd_chk[1].DN_BRIDGE_OP_V)/8.2;
if(Module_Info.gfd_chk[1].U2_V != 0){
Module_Info.gfd_chk[1].R_GFD = (uint32_t)(((Module_Info.SMR2_Relay_V /10 * Rsense) -(R1+Rsense)*(Module_Info.gfd_chk[1].U1_V + Module_Info.gfd_chk[1].U2_V))/Module_Info.gfd_chk[1].U1_V);
Module_Info.gfd_chk[1].N2PE_GFD = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].U2_V = 0;
CalcuteGFDMaxMinValue(1);
}
}else{
// printf("2V:%d T:%d\n\r",Module_Info.SMR2_Relay_V,Gfd.Gfdtimer);
}
}
}
}
}
for(gunindex = 0 ; gunindex < 2 ; gunindex++){
if(Gfd.GfdMode[gunindex] == GFD_UNBALANCE){
if(Gfd.operation[gunindex] == GFD_OFF || Module_Info.gfd_chk[gunindex].Csu_State == IDLE){
Gfd.UpBridgeMaxV[gunindex] = 0;
Gfd.UpBridgeMinV[gunindex] = 0;
Gfd.DnBridgeMaxV[gunindex] = 0;
Gfd.DnBridgeMinV[gunindex] = 0;
Gfd.MaxP2PE[gunindex] = 0;
Gfd.MinP2PE[gunindex] = 0;
Gfd.MaxN2PE[gunindex] = 0;
Gfd.MinN2PE[gunindex] = 0;
Module_Info.gfd_chk[gunindex].R_GFD = 0;
Module_Info.gfd_chk[gunindex].P2PE_GFD = 0;
Module_Info.gfd_chk[gunindex].N2PE_GFD = 0;
Gfd.TotalGFDvalue[gunindex] = 0;
Gfd.Gfdcount[gunindex] = 0;
Gfd.GfdAvgCount[gunindex] = 0;
}
}
}
// bADC3_Done = OFF;
// HAL_ADC_Start_DMA(&hadc3, ADC3_Buf, (ADC3_SAMPLE_COUNT * ADC3_CHANEL_COUNT));
}
osDelay(1);
}
/* USER CODE END Adc3Task */
}
/* USER CODE BEGIN Header_GpioTask */
/**
* @brief Function implementing the gpioTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_GpioTask */
void GpioTask(void const * argument)
{
/* USER CODE BEGIN GpioTask */
/* Infinite loop */
for (;;)
{
HAL_IWDG_Refresh(&hiwdg);
#if 0
// Output test
IOdebug();
#endif
if (OpFlag.bRelay_Config_Change == ON)
{
OpFlag.bRelay_Config_Change = OFF;
// =================( SMR1_Relay_n )=======================
if (Module_Info.Relay_IO.flags.SMR1_relay_n == ON){
if (!Exti.EXTI_SMR1_Flag || (Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR1_Flag = false;
EXTI_SMR1_Count= 0;
HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_SET);
printf(" 1N ON\r\n");
if(!RelayStatus.SMR1_relay_n)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR1_relay_n = true;
}
}else if(Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR1_Count = 0;
}
}
else{
HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR1_relay_n = false;
printf(" 1N OFF\r\n");
}
// =================( SMR1_Relay_p )=======================
if (Module_Info.Relay_IO.flags.SMR1_relay_p == ON){
if (!Exti.EXTI_SMR1_Flag || (Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR1_Flag = false;
EXTI_SMR1_Count= 0;
HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_SET);
printf(" 1P ON\r\n");
if(!RelayStatus.SMR1_relay_p)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR1_relay_p = true;
}
}else if(Exti.EXTI_SMR1_Flag && EXTI_SMR1_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR1_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR1_relay_p = false;
printf(" 1P OFF\r\n");
}
// =================( SMR2_Relay_n )=======================
if (Module_Info.Relay_IO.flags.SMR2_relay_n == ON){
if (!Exti.EXTI_SMR2_Flag || (Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR2_Flag = false;
EXTI_SMR2_Count= 0;
HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_SET);
printf(" 2N ON\r\n");
if(!RelayStatus.SMR2_relay_n)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR2_relay_n = true;
}
}else if(Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR2_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR2_relay_n = false;
printf(" 2N OFF\r\n");
}
// =================( SMR2_Relay_p )=======================
if (Module_Info.Relay_IO.flags.SMR2_relay_p == ON){
if (!Exti.EXTI_SMR2_Flag || (Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR2_Flag = false;
EXTI_SMR2_Count= 0;
HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_SET);
printf(" 2P ON\r\n");
if(!RelayStatus.SMR2_relay_p)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR2_relay_p = true;
}
}else if(Exti.EXTI_SMR2_Flag && EXTI_SMR2_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR2_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR2_relay_p = false;
printf(" 2P OFF\r\n");
}
// =================( SMR3_Relay_n )=======================
if (Module_Info.Relay_IO.flags.SMR3_relay_n == ON){
if (!Exti.EXTI_SMR3_Flag || (Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR3_Flag = false;
EXTI_SMR3_Count= 0;
HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_SET);
printf(" 3N ON\r\n");
if(!RelayStatus.SMR3_relay_n)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR3_relay_n = true;
}
}else if(Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR3_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR3_relay_n = false;
printf(" 3N OFF\r\n");
}
// =================( SMR3_Relay_p )=======================
if (Module_Info.Relay_IO.flags.SMR3_relay_p == ON){
if (!Exti.EXTI_SMR3_Flag || (Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR3_Flag = false;
EXTI_SMR3_Count= 0;
HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_SET);
printf(" 3P ON\r\n");
if(!RelayStatus.SMR3_relay_p)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR3_relay_p = true;
}
}else if(Exti.EXTI_SMR3_Flag && EXTI_SMR3_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR3_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR3_relay_p = false;
printf(" 3P OFF\r\n");
}
// =================( SMR4_Relay_n )=======================
if (Module_Info.Relay_IO.flags.SMR4_relay_n == ON){
if (!Exti.EXTI_SMR4_Flag || (Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR4_Flag = false;
EXTI_SMR4_Count= 0;
HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_SET);
printf(" 4N ON\r\n");
if(!RelayStatus.SMR4_relay_n)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR4_relay_n = true;
}
}else if(Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR4_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR4_relay_n = false;
printf(" 4N OFF\r\n");
}
// =================( SMR4_Relay_p )=======================
if (Module_Info.Relay_IO.flags.SMR4_relay_p == ON){
if (!Exti.EXTI_SMR4_Flag || (Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR4_Flag = false;
EXTI_SMR4_Count= 0;
HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_SET);
printf(" 4P ON\r\n");
if(!RelayStatus.SMR4_relay_p)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR4_relay_p = true;
}
}else if(Exti.EXTI_SMR4_Flag && EXTI_SMR4_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR4_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR4_relay_p = false;
printf(" 4P OFF\r\n");
}
// =================( SMR5_Relay_n )=======================
if (Module_Info.Relay_IO.flags.SMR5_relay_n == ON){
if (!Exti.EXTI_SMR5_Flag || (Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR5_Flag = false;
EXTI_SMR5_Count= 0;
HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_SET);
printf(" 5N ON\r\n");
if(!RelayStatus.SMR5_relay_n)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR5_relay_n = true;
}
}else if(Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR5_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR5_relay_n = false;
printf(" 5N OFF\r\n");
}
// =================( SMR5_Relay_p )=======================
if (Module_Info.Relay_IO.flags.SMR5_relay_p == ON){
if (!Exti.EXTI_SMR5_Flag || (Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR5_Flag = false;
EXTI_SMR5_Count= 0;
HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_SET);
printf(" 5P ON\r\n");
if(!RelayStatus.SMR5_relay_p)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR5_relay_p = true;
}
}else if(Exti.EXTI_SMR5_Flag && EXTI_SMR5_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR5_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR5_relay_p = false;
printf(" 5P OFF\r\n");
}
// =================( SMR6_Relay_n )=======================
if (Module_Info.Relay_IO.flags.SMR6_relay_n == ON){
if (!Exti.EXTI_SMR6_Flag || (Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count >= WeldingCMDDelay)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR6_Flag = false;
EXTI_SMR6_Count= 0;
HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_SET);
printf(" 6N ON\r\n");
if(!RelayStatus.SMR6_relay_n)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR6_relay_n = true;
}
}else if(Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR6_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR6_relay_n = false;
printf(" 6N OFF\r\n");
}
// =================( SMR6_Relay_p )=======================
if (Module_Info.Relay_IO.flags.SMR6_relay_p == ON){
if (!Exti.EXTI_SMR6_Flag || (Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count >=10)){ //ignore DCM relay command 1s when Relay welding
Exti.EXTI_SMR6_Flag = false;
EXTI_SMR6_Count= 0;
HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_SET);
printf(" 6P ON\r\n");
if(!RelayStatus.SMR6_relay_p)
{
osDelay(Multi_Relay_Delay_Time);
RelayStatus.SMR6_relay_p = true;
}
}else if(Exti.EXTI_SMR6_Flag && EXTI_SMR6_Count < WeldingCMDDelay){ //Reset count
EXTI_SMR6_Count = 0;
}
}
else
{
HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_RESET);
RelayStatus.SMR6_relay_p = false;
printf(" 6P OFF\r\n");
}
// =================( Precharge1 )==============================
if (Module_Info.Relay_IO.flags.Precharge1 == ON)
{
HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_SET);
printf("Pre-charge 1 ON\r\n");
}
else
{
HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_RESET);
printf("Pre-charge 1 OFF\r\n");
}
// =================( Precharge2 )==============================
if (Module_Info.Relay_IO.flags.Precharge2 == ON)
{
HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_SET);
printf("Pre-charge 2 ON\r\n");
}
else
{
HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_RESET);
printf("Pre-charge 2 OFF\r\n");
}
// =================( AC_Contactor )=======================
if (Module_Info.Relay_IO.flags.AC_Contactor == ON)
{
HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_SET);
printf("AC Contactor ON\r\n");
}
else
{
HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
printf("AC Contactor OFF\r\n");
}
}
osDelay(1);
}
/* USER CODE END GpioTask */
}
/* USER CODE BEGIN Header_MemoryTask */
/**
* @brief Function implementing the memoryTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_MemoryTask */
void MemoryTask(void const * argument)
{
/* USER CODE BEGIN MemoryTask */
Module_Info.memory.Module_Config.op_bits.read = ON;
__IO uint32_t flash;
int i;
/* Infinite loop */
for (;;)
{
/*
Charger config operation
*/
if (Module_Info.memory.Module_Config.op_bits.read) // Memory read
{
// Read data from block
// for(uint16_t idx=0; idx<(MEMORY_LENGTH_CONFIG>>2); idx++)
GainCaliFlag = true;
for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++)
{
flash = ADDR_FLASH_SECTOR_4 + (idx * 4);
Module_Info.memory.Module_Config.data.value[idx] = *(uint32_t *)flash;
if ((Module_Info.memory.Module_Config.data.value[idx] == 0xffffffff) ||
(Module_Info.memory.Module_Config.data.value[idx] == 0))
{
if(BridgeBoard)
break;
else
GainCaliFlag = false;
Module_Info.memory.Module_Config.data.value[idx] = mem_def_data[idx];
}
}
// coefficient DATA
for (i = 0; i < DC_CORRECT_GAIN_MAX_NUM; i++)
{
if (Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][MCU_DATA] >
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][MCU_DATA]) // Make sure memory have calibration valid value
{
CLC_Corr_Gain_Par(Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][METER_DATA],
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][METER_DATA],
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[i*2][MCU_DATA],
Module_Info.memory.Module_Config.data.item.DC_Correction_Volt[(i*2 + 1)][MCU_DATA],
&Module_Info.DCVcoeff[i].gain_volt, &Module_Info.DCVcoeff[i].offset_volt);
}
else
{
Module_Info.DCVcoeff[i].gain_volt = 1;
Module_Info.DCVcoeff[i].offset_volt = 0;
}
}
for (i = 0; i < GFD_CORRECT_GAIN_MAX_NUM; i++)
{
if (Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][MCU_DATA] >
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][MCU_DATA])
{
CLC_Corr_Gain_Par(Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][METER_DATA],
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][METER_DATA],
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[i*2][MCU_DATA],
Module_Info.memory.Module_Config.data.item.GFD_Correction_Resistor[(i*2 + 1)][MCU_DATA],
&Module_Info.GFDcoeff[i].gain_volt, &Module_Info.GFDcoeff[i].offset_volt);
}
else
{
Module_Info.GFDcoeff[i].gain_volt = 1;
Module_Info.GFDcoeff[i].offset_volt = 0;
}
}
if( Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA] >
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][MCU_DATA] )
{
CLC_Corr_Gain_Par( Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][METER_DATA],
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][METER_DATA],
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[0][MCU_DATA],
Module_Info.memory.Module_Config.data.item.DCIn_Correction_Volt[(1)][MCU_DATA],
&Module_Info.DCINcoeff.gain_volt, &Module_Info.DCINcoeff.offset_volt);
}
else
{
Module_Info.DCINcoeff.gain_volt = 1;
Module_Info.DCINcoeff.offset_volt = 0;
}
for(uint16_t idx=MEM_MODELNAME_ADDRESS; idx> 2) == FLASHIF_OK)
{
// DEBUG_INFO("Write MEM_ADDR_EVSE_CONFIG block(4k bytes) pass.\r\n");
}
else
{
// DEBUG_INFO("Write MEM_ADDR_EVSE_CONFIG block(4k bytes) fail.\r\n");
}
if (Module_Info.memory.Module_Config.op_bits.modelname){
for (uint16_t idx = 0; idx < MEM_REAL_LENGTH; idx++){
if ((Module_Info.memory.Module_Config.data.value[idx] == 0xffffffff) ||
(Module_Info.memory.Module_Config.data.value[idx] == 0)){
Module_Info.memory.Module_Config.data.value[idx] = mem_def_data[idx];
}
}
}
SetGfdMode();
Module_Info.memory.Module_Config.op_bits.update = OFF;
Module_Info.memory.Module_Config.op_bits.modelname = OFF;
}
else
{
// DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k bytes) fail.\r\n");
}
}
if (Module_Info.memory.Module_Config.op_bits.clear) // Memory clear
{
// Erase block data
if (FLASH_If_Erase(ADDR_FLASH_SECTOR_4, 1) == FLASHIF_OK)
{
// DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k byte) pass.\r\n");
Module_Info.memory.Module_Config.op_bits.clear = OFF;
}
else
{
// DEBUG_INFO("Erase MEM_ADDR_EVSE_CONFIG block(4k byte) fail.\r\n");
}
}
osDelay(1);
}
/* USER CODE END MemoryTask */
}
/* USER CODE BEGIN Header_Inkey_Task */
/**
* @brief Function implementing the InkeyTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Inkey_Task */
void Inkey_Task(void const * argument)
{
/* USER CODE BEGIN Inkey_Task */
/* Infinite loop */
for (;;)
{
// if( (AC_Sine[0].Vrms_AVG < 1600) ||
// (AC_Sine[1].Vrms_AVG < 1600) ||
// (AC_Sine[2].Vrms_AVG < 1600) )
// {
// if(Counter.nAC_Drop > 10)
// HAL_GPIO_WritePin(CSU_IO_HIGH_GPIO_Port, CSU_IO_HIGH_Pin, GPIO_PIN_RESET);
// else
// Counter.nAC_Drop++;
// }
// else
// {
// Counter.nAC_Drop = 0;
// HAL_GPIO_WritePin(CSU_IO_HIGH_GPIO_Port, CSU_IO_HIGH_Pin, GPIO_PIN_SET);
// }
// InterLock bit Detect ....
// if(HAL_GPIO_ReadPin(Relay_Interlock_GPIO_Port, Relay_Interlock_Pin) == 1)
// {
// Counter.nInterLock++;
// if(Counter.nInterLock >5)
// OpFlag.bInterLock = ON;
// }
// else
// {
// Counter.nInterLock = OpFlag.bInterLock = OFF;
// }
//
// if( OpFlag.bInterLock == ON )
// {
// OpFlag.bInterLock= OFF;
//
// HAL_GPIO_WritePin(Parallel_RLY_n_Enable_GPIO_Port, Parallel_RLY_n_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(Parallel_RLY_p_Enable_GPIO_Port, Parallel_RLY_p_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(Precharge_Enable_GPIO_Port, Precharge_Enable_Pin, GPIO_PIN_RESET);
//
// osDelay(10);
// }
//
osDelay(1);
}
/* USER CODE END Inkey_Task */
}
/* USER CODE BEGIN Header_Gfd_Left_Task */
/**
* @brief Function implementing the gfd_left_Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Gfd_Left_Task */
void Gfd_Left_Task(void const * argument)
{
/* USER CODE BEGIN Gfd_Left_Task */
/* Infinite loop */
// Fail : <= 100ohm * 950v = 95K ohm
// Warning : <= 475K ohm & > 95K ohm
// Pass : > 500ohm * 950v = 475K ohm
for(;;)
{
uint16_t _delay;
// if( ( Module_Info.Dip_status.Mode == m_GUN_1)
// || (Module_Info.Dip_status.Mode == m_ALL)
// 21-08-26 Henry
// if( Module_Info.Dip_status.Mode > 0
// )
{
switch(Module_Info.gfd_chk[0].Csu_State)
{
case IDLE: // idle
_delay = 1000;
if(bGfd_Correct[0] == 0)
{
Module_Info.gfd_chk[0].bResult_Gfd = GFD_UNKNOW;
Module_Info.gfd_chk[0].Rfd_State = 0;
// Module_Info.gfd_chk[0].bFirstGfd = 1;
HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
}
else
{
HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
}
Gfd.operation[0] = GFD_OFF;
Gfd.ToggleBridge[0] = 0;
break;
case CABLE_CHECK: // Cable check -- 500v
switch(Module_Info.gfd_chk[0].Rfd_State)
{
case 0:
// ********* On Up-Down Bridge
_delay = WAIT_FOR_RESISTER_CALC;
if(Module_Info.gfd_chk[0].bResult_Gfd == GFD_UNKNOW)
{
if(Gfd.operation[0] != Gfd.GfdMode[0]){
Gfd.operation[0] = Gfd.GfdMode[0];
printf("Charge mode ,SMR1 GFD Mode is %s\n\r", Gfd.GfdMode[0] == GFD_BALANCE ? "Balance" : "Unbalance");
}
if(Gfd.operation[0] == GFD_BALANCE){
HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
Gfd.SCBwaitfg[0] = 1;
}
if(Gfd.operation[0] == GFD_UNBALANCE){
// HAL_GPIO_WritePin(Drv_Up_GPIO_Port, Drv_Up_Pin, GPIO_PIN_SET);
// HAL_GPIO_WritePin(Drv_Down_GPIO_Port, Drv_Down_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
}
Module_Info.gfd_chk[0].P2PE_GFD = 0;
Module_Info.gfd_chk[0].N2PE_GFD = 0;
Module_Info.gfd_chk[0].U1_V = 0;
Module_Info.gfd_chk[0].U2_V = 0;
Module_Info.gfd_chk[0].Rfd_State++;
}
break;
case 1:
_delay = WAIT_FOR_RESISTER_CALC_LONG;
if( ! ((Module_Info.SMR_Gfd_Sense[0] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
&& (Module_Info.SMR_Gfd_Sense[0] < GFD_SENSE_VOLTAGE_UP_LIMIT)
&& (Module_Info.SMR1_Relay_V < GFD_WORKING_VOLTAGE))
){
Module_Info.gfd_chk[0].Rfd_State++;
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
// Self_Test_1_DC+
// HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
// HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
}else{
Module_Info.gfd_chk[0].R_GFD = 1000000; // 1000K Ohm
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
Module_Info.gfd_chk[0].Rfd_State = 0;
}
break;
case 2:
_delay = 10;
// begin isolation test ....Self_test
if(abs(Module_Info.SMR1_Relay_V - Gfd.IsolationVoltage) < LINE_VOLTAGE_TOLERANCE){ // ABS(20V)
Module_Info.gfd_chk[0].Gfd_Running_Count++;
if(Module_Info.gfd_chk[0].Gfd_Running_Count > 4){
if(Module_Info.gfd_chk[0].bFirstGfd ==1){
Module_Info.gfd_chk[0].Rfd_State = 5;
}else{
Module_Info.gfd_chk[0].Rfd_State++;
}
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
}
}else{
Module_Info.gfd_chk[0].Rfd_State = 0;
}
break;
case 3:
_delay = WAIT_FOR_RESISTER_CALC;
//----------------------------------------Banlance self check P2PE ----------------------------------------------
if(Gfd.operation[0] == GFD_BALANCE){
if(Gfd.SCBwaitfg[0] == 0 && Module_Info.gfd_chk[0].R_GFD != 0){
if( Module_Info.gfd_chk[0].R_GFD < GFD_SELF_TEST_RESISTOR){
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
Module_Info.gfd_chk[0].Rfd_State++;
// Gfd.SCBwaitfg[0] = 1;
}else{
Module_Info.gfd_chk[0].Gfd_Running_Count++;
Module_Info.gfd_chk[0].R_GFD = 0;
if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
printf("SMR1 GFD P2PE Self-check Fault ,P2PE = %dK\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
}
}
Module_Info.gfd_chk[0].R_GFD = 0;
}
}
//----------------------------------------Unbanlance self check P2PE ----------------------------------------------
if(Gfd.operation[0] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[0].P2PE_GFD !=0 && Module_Info.gfd_chk[0].N2PE_GFD != 0){
if( Module_Info.gfd_chk[0].P2PE_GFD < GFD_SELF_TEST_RESISTOR){
Module_Info.gfd_chk[0].Rfd_State++;
}else{
Module_Info.gfd_chk[0].Gfd_Running_Count++;
Module_Info.gfd_chk[0].U1_V = 0;
Module_Info.gfd_chk[0].U2_V = 0;
if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].P2PE_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
printf("SMR1 GFD P2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[0].P2PE_GFD,Module_Info.gfd_chk[0].N2PE_GFD);
}else{
Module_Info.gfd_chk[0].P2PE_GFD = 0;
}
}
Module_Info.gfd_chk[0].P2PE_GFD = 0;
}
}
break;
case 4:
_delay = WAIT_FOR_RESISTER_CALC_FAST;
//----------------------------------------Banlance self check N2PE ----------------------------------------------
if(Gfd.operation[0] == GFD_BALANCE){
if(Gfd.SCBwaitfg[0] == 0 && Module_Info.gfd_chk[0].R_GFD != 0){
if( Module_Info.gfd_chk[0].R_GFD < GFD_SELF_TEST_RESISTOR){
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
Module_Info.gfd_chk[0].Rfd_State++;
// Gfd.SCBwaitfg[0] = 1;
}else{
Module_Info.gfd_chk[0].Gfd_Running_Count++;
if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
printf("SMR1 GFD N2PE Self-check Fault ,N2PE = %dK\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
}
}
Module_Info.gfd_chk[0].R_GFD = 0;
}
}
//----------------------------------------Unbanlance self check N2PE ----------------------------------------------
if(Gfd.operation[0] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[0].N2PE_GFD < GFD_SELF_TEST_RESISTOR){
Module_Info.gfd_chk[0].Rfd_State++;
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
Module_Info.gfd_chk[0].U1_V = 0;
Module_Info.gfd_chk[0].U2_V = 0;
}else{
Module_Info.gfd_chk[0].Gfd_Running_Count++;
Module_Info.gfd_chk[0].N2PE_GFD = 0;
Module_Info.gfd_chk[0].U1_V = 0;
Module_Info.gfd_chk[0].U2_V = 0;
if(Module_Info.gfd_chk[0].Gfd_Running_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].N2PE_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
printf("SMR1 GFD N2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[0].P2PE_GFD,Module_Info.gfd_chk[0].N2PE_GFD);
}else{
Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
}
Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
break;
case 5:
_delay = WAIT_FOR_RESISTER_CALC;
//----------------------------------------Banlance self check open circle ----------------------------------------------
if(Gfd.operation[0] == GFD_BALANCE){
if(Gfd.SCBwaitfg[0] == 0 && Module_Info.gfd_chk[0].R_GFD != 0){
if( Module_Info.gfd_chk[0].R_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Running_Count++;
Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
}
if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
Exti.EXTI_SMR1_Flag = true;
printf("SMR1 GFD Open circle Self-check Fault ,R = %dK,\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
}
}else{
if( Module_Info.gfd_chk[0].R_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[0].R_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
Module_Info.gfd_chk[0].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[0].Gfd_Warning_Count > GFD_BALANCE_TEST_COUNT){
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[0].Rfd_State++;
printf("SMR1 GFD Open circle Self-check Warning ,R = %dK,\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
// }
}
}else{
// Gfd = Pass.
Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
Module_Info.gfd_chk[0].Rfd_State++;
printf("SMR1 GFD Self-check Pass ,R = %dK,\n\r", Module_Info.gfd_chk[0].R_GFD/1000);
}
}
Module_Info.gfd_chk[0].R_GFD = 0;
}
}
//----------------------------------------Unbanlance self check open circle ----------------------------------------------
if(Gfd.operation[0] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[0].P2PE_GFD !=0 && Module_Info.gfd_chk[0].N2PE_GFD != 0){
if( Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR ||
Module_Info.gfd_chk[0].N2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Running_Count++;
Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
}
if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_UNBALANCE_CABLECHK_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
if(Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].P2PE_GFD;
}else{
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].N2PE_GFD;
}
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
printf("SMR1 GFD Self-check Fault ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[0].P2PE_GFD/1000,Module_Info.gfd_chk[0].N2PE_GFD/1000);
}else{
Module_Info.gfd_chk[0].P2PE_GFD = 0;
Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
}else{
if((Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[0].P2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR) ||
(Module_Info.gfd_chk[0].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[0].N2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
Module_Info.gfd_chk[0].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[0].Gfd_Warning_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
// if(Module_Info.gfd_chk[0].bFirstGfd ==1){
// Module_Info.gfd_chk[0].bFirstGfd = 0;
// Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
// Module_Info.gfd_chk[0].Rfd_State++;
// }else{
Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[0].Rfd_State++;
printf("SMR1 GFD Self-check Warning ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[0].P2PE_GFD/1000,Module_Info.gfd_chk[0].N2PE_GFD/1000);
// }
}else{
Module_Info.gfd_chk[0].P2PE_GFD = 0;
Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
}else{
// Gfd = Pass.
Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
Module_Info.gfd_chk[0].Rfd_State++;
printf("SMR1 GFD Self-check pass,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[0].P2PE_GFD/1000,Module_Info.gfd_chk[0].N2PE_GFD/1000);
}
}
// Module_Info.gfd_chk[0].P2PE_GFD = 0;
// Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
}
break;
default:
if((Module_Info.gfd_chk[0].bResult_Gfd == GFD_UNKNOW) ||
(Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)){
Module_Info.gfd_chk[0].Rfd_State = 0;
}else{
Module_Info.gfd_chk[0].Rfd_State = 10;
}
break;
}
break;
case PRECHARGE:
case CHARGE:
//預防系統在cable check未完成時,進入充電狀態
if(Module_Info.gfd_chk[0].Rfd_State < 10 && Module_Info.gfd_chk[0].bResult_Gfd != GFD_FAIL){
Module_Info.gfd_chk[0].Rfd_State =10;
}
//預防系統在cable check未完成時,進入充電狀態
HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
if(Gfd.operation[0] != Gfd.GfdMode[0]){
Gfd.operation[0] = Gfd.GfdMode[0];
}
switch(Module_Info.gfd_chk[0].Rfd_State){
case 10:
// ********* On Up-Down Bridge
_delay = 1;
Module_Info.gfd_chk[0].Rfd_State++;
break;
case 11:
_delay = WAIT_FOR_RESISTER_CALC_FAST;
if( ! ((Module_Info.SMR_Gfd_Sense[0] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
&& (Module_Info.SMR_Gfd_Sense[0] < GFD_SENSE_VOLTAGE_UP_LIMIT)
&& (Module_Info.SMR1_Relay_V < GFD_WORKING_VOLTAGE))){
Module_Info.gfd_chk[0].Rfd_State++;
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
}else{ // Not Match to Ground Test condiction.
// Module_Info.gfd_chk[0].R_GFD = 1000000; // 1000K Ohm
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
Module_Info.gfd_chk[0].Rfd_State = 10;
}
break;
case 12:
_delay = WAIT_FOR_RESISTER_CALC_FAST;
if(Gfd.operation[0] == GFD_BALANCE){
if(Module_Info.gfd_chk[0].R_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
Module_Info.gfd_chk[0].Gfd_Running_Count++;
}
if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
}
}else{
if( ( Module_Info.gfd_chk[0].R_GFD <= (GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) ) &&
(Module_Info.gfd_chk[0].R_GFD > ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR))){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
Module_Info.gfd_chk[0].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[0].Gfd_Warning_Count >GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[0].Rfd_State++;
}
}else{
Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
Module_Info.gfd_chk[0].Rfd_State++;
}
}
}else if(Gfd.operation[0] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[0].P2PE_GFD !=0 && Module_Info.gfd_chk[0].N2PE_GFD != 0){
if( Module_Info.gfd_chk[0].P2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
Module_Info.gfd_chk[0].N2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Warning_Count = 0;
Module_Info.gfd_chk[0].Gfd_Running_Count++;
}
if(Module_Info.gfd_chk[0].Gfd_Running_Count >GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = ON;
Exti.EXTI_SMR1_Flag = true;
Module_Info.gfd_chk[0].R_GFD_Fail = Module_Info.gfd_chk[0].R_GFD;
Module_Info.gfd_chk[0].Rfd_State_Fail = Module_Info.gfd_chk[0].Rfd_State;
Module_Info.gfd_chk[0].SMR_Voltage_Fail = Module_Info.SMR1_Relay_V;
Module_Info.gfd_chk[0].Rfd_State = 0;
}else{
Module_Info.gfd_chk[0].P2PE_GFD = 0;
Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
}else{
if( (Module_Info.gfd_chk[0].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[0].P2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
(Module_Info.gfd_chk[0].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[0].N2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR1_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[0].Gfd_Running_Count = 0;
Module_Info.gfd_chk[0].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[0].Gfd_Warning_Count >GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[0].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[0].Rfd_State++;
}else{
Module_Info.gfd_chk[0].P2PE_GFD = 0;
Module_Info.gfd_chk[0].N2PE_GFD = 0;
}
}else{
Module_Info.gfd_chk[0].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_0 = OFF;
Module_Info.gfd_chk[0].Rfd_State++;
}
}
}
}
break;
default:
if(Module_Info.gfd_chk[0].bResult_Gfd != GFD_FAIL)
Module_Info.gfd_chk[0].Rfd_State = 10;
break;
}
break;
default:
break;
}
if(Module_Info.gfd_chk[0].bResult_Gfd == GFD_FAIL)
{
_delay = 100;
HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
bRelayFeedback = 1;
}
vTaskDelay( _delay / portTICK_RATE_MS);
}
// else
// osDelay(1);
}
/* USER CODE END Gfd_Left_Task */
}
/* USER CODE BEGIN Header_Gfd_Right_Task */
/**
* @brief Function implementing the gfd_right_Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_Gfd_Right_Task */
void Gfd_Right_Task(void const * argument)
{
/* USER CODE BEGIN Gfd_Right_Task */
/* Infinite loop */
// Fail : <= 100ohm * 950v = 95K ohm
// Warning : <= 475K ohm & > 95K ohm
// Pass : > 500ohm * 950v = 475K
for(;;)
{
uint16_t _delay;
// if( ( Module_Info.Dip_status.Mode == m_GUN_1)
// || (Module_Info.Dip_status.Mode == m_ALL)
// 21-08-26 Henry
// if( Module_Info.Dip_status.Mode > 0
// )
{
switch(Module_Info.gfd_chk[1].Csu_State)
{
case IDLE: // idle
_delay = 1000;
if(bGfd_Correct[1] == 0)
{
Module_Info.gfd_chk[1].bResult_Gfd = GFD_UNKNOW;
Module_Info.gfd_chk[1].Rfd_State = 0;
// Module_Info.gfd_chk[0].bFirstGfd = 1;
HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
}
else
{
HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
}
Gfd.operation[1] = GFD_OFF;
Gfd.ToggleBridge[1] = 0;
break;
case CABLE_CHECK: // Cable check -- 500v
switch(Module_Info.gfd_chk[1].Rfd_State)
{
case 0:
// ********* On Up-Down Bridge
_delay = WAIT_FOR_RESISTER_CALC;
if(Module_Info.gfd_chk[1].bResult_Gfd == GFD_UNKNOW)
{
if(Gfd.operation[1] != Gfd.GfdMode[1]){
Gfd.operation[1] = Gfd.GfdMode[1];
printf("Charge mode ,SMR2 GFD Mode is %s\n\r", Gfd.GfdMode[1] == GFD_BALANCE ? "Balance" : "Unbalance");
}
if(Gfd.operation[1] == GFD_BALANCE){
HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
Gfd.SCBwaitfg[1] = 1;
}
if(Gfd.operation[1] == GFD_UNBALANCE){
// HAL_GPIO_WritePin(Drv_Up_2_GPIO_Port, Drv_Up_2_Pin, GPIO_PIN_RESET);
// HAL_GPIO_WritePin(Drv_Down_2_GPIO_Port, Drv_Down_2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_SET);
}
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
Module_Info.gfd_chk[1].U1_V = 0;
Module_Info.gfd_chk[1].U2_V = 0;
Module_Info.gfd_chk[1].Rfd_State++;
}
break;
case 1:
_delay = WAIT_FOR_RESISTER_CALC_LONG;
if( ! ((Module_Info.SMR_Gfd_Sense[1] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
&& (Module_Info.SMR_Gfd_Sense[1] < GFD_SENSE_VOLTAGE_UP_LIMIT)
&& (Module_Info.SMR2_Relay_V < GFD_WORKING_VOLTAGE))
){
Module_Info.gfd_chk[1].Rfd_State++;
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
// Self_Test_1_DC+
// HAL_GPIO_WritePin(Sys1_Self_Test_DC_p_GPIO_Port, Sys1_Self_Test_DC_p_Pin, GPIO_PIN_SET);
// HAL_GPIO_WritePin(Sys1_Self_Test_DC_n_GPIO_Port, Sys1_Self_Test_DC_n_Pin, GPIO_PIN_SET);
}else{
Module_Info.gfd_chk[1].R_GFD = 1000000; // 1000K Ohm
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
Module_Info.gfd_chk[1].Rfd_State = 0;
}
break;
case 2:
_delay = 10;
if(abs(Module_Info.SMR2_Relay_V - Gfd.IsolationVoltage) < LINE_VOLTAGE_TOLERANCE){ // ABS(20V)
Module_Info.gfd_chk[1].Gfd_Running_Count++;
if(Module_Info.gfd_chk[1].Gfd_Running_Count > 4){
Module_Info.gfd_chk[1].Rfd_State++;
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
}
}else{
Module_Info.gfd_chk[1].Rfd_State = 0;
}
break;
case 3:
_delay = WAIT_FOR_RESISTER_CALC;
//----------------------------------------Banlance self check P2PE ----------------------------------------------
if(Gfd.operation[1] == GFD_BALANCE){
if(Gfd.SCBwaitfg[1] == 0 && Module_Info.gfd_chk[1].R_GFD != 0){
if( Module_Info.gfd_chk[1].R_GFD < GFD_SELF_TEST_RESISTOR){
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_SET);
Module_Info.gfd_chk[1].Rfd_State++;
// Gfd.SCBwaitfg[1] = 1;
}else{
Module_Info.gfd_chk[1].Gfd_Running_Count++;
if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
printf("SMR2 GFD P2PE Self-check Fault ,P2PE = %dK\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
}
}
Module_Info.gfd_chk[1].R_GFD = 0;
}
}
//----------------------------------------Unbanlance self check P2PE ----------------------------------------------
if(Gfd.operation[1] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[1].P2PE_GFD !=0 && Module_Info.gfd_chk[1].N2PE_GFD != 0){
if( Module_Info.gfd_chk[1].P2PE_GFD < GFD_SELF_TEST_RESISTOR){
Module_Info.gfd_chk[1].Rfd_State++;
}else{
Module_Info.gfd_chk[1].Gfd_Running_Count++;
Module_Info.gfd_chk[1].U1_V = 0;
Module_Info.gfd_chk[1].U2_V = 0;
if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].P2PE_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
printf("SMR2 GFD P2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[1].P2PE_GFD,Module_Info.gfd_chk[1].N2PE_GFD);
}else{
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}
Module_Info.gfd_chk[1].P2PE_GFD = 0;
}
}
break;
case 4:
_delay = WAIT_FOR_RESISTER_CALC_FAST;
//----------------------------------------Banlance self check N2PE ----------------------------------------------
if(Gfd.operation[1] == GFD_BALANCE){
if(Gfd.SCBwaitfg[1] == 0 && Module_Info.gfd_chk[1].R_GFD != 0){
if( Module_Info.gfd_chk[1].R_GFD < GFD_SELF_TEST_RESISTOR){
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
Module_Info.gfd_chk[1].Rfd_State++;
// Gfd.SCBwaitfg[1] = 1;
}else{
Module_Info.gfd_chk[1].Gfd_Running_Count++;
if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
printf("SMR2 GFD N2PE Self-check Fault ,N2PE = %dK\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
}
}
Module_Info.gfd_chk[1].R_GFD = 0;
}
}
//----------------------------------------Unbanlance self check N2PE ----------------------------------------------
if(Gfd.operation[1] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[1].N2PE_GFD < GFD_SELF_TEST_RESISTOR){
Module_Info.gfd_chk[1].Rfd_State++;
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
Module_Info.gfd_chk[1].U1_V = 0;
Module_Info.gfd_chk[1].U2_V = 0;
}else{
Module_Info.gfd_chk[1].Gfd_Running_Count++;
Module_Info.gfd_chk[1].U1_V = 0;
Module_Info.gfd_chk[1].U2_V = 0;
if(Module_Info.gfd_chk[1].Gfd_Running_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].N2PE_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
printf("SMR2 GFD N2PE Self-check Fault ,P2PE = %d, N2PE = %d \n\r", Module_Info.gfd_chk[1].P2PE_GFD,Module_Info.gfd_chk[1].N2PE_GFD);
}else{
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}
break;
case 5:
_delay = WAIT_FOR_RESISTER_CALC;
//----------------------------------------Banlance self check open circle ----------------------------------------------
if(Gfd.operation[1] == GFD_BALANCE){
if(Gfd.SCBwaitfg[1] == 0 && Module_Info.gfd_chk[1].R_GFD != 0){
if( Module_Info.gfd_chk[1].R_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Running_Count++;
Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
}
if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_BALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
printf("SMR2 GFD Open circle Self-check Fault ,R = %dK,\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
}
}else{
if( Module_Info.gfd_chk[1].R_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[1].R_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
Module_Info.gfd_chk[1].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_BALANCE_TEST_COUNT){
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[1].Rfd_State++;
printf("SMR2 GFD Open circle Self-check Warning ,R = %dK,\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
}
}else{
// Gfd = Pass.
Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
Module_Info.gfd_chk[1].Rfd_State++;
printf("SMR2 GFD Self-check Pass ,R = %dK,\n\r", Module_Info.gfd_chk[1].R_GFD/1000);
}
}
Module_Info.gfd_chk[1].R_GFD = 0;
}
}
//----------------------------------------Unbanlance self check open circle ----------------------------------------------
if(Gfd.operation[1] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[1].P2PE_GFD !=0 && Module_Info.gfd_chk[1].N2PE_GFD != 0){
if( Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR ||
Module_Info.gfd_chk[1].N2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Running_Count++;
Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
}
if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_UNBALANCE_CABLECHK_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
if(Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR){
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].P2PE_GFD;
}else{
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].N2PE_GFD;
}
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
printf("SMR2 GFD Self-check Fault ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[1].P2PE_GFD/1000,Module_Info.gfd_chk[1].N2PE_GFD/1000);
}else{
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}else{
if((Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[1].P2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR) ||
(Module_Info.gfd_chk[1].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[1].N2PE_GFD > GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE + GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
Module_Info.gfd_chk[1].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_UNBALANCE_CABLECHK_TEST_COUNT){
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[1].Rfd_State++;
printf("SMR2 GFD Self-check Warning ,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[1].P2PE_GFD/1000,Module_Info.gfd_chk[1].N2PE_GFD/1000);
}else{
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}else{
// Gfd = Pass.
Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
Module_Info.gfd_chk[1].Rfd_State++;
printf("SMR2 GFD Self-check pass,P2PE = %dK, N2PE = %dK \n\r", Module_Info.gfd_chk[1].P2PE_GFD/1000,Module_Info.gfd_chk[1].N2PE_GFD/1000);
}
}
// Module_Info.gfd_chk[1].P2PE_GFD = 0;
// Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}
break;
default:
if((Module_Info.gfd_chk[1].bResult_Gfd == GFD_UNKNOW) ||
(Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)){
Module_Info.gfd_chk[1].Rfd_State = 0;
}else{
Module_Info.gfd_chk[1].Rfd_State = 10;
}
break;
}
break;
case PRECHARGE:
case CHARGE:
//預防系統在cable check未完成時,進入充電狀態
if(Module_Info.gfd_chk[1].Rfd_State < 10 && Module_Info.gfd_chk[1].bResult_Gfd != GFD_FAIL){
Module_Info.gfd_chk[1].Rfd_State =10;
}
//預防系統在cable check未完成時,進入充電狀態
HAL_GPIO_WritePin(Sys2_Self_Test_DC_p_GPIO_Port, Sys2_Self_Test_DC_p_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Sys2_Self_Test_DC_n_GPIO_Port, Sys2_Self_Test_DC_n_Pin, GPIO_PIN_RESET);
if(Gfd.operation[1] != Gfd.GfdMode[1]){
Gfd.operation[1] = Gfd.GfdMode[1];
}
switch(Module_Info.gfd_chk[1].Rfd_State){
case 10:
// ********* On Up-Down Bridge
_delay = 1;
Module_Info.gfd_chk[1].Rfd_State++;
break;
case 11:
_delay = WAIT_FOR_RESISTER_CALC_FAST;
if( ! ((Module_Info.SMR_Gfd_Sense[1] > GFD_SENSE_VOLTAGE_DOWN_LIMIT)
&& (Module_Info.SMR_Gfd_Sense[1] < GFD_SENSE_VOLTAGE_UP_LIMIT)
&& (Module_Info.SMR2_Relay_V < GFD_WORKING_VOLTAGE))){
Module_Info.gfd_chk[1].Rfd_State++;
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
}else{ // Not Match to Ground Test condiction.
// Module_Info.gfd_chk[1].R_GFD = 1000000; // 1000K Ohm
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
Module_Info.gfd_chk[1].Rfd_State = 10;
}
break;
case 12:
_delay = WAIT_FOR_RESISTER_CALC_FAST;
if(Gfd.operation[1] == GFD_BALANCE){
if(Module_Info.gfd_chk[1].R_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
Module_Info.gfd_chk[1].Gfd_Running_Count++;
}
if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
}
}else{
if( ( Module_Info.gfd_chk[1].R_GFD <= (GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE) ) &&
( Module_Info.gfd_chk[1].R_GFD > ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR))){
if( Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
Module_Info.gfd_chk[1].Gfd_Warning_Count++;
}
if( Module_Info.gfd_chk[1].Gfd_Warning_Count > GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[1].Rfd_State++;
}
}else{
Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
Module_Info.gfd_chk[1].Rfd_State++;
}
}
}else if(Gfd.operation[1] == GFD_UNBALANCE){
if(Module_Info.gfd_chk[1].P2PE_GFD !=0 && Module_Info.gfd_chk[1].N2PE_GFD != 0){
if( Module_Info.gfd_chk[1].P2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
Module_Info.gfd_chk[1].N2PE_GFD <= ((GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Warning_Count = 0;
Module_Info.gfd_chk[1].Gfd_Running_Count++;
}
if(Module_Info.gfd_chk[1].Gfd_Running_Count >GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_FAIL;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = ON;
Exti.EXTI_SMR2_Flag = true;
Module_Info.gfd_chk[1].R_GFD_Fail = Module_Info.gfd_chk[1].R_GFD;
Module_Info.gfd_chk[1].Rfd_State_Fail = Module_Info.gfd_chk[1].Rfd_State;
Module_Info.gfd_chk[1].SMR_Voltage_Fail = Module_Info.SMR2_Relay_V;
Module_Info.gfd_chk[1].Rfd_State = 0;
}else{
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}else{
if( (Module_Info.gfd_chk[1].P2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[1].P2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR) ||
(Module_Info.gfd_chk[1].N2PE_GFD <= GFD_RESISTOR_WARNING * EVSE_MAX_OUTPUT_VOLTAGE &&
Module_Info.gfd_chk[1].N2PE_GFD > (GFD_RESISTOR_FAULT * EVSE_MAX_OUTPUT_VOLTAGE)+GFD_TOLERANCE_RESISTOR)){
if(Module_Info.SMR2_Relay_V >= GFD_WORKING_VOLTAGE){
Module_Info.gfd_chk[1].Gfd_Running_Count = 0;
Module_Info.gfd_chk[1].Gfd_Warning_Count++;
}
if(Module_Info.gfd_chk[1].Gfd_Warning_Count >GFD_UNBALANCE_TEST_COUNT){
Module_Info.gfd_chk[1].bResult_Gfd = GFD_WARNING;
Module_Info.gfd_chk[1].Rfd_State++;
}else{
Module_Info.gfd_chk[1].P2PE_GFD = 0;
Module_Info.gfd_chk[1].N2PE_GFD = 0;
}
}else{
Module_Info.gfd_chk[1].bResult_Gfd = GFD_PASS;
Module_Info.Alarm_CSU.flags.Gfd_Alarm_1 = OFF;
Module_Info.gfd_chk[1].Rfd_State++;
}
}
}
}
break;
default:
if(Module_Info.gfd_chk[1].bResult_Gfd != GFD_FAIL)
Module_Info.gfd_chk[1].Rfd_State = 10;
break;
}
break;
default:
break;
}
if(Module_Info.gfd_chk[1].bResult_Gfd == GFD_FAIL)
{
_delay = 100;
HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
bRelayFeedback = 1;
}
vTaskDelay( _delay / portTICK_RATE_MS);
}
// else
// osDelay(1);
}
/* USER CODE END Gfd_Right_Task */
}
/* USER CODE BEGIN Header_SF_Test_Task */
/**
* @brief Function implementing the sf_test_Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_SF_Test_Task */
void SF_Test_Task(void const * argument)
{
/* USER CODE BEGIN SF_Test_Task */
/* Infinite loop */
uint16_t temp;
for (;;)
{
if (sf_t.SF_Config.SF_Act)
{
//Check AC voltage bit 0 ~ 2
//CheckACVoltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
for (int n = 0; n < 3; n++)
{
printf("AC %d:%d\r\n",n,AC_Sine[n].Vrms_AVG);
if (AC_Sine[n].Vrms_AVG > 2200)
{temp = AC_Sine[n].Vrms_AVG - 2200;
}else{
temp = 2200 - AC_Sine[n].Vrms_AVG;
}
if (temp >= 200){
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
}else{
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
}
sf_t.SF_Config.SF_State++;
}
}
// Check SMR1_Voltage bit 3
//CheckSMR1Voltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR1 V:%d\r\n",Module_Info.SMR1_Relay_V);
if (Module_Info.SMR1_Relay_V > 1500){
temp = Module_Info.SMR1_Relay_V - 1500;
}else{
temp = 1500 - Module_Info.SMR1_Relay_V;
}
if (temp >= 30){
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
}else{
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
}
sf_t.SF_Config.SF_State++;
}
// Check SMR2_Voltage bit 4
//CheckSMR2Voltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR2 V:%d\r\n",Module_Info.SMR2_Relay_V);
if (Module_Info.SMR2_Relay_V > 1500)
temp = Module_Info.SMR2_Relay_V - 1500;
else
temp = 1500 - Module_Info.SMR2_Relay_V;
if (temp >= 30)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
// Check SMR3_Voltage bit 5
//CheckSMR3Voltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR3 V:%d\r\n",Module_Info.SMR3_Relay_V);
if (Module_Info.SMR3_Relay_V > 1500)
temp = Module_Info.SMR3_Relay_V - 1500;
else
temp = 1500 - Module_Info.SMR3_Relay_V;
if (temp >= 30)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
// Check SMR4_Voltage bit 6
//CheckSMR4Voltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR4V :%d\r\n",Module_Info.SMR4_Relay_V);
if (Module_Info.SMR4_Relay_V > 1500)
temp = Module_Info.SMR4_Relay_V - 1500;
else
temp = 1500 - Module_Info.SMR4_Relay_V;
if (temp >= 30)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
// Check SMR5_Voltage bit 7
//CheckSMR5Voltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR5 V:%d\r\n",Module_Info.SMR5_Relay_V);
if (Module_Info.SMR5_Relay_V > 1500)
temp = Module_Info.SMR5_Relay_V - 1500;
else
temp = 1500 - Module_Info.SMR5_Relay_V;
if (temp >= 30)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
// Check SMR6_Voltage bit 8
//CheckSMR6Voltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR6 V:%d\r\n",Module_Info.SMR6_Relay_V);
if (Module_Info.SMR6_Relay_V > 1500)
temp = Module_Info.SMR6_Relay_V - 1500;
else
temp = 1500 - Module_Info.SMR6_Relay_V;
if (temp >= 30)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
// Check SMR6_Voltage bit 9
//CheckDCInVoltage:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("DC In1:%d\r\n",Module_Info.BAT_Voltage);
if (Module_Info.BAT_Voltage > 1500)
temp = Module_Info.BAT_Voltage - 1500;
else
temp = 1500 - Module_Info.BAT_Voltage;
if (temp >= 50)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
//Check IO bit 10~32
//CheckIO:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
nTestIO(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin, sf_t.SF_Config.SF_State++);
}
nTestIO(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
nTestIO(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, AC_Contactor_Ret_GPIO_Port, AC_Contactor_Ret_Pin, sf_t.SF_Config.SF_State++);
}
nTestIO(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
if(BridgeBoard){
if(CSRHB_VER == 1){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
nTestIO(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
}
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
nTestIO(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin, sf_t.SF_Config.SF_State++);
nTestIO(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin, sf_t.SF_Config.SF_State++);
}
nTestEXT_INT(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, &EXTI_TestFlag1, sf_t.SF_Config.SF_State++);
nTestEXT_INT(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, &EXTI_TestFlag2, sf_t.SF_Config.SF_State++);
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
nTestEXT_INT(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, &EXTI_TestFlag3, sf_t.SF_Config.SF_State++);
nTestEXT_INT(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, &EXTI_TestFlag4, sf_t.SF_Config.SF_State++);
nTestEXT_INT(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, &EXTI_TestFlag5, sf_t.SF_Config.SF_State++);
nTestEXT_INT(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, &EXTI_TestFlag6, sf_t.SF_Config.SF_State++);
}
// Check SMR1_Current bit 33
//CheckSMR1Current:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR1 C:%d\r\n",Module_Info.SMR1_Relay_C);
if (Module_Info.SMR1_Relay_C > 1180)
temp = Module_Info.SMR1_Relay_C - 1180;
else
temp = 1180 - Module_Info.SMR1_Relay_C;
// In Range( 118A +- 5A )
if (temp >= 50)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
// Check SMR2_Current bit 34
//CheckSMR2Current:
if(BridgeBoard){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}else{
printf("SMR2 C:%d\r\n",Module_Info.SMR2_Relay_C);
if (Module_Info.SMR2_Relay_C > 1180)
temp = Module_Info.SMR2_Relay_C - 1180;
else
temp = 1180 - Module_Info.SMR2_Relay_C;
// In Range( 118A +- 5A )
if (temp >= 50)
sf_t.SF_Config.data.value |= ((uint64_t)1 << sf_t.SF_Config.SF_State); // Fail
else
sf_t.SF_Config.data.value &= ~((uint64_t)1 << sf_t.SF_Config.SF_State);
sf_t.SF_Config.SF_State++;
}
//CheckFinish:
sf_t.SF_Config.SF_Act = 0; // Turn Off
if (sf_t.SF_Config.data.value > 0)
{
sf_t.SF_Config.SF_test_status = 0; // Fail
}
else
{
sf_t.SF_Config.SF_test_status = 1; // Pass
}
}
osDelay(1);
}
/* USER CODE END SF_Test_Task */
}
/* USER CODE BEGIN Header_LedTask */
/**
* @brief Function implementing the _ledTask_ thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_LedTask */
void LedTask(void const * argument)
{
/* USER CODE BEGIN LedTask */
/* Infinite loop */
for (;;)
{
if (dir == 0)
{
if (pwmVal < 500)
{
if (GainCaliFlag)
pwmVal++;
else
pwmVal += 20;
__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_2, pwmVal);
}
else
{
dir = 1;
if (GainCaliFlag)
osDelay(400);
else
osDelay(100);
}
}
else
{
if (pwmVal > 0)
{
if (GainCaliFlag)
pwmVal--;
else
pwmVal -= 20;
__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_2, pwmVal);
}
else
{
dir = 0;
if (GainCaliFlag)
osDelay(400);
else
osDelay(100);
}
}
osDelay(1);
}
/* USER CODE END LedTask */
}
/* USER CODE BEGIN Header_canTask */
/**
* @brief Function implementing the CANTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_canTask */
void canTask(void const * argument)
{
/* USER CODE BEGIN canTask */
CAN1_sFilterConfig.FilterBank = 0;
CAN1_sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
CAN1_sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
// CAN1_sFilterConfig.FilterIdHigh =(0x0450 << 3) >> 16;
// CAN1_sFilterConfig.FilterIdLow = (0x0450 << 3) | CAN_ID_EXT;
// CAN1_sFilterConfig.FilterMaskIdHigh =(0x0450 << 3) >> 16;
// CAN1_sFilterConfig.FilterMaskIdLow =(0x0450 << 3) ;
CAN1_sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
CAN1_sFilterConfig.FilterActivation = ENABLE;
CAN1_sFilterConfig.SlaveStartFilterBank = 0;
if(HAL_CAN_ConfigFilter(&hcan1, &CAN1_sFilterConfig) != HAL_OK)
{
#ifdef DEBUG
DEBUG_ERROR("CAN1 filter initialization fail...\r\n");
#endif
/* Filter configuration Error */
Error_Handler();
}
if (HAL_CAN_Start(&hcan1) != HAL_OK)
{
#ifdef DEBUG
DEBUG_ERROR("CAN1 start fail...\r\n");
#endif
/* Start Error */
Error_Handler();
}
if (HAL_CAN_ActivateNotification(&hcan1, CAN_IT_RX_FIFO0_MSG_PENDING) != HAL_OK)
{
#ifdef DEBUG
DEBUG_ERROR("CAN1 activateNotification fail...\r\n");
#endif
/* Notification Error */
Error_Handler();
}
//CAN1_RX_EndFlag = 1; for 2 board can test
/* Infinite loop */
for(;;)
{
if(CAN1_RX_EndFlag){
if(HAL_CAN_GetTxMailboxesFreeLevel( &hcan1 ) != 0){
CAN1_TxHeader.ExtId = 0x456;
CAN1_TxHeader.IDE = CAN_ID_EXT; // IDE = CAN_ID_EXT means Extended ID message.
//CAN1_TxHeader.SRR = 0; //stm32 hal lib not .SRR
CAN1_TxHeader.RTR = 0; // Not an RTR message.
CAN1_TxHeader.DLC = 1; // Send one byte of data.
CAN1_TxData[0] = 0xAA;
// CAN1_TxData[1] = 0x22;
// CAN1_TxData[2] = 0x33;
// CAN1_TxData[3] = 0x44;
// CAN1_TxData[4] = 0x55;
// CAN1_TxData[5] = 0x66;
// CAN1_TxData[6] = 0x77;
// CAN1_TxData[7] +=1;
if (HAL_CAN_AddTxMessage(&hcan1, &CAN1_TxHeader, CAN1_TxData, &CAN1_TxMailbox) != HAL_OK)
{
Error_Handler();
}
CAN1_RX_EndFlag = 0;
// osDelay(1000);
}
}
// osDelay(1000);
// if(HAL_CAN_GetTxMailboxesFreeLevel( &hcan1 ) != 0){
// CAN1_TxHeader.ExtId = 0x123;
// CAN1_TxHeader.IDE = CAN_ID_EXT; // IDE = CAN_ID_EXT means Extended ID message.
// //CAN1_TxHeader.SRR = 0; //stm32 hal lib not .SRR
// CAN1_TxHeader.RTR = 0; // Not an RTR message.
// CAN1_TxHeader.DLC = 8; // Send one byte of data.
// CAN1_TxData[0] = 0xAA;
// CAN1_TxData[1] = 0xBB;
// CAN1_TxData[2] = 0xCC;
// CAN1_TxData[3] = 0xDD;
// CAN1_TxData[4] = 0xEE;
// CAN1_TxData[5] = 0xFF;
// CAN1_TxData[6] = 0x11;
// CAN1_TxData[7] = 0x22;
// if (HAL_CAN_AddTxMessage(&hcan1, &CAN1_TxHeader, CAN1_TxData, &CAN1_TxMailbox) != HAL_OK)
// {
// Error_Handler();
// }
// }
osDelay(1);
}
/* USER CODE END canTask */
}
/* Private application code --------------------------------------------------*/
/* USER CODE BEGIN Application */
/**
* @brief Sets the selected data port bits.
* @param GPIOx: where x can be (A..G) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bits to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
// void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
//{
// /* Check the parameters */
// assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
// assert_param(IS_GPIO_PIN(GPIO_Pin));
//
// GPIOx->BSRR = GPIO_Pin;
// }
/**
* @brief Clears the selected data port bits.
* @param GPIOx: where x can be (A..G) to select the GPIO peripheral.
* @param GPIO_Pin: specifies the port bits to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
// void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
//{
// /* Check the parameters */
// assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
// assert_param(IS_GPIO_PIN(GPIO_Pin));
//
// GPIOx->BRR = GPIO_Pin;
// }
void nTestIO(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem)
{
HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
HAL_Delay(Multi_Relay_Delay_Time);
if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_RESET)
sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
else{
sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
return;
}
HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
HAL_Delay(Multi_Relay_Delay_Time);
if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_SET)
sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
else
sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
}
void nTestIO1(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin, GPIO_TypeDef *GPIO_in_port, uint16_t GPIO_in_Pin, uint8_t nItem)
{
HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
HAL_Delay(Multi_Relay_Delay_Time);
if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_SET)
sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
else{
sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
return;
}
HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
HAL_Delay(Multi_Relay_Delay_Time);
if (HAL_GPIO_ReadPin(GPIO_in_port, GPIO_in_Pin) == GPIO_PIN_RESET)
sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
else
sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
}
void nTestEXT_INT(GPIO_TypeDef *GPIO_out_port, uint16_t GPIO_out_Pin,uint8_t *flag,uint8_t nItem)
{
*flag = 0;
HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_SET);
HAL_Delay(Multi_Relay_Delay_Time);
if(*flag){
sf_t.SF_Config.data.value &= ~((uint64_t)1 << nItem);
}else{
sf_t.SF_Config.data.value |= ((uint64_t)1 << nItem); // Fail
}
HAL_GPIO_WritePin(GPIO_out_port, GPIO_out_Pin, GPIO_PIN_RESET);
HAL_Delay(Multi_Relay_Delay_Time);
}
uint8_t isValidCheckSum(void)
{
uint8_t result = OFF;
uint8_t chksum = 0x00;
if (uart_rx_buffer[0] == PROTOCOL_HEAD)
{
for (int idx = 0; idx < (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)); idx++)
{
chksum ^= uart_rx_buffer[(6 + idx)];
}
if (chksum == uart_rx_buffer[(6 + (uart_rx_buffer[4] | (uart_rx_buffer[5] << 8)))])
result = ON;
}
return result;
}
// two points
void CLC_Corr_Gain_Par(uint16_t SpecData_H, uint16_t SpecData_L, uint16_t MCUData_H, uint16_t MCUData_L, float *GainA, float *GainB)
{
*GainA = (float)((float)(SpecData_H - SpecData_L) / (float)(MCUData_H - MCUData_L));
*GainB = (float)(SpecData_H - (float)(*GainA * MCUData_H));
}
// three points
uint16_t acVolCalWithGain(uint16_t orgValue, uint8_t phase)
{
uint16_t result = 0;
if ((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) &&
(Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]) &&
(Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] != Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))
{
// If denominator not equal 0, calculate orgValue with Lagrange polynomial
result = (uint16_t)((((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][METER_DATA] +
(((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][METER_DATA] +
(((orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (orgValue - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA])) / (float)((Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 0][MCU_DATA]) * (Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][MCU_DATA] - Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 1][MCU_DATA]))) * Module_Info.memory.Module_Config.data.item.Correction_Volt[(phase * 3) + 2][METER_DATA]);
}
else
{
// If denominator equal 0, pass orgValue as result
result = orgValue;
}
return result;
}
void CalcuteGFDMaxMinValue(uint8_t gunindex){
if(Gfd.DnBridgeMaxV[gunindex] == 0){
Gfd.DnBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Gfd.DnBridgeMinV[gunindex] == 0){
Gfd.DnBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Module_Info.SMR_Gfd_Sense[gunindex] > Gfd.DnBridgeMaxV[gunindex]){
Gfd.DnBridgeMaxV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Module_Info.SMR_Gfd_Sense[gunindex] < Gfd.DnBridgeMinV[gunindex]){
Gfd.DnBridgeMinV[gunindex] = Module_Info.SMR_Gfd_Sense[gunindex];
}
if(Gfd.operation[gunindex] == GFD_BALANCE){
if(Gfd.MaxP2PE[gunindex] == 0){
Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
}
if(Gfd.MinP2PE[gunindex] == 0){
Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
}
if(Module_Info.gfd_chk[gunindex].R_GFD > Gfd.MaxP2PE[gunindex]){
Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
}
if(Module_Info.gfd_chk[gunindex].R_GFD < Gfd.MinP2PE[gunindex]){
Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].R_GFD;
}
}
if(Gfd.operation[gunindex] == GFD_UNBALANCE){
if(Gfd.MaxP2PE[gunindex] == 0){
Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
}
if(Gfd.MinP2PE[gunindex] == 0){
Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
}
if(Gfd.MaxN2PE[gunindex] == 0){
Gfd.MaxN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
}
if(Gfd.MinN2PE[gunindex] == 0){
Gfd.MinN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
}
if(Module_Info.gfd_chk[gunindex].P2PE_GFD > Gfd.MaxP2PE[gunindex]){
Gfd.MaxP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
}
if(Module_Info.gfd_chk[gunindex].P2PE_GFD < Gfd.MaxP2PE[gunindex]){
Gfd.MinP2PE[gunindex] = Module_Info.gfd_chk[gunindex].P2PE_GFD;
}
if(Module_Info.gfd_chk[gunindex].N2PE_GFD > Gfd.MaxN2PE[gunindex]){
Gfd.MaxN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
}
if(Module_Info.gfd_chk[gunindex].N2PE_GFD < Gfd.MaxN2PE[gunindex]){
Gfd.MinN2PE[gunindex] = Module_Info.gfd_chk[gunindex].N2PE_GFD;
}
}
}
void SetGfdMode(void)
{
int i;
for(i=0; i<2; i++){
if(ModelName[7+i*2] != 0){
switch (ModelName[7+i*2])
{
case 'J':
case 'K':
case 'L':
case 'S':
case 'W':
Gfd.GfdMode[i] = GFD_BALANCE;
break;
default:
Gfd.GfdMode[i] = GFD_UNBALANCE;
break;
}
}
}
osDelay(1000);
printf("Set SMR1 GFD Mode : %s\n\r", Gfd.GfdMode[0] == GFD_BALANCE ? "Balance" : "Unbalance");
printf("Set SMR2 GFD Mode : %s\n\r", Gfd.GfdMode[1] == GFD_BALANCE ? "Balance" : "Unbalance");
if(ModelName[2] == 'J' || ModelName[3] == 'J' || ModelName[3] == 'R'){
Gfd.IsolationVoltage = 4500;
}else{
Gfd.IsolationVoltage = 5000;
}
printf("Set IsolationVoltage:%dV\n\r\n\r",Gfd.IsolationVoltage/10);
}
void CSRHB_Ver_Check(void)
{
CSRHB_VER = 0;
CSRHB_VER = HAL_GPIO_ReadPin(CSRHB_VER_GPIO_Port, CSRHB_VER_Pin);
printf("CSRHB%s\n\r", CSRHB_VER ? "00 Rev02 (5 Relay)":"01 Rev01 (6 Relay)");
}
void IOdebug(void)
{
HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
osDelay(200);
Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
// printf("RELAY ON:%llx\r\n", Module_Info.Relay_Status.All);
printf("RELAY ON:S1:%x S2:%x S3:%x S4:%x\r\n",Module_Info.Relay_Status.Status[0],Module_Info.Relay_Status.Status[1],Module_Info.Relay_Status.Status[2],Module_Info.Relay_Status.Status[3]);
printf("RELAY ON:S5:%x S6:%x S7:%x\r\n\r\n",Module_Info.Relay_Status.Status[4],Module_Info.Relay_Status.Status[5],Module_Info.Relay_Status.Status[6]);
osDelay(1800);
HAL_GPIO_WritePin(SMR1_RLY_p_Enable_GPIO_Port, SMR1_RLY_p_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR1_RLY_n_Enable_GPIO_Port, SMR1_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR2_RLY_p_Enable_GPIO_Port, SMR2_RLY_p_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR2_RLY_n_Enable_GPIO_Port, SMR2_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR3_RLY_p_Enable_GPIO_Port, SMR3_RLY_p_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR3_RLY_n_Enable_GPIO_Port, SMR3_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR4_RLY_p_Enable_GPIO_Port, SMR4_RLY_p_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR4_RLY_n_Enable_GPIO_Port, SMR4_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR5_RLY_p_Enable_GPIO_Port, SMR5_RLY_p_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR5_RLY_n_Enable_GPIO_Port, SMR5_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR6_RLY_p_Enable_GPIO_Port, SMR6_RLY_p_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(SMR6_RLY_n_Enable_GPIO_Port, SMR6_RLY_n_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Precharge1_Enable_GPIO_Port, Precharge1_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Precharge2_Enable_GPIO_Port, Precharge2_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(Contactor_Enable_GPIO_Port, Contactor_Enable_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(PSU_Enable1_GPIO_Port, PSU_Enable1_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(PSU_Enable2_GPIO_Port, PSU_Enable2_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
osDelay(200);
Module_Info.Relay_Status.flags.SMR1_relay_n = ~HAL_GPIO_ReadPin(SMR1_Relay_n_Ret_GPIO_Port, SMR1_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR1_relay_p = ~HAL_GPIO_ReadPin(SMR1_Relay_p_Ret_GPIO_Port, SMR1_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_n = ~HAL_GPIO_ReadPin(SMR2_Relay_n_Ret_GPIO_Port, SMR2_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR2_relay_p = ~HAL_GPIO_ReadPin(SMR2_Relay_p_Ret_GPIO_Port, SMR2_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_n = ~HAL_GPIO_ReadPin(SMR3_Relay_n_Ret_GPIO_Port, SMR3_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR3_relay_p = ~HAL_GPIO_ReadPin(SMR3_Relay_p_Ret_GPIO_Port, SMR3_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_n = ~HAL_GPIO_ReadPin(SMR4_Relay_n_Ret_GPIO_Port, SMR4_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR4_relay_p = ~HAL_GPIO_ReadPin(SMR4_Relay_p_Ret_GPIO_Port, SMR4_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_n = ~HAL_GPIO_ReadPin(SMR5_Relay_n_Ret_GPIO_Port, SMR5_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR5_relay_p = ~HAL_GPIO_ReadPin(SMR5_Relay_p_Ret_GPIO_Port, SMR5_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_n = ~HAL_GPIO_ReadPin(SMR6_Relay_n_Ret_GPIO_Port, SMR6_Relay_n_Ret_Pin);
Module_Info.Relay_Status.flags.SMR6_relay_p = ~HAL_GPIO_ReadPin(SMR6_Relay_p_Ret_GPIO_Port, SMR6_Relay_p_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge1 = ~HAL_GPIO_ReadPin(Precharge1_Ret_GPIO_Port, Precharge1_Ret_Pin);
Module_Info.Relay_Status.flags.Precharge2 = ~HAL_GPIO_ReadPin(Precharge2_Ret_GPIO_Port, Precharge2_Ret_Pin);
// printf("RELAY OFF:%llx\r\n", Module_Info.Relay_Status.All);
printf("RELAY OFF:S1:%x S2:%x S3:%x S4:%x\r\n",Module_Info.Relay_Status.Status[0],Module_Info.Relay_Status.Status[1],Module_Info.Relay_Status.Status[2],Module_Info.Relay_Status.Status[3]);
printf("RELAY OFF:S5:%x S6:%x S7:%x\r\n\r\n",Module_Info.Relay_Status.Status[4],Module_Info.Relay_Status.Status[5],Module_Info.Relay_Status.Status[6]);
osDelay(1800);
}
void UartCMDtest(void)
{
if(Cmdcount > 0){
// osDelay(1000);
uart_recv_end_flag = 1;
uart_rx_buffer[0] = 0xAA;
uart_rx_buffer[1] = 0x0;
uart_rx_buffer[2] = 0xFF;
uart_rx_buffer[3] = PROTOCOL_MESSAGE_CONFIG_MODEL_NAME;
uart_rx_buffer[4] = 14;
uart_rx_buffer[5] = 00;
uart_rx_buffer[6] = 'D';
uart_rx_buffer[7] = 'D';
uart_rx_buffer[8] = 'Y';
// uart_rx_buffer[9] = 'C';
uart_rx_buffer[10] = '3';
uart_rx_buffer[11] = '6';
uart_rx_buffer[12] = '2';
// uart_rx_buffer[13] = '0';
uart_rx_buffer[14] = '0';
// uart_rx_buffer[15] = '0';
uart_rx_buffer[16] = 'E';
uart_rx_buffer[17] = '2';
uart_rx_buffer[18] = 'O';
uart_rx_buffer[19] = 'A';
uart_rx_buffer[20] = 0;
for(int idx=0; idx<(uart_rx_buffer[4] | (uart_rx_buffer[5]<<8));idx++)
{
uart_rx_buffer[20] ^= uart_rx_buffer[(6+ idx)];
}
Cmdcount --;
}
}
/* USER CODE END Application */