/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file adc.c * @brief This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "adc.h" /* USER CODE BEGIN 0 */ uint32_t ADC1_Buf[(ADC1_CHANEL_COUNT*ADC1_SAMPLE_COUNT)], ADC1_Value[ADC1_CHANEL_COUNT]; uint32_t ADC2_Buf[(ADC2_CHANEL_COUNT*ADC2_SAMPLE_COUNT)], ADC2_Value[ADC2_CHANEL_COUNT]; uint32_t ADC3_Buf[(ADC3_CHANEL_COUNT*ADC3_SAMPLE_COUNT)], ADC3_Value[ADC3_CHANEL_COUNT]; uint32_t L1_ADC_Each_Value[ADC2_SAMPLE_COUNT]; uint32_t L2_ADC_Each_Value[ADC2_SAMPLE_COUNT]; uint32_t L3_ADC_Each_Value[ADC2_SAMPLE_COUNT]; uint8_t bADC2_Done; struct ADC_VALUE adc_value; /* USER CODE END 0 */ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; ADC_HandleTypeDef hadc3; DMA_HandleTypeDef hdma_adc1; DMA_HandleTypeDef hdma_adc2; DMA_HandleTypeDef hdma_adc3; /* ADC1 init function */ void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV6; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = ENABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 9; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_84CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_5; sConfig.Rank = 2; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_6; sConfig.Rank = 3; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_7; sConfig.Rank = 4; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_9; sConfig.Rank = 5; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_11; sConfig.Rank = 6; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_12; sConfig.Rank = 7; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_13; sConfig.Rank = 8; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 9; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /* ADC2 init function */ void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV6; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.ScanConvMode = ENABLE; hadc2.Init.ContinuousConvMode = ENABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 3; hadc2.Init.DMAContinuousRequests = ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SEQ_CONV; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_14; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_15; sConfig.Rank = 2; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_8; sConfig.Rank = 3; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /* ADC3 init function */ void MX_ADC3_Init(void) { /* USER CODE BEGIN ADC3_Init 0 */ /* USER CODE END ADC3_Init 0 */ ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC3_Init 1 */ /* USER CODE END ADC3_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc3.Instance = ADC3; hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV6; hadc3.Init.Resolution = ADC_RESOLUTION_12B; hadc3.Init.ScanConvMode = ENABLE; hadc3.Init.ContinuousConvMode = ENABLE; hadc3.Init.DiscontinuousConvMode = DISABLE; hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc3.Init.NbrOfConversion = 3; hadc3.Init.DMAContinuousRequests = ENABLE; hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc3) != HAL_OK) { Error_Handler(); } /** Configure the analog watchdog */ AnalogWDGConfig.WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG; AnalogWDGConfig.HighThreshold = 0; AnalogWDGConfig.LowThreshold = 0; AnalogWDGConfig.Channel = ADC_CHANNEL_4; AnalogWDGConfig.ITMode = DISABLE; if (HAL_ADC_AnalogWDGConfig(&hadc3, &AnalogWDGConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_84CYCLES; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_5; sConfig.Rank = 2; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_8; sConfig.Rank = 3; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC3_Init 2 */ /* USER CODE END ADC3_Init 2 */ } void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(adcHandle->Instance==ADC1) { /* USER CODE BEGIN ADC1_MspInit 0 */ /* USER CODE END ADC1_MspInit 0 */ /* ADC1 clock enable */ __HAL_RCC_ADC1_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**ADC1 GPIO Configuration PC1 ------> ADC1_IN11 PC2 ------> ADC1_IN12 PC3 ------> ADC1_IN13 PA0/WKUP ------> ADC1_IN0 PA4 ------> ADC1_IN4 PA5 ------> ADC1_IN5 PA6 ------> ADC1_IN6 PA7 ------> ADC1_IN7 PB1 ------> ADC1_IN9 */ GPIO_InitStruct.Pin = SMR3_Relay_Voltage_Pin|SMR4_Relay_Voltage_Pin|SMR5_Relay_Voltage_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = SMR6_Relay_Voltage_Pin|SMR1_Relay_Voltage_Pin|SMR1_Current_Pin|SMR2_Relay_Voltage_Pin |SMR2_Current_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = Vref_165_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(Vref_165_GPIO_Port, &GPIO_InitStruct); /* ADC1 DMA Init */ /* ADC1 Init */ hdma_adc1.Instance = DMA2_Stream0; hdma_adc1.Init.Channel = DMA_CHANNEL_0; hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc1.Init.MemInc = DMA_MINC_ENABLE; hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc1.Init.Mode = DMA_CIRCULAR; hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH; hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1); /* ADC1 interrupt Init */ HAL_NVIC_SetPriority(ADC_IRQn, 5, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); /* USER CODE BEGIN ADC1_MspInit 1 */ /* USER CODE END ADC1_MspInit 1 */ } else if(adcHandle->Instance==ADC2) { /* USER CODE BEGIN ADC2_MspInit 0 */ /* USER CODE END ADC2_MspInit 0 */ /* ADC2 clock enable */ __HAL_RCC_ADC2_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**ADC2 GPIO Configuration PC4 ------> ADC2_IN14 PC5 ------> ADC2_IN15 PB0 ------> ADC2_IN8 */ GPIO_InitStruct.Pin = AC_Input_L1_Pin|AC_Input_L2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); GPIO_InitStruct.Pin = AC_Input_L3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(AC_Input_L3_GPIO_Port, &GPIO_InitStruct); /* ADC2 DMA Init */ /* ADC2 Init */ hdma_adc2.Instance = DMA2_Stream2; hdma_adc2.Init.Channel = DMA_CHANNEL_1; hdma_adc2.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc2.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc2.Init.MemInc = DMA_MINC_ENABLE; hdma_adc2.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc2.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc2.Init.Mode = DMA_CIRCULAR; hdma_adc2.Init.Priority = DMA_PRIORITY_HIGH; hdma_adc2.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc2) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc2); /* ADC2 interrupt Init */ HAL_NVIC_SetPriority(ADC_IRQn, 5, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); /* USER CODE BEGIN ADC2_MspInit 1 */ /* USER CODE END ADC2_MspInit 1 */ } else if(adcHandle->Instance==ADC3) { /* USER CODE BEGIN ADC3_MspInit 0 */ /* USER CODE END ADC3_MspInit 0 */ /* ADC3 clock enable */ __HAL_RCC_ADC3_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); /**ADC3 GPIO Configuration PF6 ------> ADC3_IN4 PF7 ------> ADC3_IN5 PF10 ------> ADC3_IN8 */ GPIO_InitStruct.Pin = SMR1_Gfd_Sense_Pin|SMR2_Gfd_Sense_Pin|DC_In_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /* ADC3 DMA Init */ /* ADC3 Init */ hdma_adc3.Instance = DMA2_Stream1; hdma_adc3.Init.Channel = DMA_CHANNEL_2; hdma_adc3.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc3.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc3.Init.MemInc = DMA_MINC_ENABLE; hdma_adc3.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc3.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc3.Init.Mode = DMA_CIRCULAR; hdma_adc3.Init.Priority = DMA_PRIORITY_HIGH; hdma_adc3.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc3) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc3); /* ADC3 interrupt Init */ HAL_NVIC_SetPriority(ADC_IRQn, 5, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); /* USER CODE BEGIN ADC3_MspInit 1 */ /* USER CODE END ADC3_MspInit 1 */ } } void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle) { if(adcHandle->Instance==ADC1) { /* USER CODE BEGIN ADC1_MspDeInit 0 */ /* USER CODE END ADC1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_ADC1_CLK_DISABLE(); /**ADC1 GPIO Configuration PC1 ------> ADC1_IN11 PC2 ------> ADC1_IN12 PC3 ------> ADC1_IN13 PA0/WKUP ------> ADC1_IN0 PA4 ------> ADC1_IN4 PA5 ------> ADC1_IN5 PA6 ------> ADC1_IN6 PA7 ------> ADC1_IN7 PB1 ------> ADC1_IN9 */ HAL_GPIO_DeInit(GPIOC, SMR3_Relay_Voltage_Pin|SMR4_Relay_Voltage_Pin|SMR5_Relay_Voltage_Pin); HAL_GPIO_DeInit(GPIOA, SMR6_Relay_Voltage_Pin|SMR1_Relay_Voltage_Pin|SMR1_Current_Pin|SMR2_Relay_Voltage_Pin |SMR2_Current_Pin); HAL_GPIO_DeInit(Vref_165_GPIO_Port, Vref_165_Pin); /* ADC1 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC1 interrupt Deinit */ /* USER CODE BEGIN ADC1:ADC_IRQn disable */ /** * Uncomment the line below to disable the "ADC_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC_IRQn); */ /* USER CODE END ADC1:ADC_IRQn disable */ /* USER CODE BEGIN ADC1_MspDeInit 1 */ /* USER CODE END ADC1_MspDeInit 1 */ } else if(adcHandle->Instance==ADC2) { /* USER CODE BEGIN ADC2_MspDeInit 0 */ /* USER CODE END ADC2_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_ADC2_CLK_DISABLE(); /**ADC2 GPIO Configuration PC4 ------> ADC2_IN14 PC5 ------> ADC2_IN15 PB0 ------> ADC2_IN8 */ HAL_GPIO_DeInit(GPIOC, AC_Input_L1_Pin|AC_Input_L2_Pin); HAL_GPIO_DeInit(AC_Input_L3_GPIO_Port, AC_Input_L3_Pin); /* ADC2 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC2 interrupt Deinit */ /* USER CODE BEGIN ADC2:ADC_IRQn disable */ /** * Uncomment the line below to disable the "ADC_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC_IRQn); */ /* USER CODE END ADC2:ADC_IRQn disable */ /* USER CODE BEGIN ADC2_MspDeInit 1 */ /* USER CODE END ADC2_MspDeInit 1 */ } else if(adcHandle->Instance==ADC3) { /* USER CODE BEGIN ADC3_MspDeInit 0 */ /* USER CODE END ADC3_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_ADC3_CLK_DISABLE(); /**ADC3 GPIO Configuration PF6 ------> ADC3_IN4 PF7 ------> ADC3_IN5 PF10 ------> ADC3_IN8 */ HAL_GPIO_DeInit(GPIOF, SMR1_Gfd_Sense_Pin|SMR2_Gfd_Sense_Pin|DC_In_Pin); /* ADC3 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC3 interrupt Deinit */ /* USER CODE BEGIN ADC3:ADC_IRQn disable */ /** * Uncomment the line below to disable the "ADC_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC_IRQn); */ /* USER CODE END ADC3:ADC_IRQn disable */ /* USER CODE BEGIN ADC3_MspDeInit 1 */ /* USER CODE END ADC3_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* AdcHandle) { if(AdcHandle->Instance==ADC2) { bADC2_Done = ON; HAL_ADC_Stop_DMA(&hadc2); } } uint8_t adc_filter_move_avg(ADC_MOVE_AVG_FILTER *data, uint32_t value) { uint8_t result = FAIL; uint32_t buf = 0; data->buffer[data->idx_put] = value; if(++data->idx_put>=LIMIT_MOVE_FILTER)data->idx_put=0; for(int idx=0;idxbuffer[idx]; } data->value = buf/LIMIT_MOVE_FILTER; return result; } /* USER CODE END 1 */