/**
******************************************************************************
* File Name : ADC.c
* Description : This file provides code for the configuration
* of the ADC instances.
******************************************************************************
* @attention
*
*
© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under Ultimate Liberty license
* SLA0044, the "License"; You may not use this file except in compliance with
* the License. You may obtain a copy of the License at:
* www.st.com/SLA0044
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "adc.h"
/* USER CODE BEGIN 0 */
uint32_t ADC1_Buffer[ADC1_CHANEL_COUNT*ADC1_SAMPLE_COUNT];
uint32_t ADC2_Buffer[ADC2_CHANEL_COUNT*ADC2_SAMPLE_COUNT];
uint16_t ADC2_Buffer_Each[ADC2_CHANEL_COUNT][ADC2_SAMPLE_COUNT];
uint32_t ADC3_Buffer[ADC3_CHANEL_COUNT*ADC3_SAMPLE_COUNT];
uint16_t ADC3_Buffer_Each[ADC3_CHANEL_COUNT][ADC3_SAMPLE_COUNT];
uint8_t isDMAEnd_ADC1;
uint8_t isDMAEnd_ADC2;
uint8_t isDMAEnd_ADC3;
struct ADC_VALUE adc_value;
uint16_t ADCWDGHighThreshold = 3200;
uint16_t ADCWDGLowThreshold = 820;
uint8_t is60Hz;
/* USER CODE END 0 */
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc1;
DMA_HandleTypeDef hdma_adc2;
DMA_HandleTypeDef hdma_adc3;
/* ADC1 init function */
void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_56CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/* ADC2 init function */
void MX_ADC2_Init(void)
{
ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc2.Instance = ADC2;
hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc2.Init.Resolution = ADC_RESOLUTION_12B;
hadc2.Init.ScanConvMode = ENABLE;
hadc2.Init.ContinuousConvMode = ENABLE;
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 2;
hadc2.Init.DMAContinuousRequests = ENABLE;
hadc2.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc2) != HAL_OK)
{
Error_Handler();
}
/** Configure the analog watchdog
*/
AnalogWDGConfig.WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG;
AnalogWDGConfig.HighThreshold = 3722;
AnalogWDGConfig.LowThreshold = 372;
AnalogWDGConfig.Channel = ADC_CHANNEL_6;
AnalogWDGConfig.ITMode = ENABLE;
if (HAL_ADC_AnalogWDGConfig(&hadc2, &AnalogWDGConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_5;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
/* ADC3 init function */
void MX_ADC3_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc3.Init.Resolution = ADC_RESOLUTION_12B;
hadc3.Init.ScanConvMode = ENABLE;
hadc3.Init.ContinuousConvMode = ENABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 5;
hadc3.Init.DMAContinuousRequests = ENABLE;
hadc3.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_9;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_14;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_15;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_7;
sConfig.Rank = 5;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/* ADC1 clock enable */
__HAL_RCC_ADC1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA4 ------> ADC1_IN4
*/
GPIO_InitStruct.Pin = ADC1_IN4_CP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(ADC1_IN4_CP_GPIO_Port, &GPIO_InitStruct);
/* ADC1 DMA Init */
/* ADC1 Init */
hdma_adc1.Instance = DMA2_Stream0;
hdma_adc1.Init.Channel = DMA_CHANNEL_0;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1);
/* ADC1 interrupt Init */
HAL_NVIC_SetPriority(ADC_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
else if(adcHandle->Instance==ADC2)
{
/* USER CODE BEGIN ADC2_MspInit 0 */
/* USER CODE END ADC2_MspInit 0 */
/* ADC2 clock enable */
__HAL_RCC_ADC2_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC2 GPIO Configuration
PA5 ------> ADC2_IN5
PA6 ------> ADC2_IN6
*/
GPIO_InitStruct.Pin = ADC2_IN5_Welding_Pin|ADC2_IN6_GF_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* ADC2 DMA Init */
/* ADC2 Init */
hdma_adc2.Instance = DMA2_Stream3;
hdma_adc2.Init.Channel = DMA_CHANNEL_1;
hdma_adc2.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc2.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc2.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc2.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_adc2.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_adc2.Init.Mode = DMA_CIRCULAR;
hdma_adc2.Init.Priority = DMA_PRIORITY_LOW;
hdma_adc2.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_adc2) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc2);
/* ADC2 interrupt Init */
HAL_NVIC_SetPriority(ADC_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC2_MspInit 1 */
/* USER CODE END ADC2_MspInit 1 */
}
else if(adcHandle->Instance==ADC3)
{
/* USER CODE BEGIN ADC3_MspInit 0 */
/* USER CODE END ADC3_MspInit 0 */
/* ADC3 clock enable */
__HAL_RCC_ADC3_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
/**ADC3 GPIO Configuration
PF3 ------> ADC3_IN9
PF4 ------> ADC3_IN14
PF5 ------> ADC3_IN15
PF6 ------> ADC3_IN4
PF9 ------> ADC3_IN7
*/
GPIO_InitStruct.Pin = ADC3_IN9_Voltage_L1_Pin|ADC3_IN14_1998_Pin|ADC3_IN15_Temp_Pin|ADC3_IN4_GMI_VL1_Pin
|ADC3_IN7_Current_L1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/* ADC3 DMA Init */
/* ADC3 Init */
hdma_adc3.Instance = DMA2_Stream1;
hdma_adc3.Init.Channel = DMA_CHANNEL_2;
hdma_adc3.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc3.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc3.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc3.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_adc3.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_adc3.Init.Mode = DMA_CIRCULAR;
hdma_adc3.Init.Priority = DMA_PRIORITY_LOW;
hdma_adc3.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
if (HAL_DMA_Init(&hdma_adc3) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc3);
/* ADC3 interrupt Init */
HAL_NVIC_SetPriority(ADC_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC3_MspInit 1 */
/* USER CODE END ADC3_MspInit 1 */
}
}
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle)
{
if(adcHandle->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspDeInit 0 */
/* USER CODE END ADC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC1_CLK_DISABLE();
/**ADC1 GPIO Configuration
PA4 ------> ADC1_IN4
*/
HAL_GPIO_DeInit(ADC1_IN4_CP_GPIO_Port, ADC1_IN4_CP_Pin);
/* ADC1 DMA DeInit */
HAL_DMA_DeInit(adcHandle->DMA_Handle);
/* ADC1 interrupt Deinit */
/* USER CODE BEGIN ADC1:ADC_IRQn disable */
/**
* Uncomment the line below to disable the "ADC_IRQn" interrupt
* Be aware, disabling shared interrupt may affect other IPs
*/
/* HAL_NVIC_DisableIRQ(ADC_IRQn); */
/* USER CODE END ADC1:ADC_IRQn disable */
/* USER CODE BEGIN ADC1_MspDeInit 1 */
/* USER CODE END ADC1_MspDeInit 1 */
}
else if(adcHandle->Instance==ADC2)
{
/* USER CODE BEGIN ADC2_MspDeInit 0 */
/* USER CODE END ADC2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC2_CLK_DISABLE();
/**ADC2 GPIO Configuration
PA5 ------> ADC2_IN5
PA6 ------> ADC2_IN6
*/
HAL_GPIO_DeInit(GPIOA, ADC2_IN5_Welding_Pin|ADC2_IN6_GF_Pin);
/* ADC2 DMA DeInit */
HAL_DMA_DeInit(adcHandle->DMA_Handle);
/* ADC2 interrupt Deinit */
/* USER CODE BEGIN ADC2:ADC_IRQn disable */
/**
* Uncomment the line below to disable the "ADC_IRQn" interrupt
* Be aware, disabling shared interrupt may affect other IPs
*/
/* HAL_NVIC_DisableIRQ(ADC_IRQn); */
/* USER CODE END ADC2:ADC_IRQn disable */
/* USER CODE BEGIN ADC2_MspDeInit 1 */
/* USER CODE END ADC2_MspDeInit 1 */
}
else if(adcHandle->Instance==ADC3)
{
/* USER CODE BEGIN ADC3_MspDeInit 0 */
/* USER CODE END ADC3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC3_CLK_DISABLE();
/**ADC3 GPIO Configuration
PF3 ------> ADC3_IN9
PF4 ------> ADC3_IN14
PF5 ------> ADC3_IN15
PF6 ------> ADC3_IN4
PF9 ------> ADC3_IN7
*/
HAL_GPIO_DeInit(GPIOF, ADC3_IN9_Voltage_L1_Pin|ADC3_IN14_1998_Pin|ADC3_IN15_Temp_Pin|ADC3_IN4_GMI_VL1_Pin
|ADC3_IN7_Current_L1_Pin);
/* ADC3 DMA DeInit */
HAL_DMA_DeInit(adcHandle->DMA_Handle);
/* ADC3 interrupt Deinit */
/* USER CODE BEGIN ADC3:ADC_IRQn disable */
/**
* Uncomment the line below to disable the "ADC_IRQn" interrupt
* Be aware, disabling shared interrupt may affect other IPs
*/
/* HAL_NVIC_DisableIRQ(ADC_IRQn); */
/* USER CODE END ADC3:ADC_IRQn disable */
/* USER CODE BEGIN ADC3_MspDeInit 1 */
/* USER CODE END ADC3_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
//------------------------------------------------------------------------------
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance == ADC1)
{
HAL_ADC_Stop_DMA(&hadc1);
isDMAEnd_ADC1 = ON;
}
if(hadc->Instance == ADC2)
{
HAL_ADC_Stop_DMA(&hadc2);
isDMAEnd_ADC2 = ON;
}
if(hadc->Instance == ADC3)
{
HAL_ADC_Stop_DMA(&hadc3);
isDMAEnd_ADC3 = ON;
}
}
//------------------------------------------------------------------------------
uint8_t filter_move_avg(MOVE_AVG_FILTER *data, uint32_t value)
{
uint8_t result = FAIL;
uint32_t buf = 0;
data->buffer[data->idx_put] = value;
if(++data->idx_put>=LIMIT_MOVE_FILTER)data->idx_put=0;
for(int idx=0;idxbuffer[idx];
}
data->value = buf/LIMIT_MOVE_FILTER;
return result;
}
//------------------------------------------------------------------------------
uint8_t Current_filter_move_avg(MOVE_AVG_FILTER *data, uint32_t value)
{
uint8_t result = FAIL;
uint32_t buf = 0;
data->buffer[data->idx_put] = value;
if(++data->idx_put>=CURRENT_LIMIT_MOVE_FILTER)data->idx_put=0;
for(int idx=0;idxbuffer[idx];
}
data->value = buf/CURRENT_LIMIT_MOVE_FILTER;
return result;
}
//------------------------------------------------------------------------------
uint8_t Voltage_filter_move_avg(MOVE_AVG_FILTER *data, uint32_t value)
{
uint8_t result = FAIL;
uint32_t buf = 0;
data->buffer[data->idx_put] = value;
if(++data->idx_put>=VOLTAGE_LIMIT_MOVE_FILTER)data->idx_put=0;
for(int idx=0;idxbuffer[idx];
}
data->value = buf/VOLTAGE_LIMIT_MOVE_FILTER;
return result;
}
//------------------------------------------------------------------------------
/*
uint16_t vRms_cal(uint16_t *data, uint16_t length)
{
float sum = 0;
float *buffer = (float*)malloc(sizeof(float) * length);
#ifdef MODIFY_CHECK_MALLOC_RESAULT
if (buffer == NULL)
{
XP("\r\n*** MALLOC [NG] (vRms_cal: %d) ***\r\n\r\n", sizeof(float) * length);
return HTK_U16_MAX;
}
#endif
uint16_t result = 0;
uint8_t dirUp = 0;
uint8_t idx_Cnt = 0;
uint16_t idx_1st, idx_2nd;
for(uint16_t idx=1 ; idx data[idx-1])
{
dirUp = ON;
}
if(dirUp)
{
if(data[idx] < data[idx-1])
{
if(idx_Cnt == 0)
{
idx_1st = idx;
}
else
{
idx_2nd = idx;
}
idx_Cnt++;
dirUp = OFF;
}
}
if(idx_Cnt >= 2)
break;
}
if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0))
{
idx_1st = 0;
idx_2nd = length-1;
}
//edward
ADCWDGHighThreshold = data[idx_1st]-50;
ADCWDGLowThreshold = data[idx_1st+((idx_2nd-idx_1st)/2)]+50;
is60Hz = (((idx_2nd-idx_1st)<43)?ON:OFF);
for(uint16_t idx=idx_1st ; idx 1948) && (dirUp == OFF))
{
idx_1st = idx;
idx_Cnt++;
dirUp = ON ;
}
if((idx-idx_1st)>=69)
{
if((data[idx] < 2148) && (data[idx] > 1948))
{
idx_2nd = idx;
idx_Cnt++;
}
}
if(idx_Cnt >= 2)
break;
}
if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0) || (idx_2nd-idx_1st < 69) || (idx_2nd-idx_1st> 90))
{
result = adc_value.ADC3_IN7_Current_L1.value;
}
else
{
//Avg offset
Avg_offset_sum = 0 ;
for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++)
{
Avg_offset_sum += data [idx] ;
}
Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ;
for(uint16_t idx=idx_1st ; idx Avg_offset)
buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ;
else
buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ;
buffer[idx-idx_1st] *= 51.1 ; // /= 0.01957; , *= 51.1 ;
sum += pow(buffer[idx-idx_1st],2);
}
sum /= (idx_2nd-idx_1st);
result = (uint16_t) (sqrt(sum)*100);
}
free(buffer);
return result;
}
/*
uint16_t cRms_cal(uint16_t *data, uint16_t length)
{
float sum = 0;
float *buffer = (float*)malloc(sizeof(float) * length);
uint16_t result;
//uint8_t dirUp = 0;
//uint8_t idx_Cnt = 0;
uint16_t idx_1st=0, idx_2nd=(length-1);
// if the range too long, calculate all data average
// if the range normal, calculate the normal counted data average
for(uint16_t idx=idx_1st ; idx data[idx-1]) && (data[idx-1] > data[idx-2]))
{
dirUp = ON;
}
if(dirUp)
{
if((data[idx] < data[idx-1]) && (data[idx-1] < data[idx-2]))
{
if(idx_Cnt == 0)
{
idx_1st = idx;
}
else
{
idx_2nd = idx;
}
idx_Cnt++;
dirUp = OFF;
}
}
if(idx_Cnt >= 2)
break;
}
if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0))
{
idx_1st = 0;
idx_2nd = length-1;
}
idx_1st = 0;
idx_2nd = length-1;
//Avg offset
Avg_offset_sum = 0 ;
for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++)
{
Avg_offset_sum += data [idx] ;
}
Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ;
for(uint16_t idx=idx_1st ; idx Avg_offset)
buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ;
else
buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ;
buffer[idx-idx_1st] *= 1000;
buffer[idx-idx_1st] /= 29.91;//27.21;//29.91;
sum += pow(buffer[idx-idx_1st],2);
}
sum /= (idx_2nd-idx_1st);
result = (uint16_t) (sqrt(sum)*100);
if (result > 4000)
{
DEBUG_INFO("Avg_offset: %f\r\n", Avg_offset);
DEBUG_INFO("idx_1st: %d\r\n", idx_1st);
DEBUG_INFO("idx_2nd: %d\r\n", idx_2nd);
DEBUG_INFO("sum: %f\r\n", sum);
}
/*
if((idx_2nd- idx_1st) <= 10)
{
//result = 0;
idx_1st = 0;
idx_2nd = length-1;
for(uint16_t idx=idx_1st ; idx Avg_offset)
buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ;
else
buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ;
buffer[idx-idx_1st] *= 1000;
buffer[idx-idx_1st] /= 29.91;//27.21;//29.91;
sum += pow(buffer[idx-idx_1st],2);
}
sum /= (idx_2nd-idx_1st);
result = (uint16_t) (sqrt(sum)*100);
}
else
{
for(uint16_t idx=idx_1st ; idx Avg_offset)
buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ;
else
buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ;
buffer[idx-idx_1st] *= 1000;
buffer[idx-idx_1st] /= 29.91;//27.21;//29.91;
sum += pow(buffer[idx-idx_1st],2);
}
sum /= (idx_2nd-idx_1st);
result = (uint16_t) (sqrt(sum)*100);
}
*/
free(buffer);
return result;
}
//------------------------------------------------------------------------------
uint16_t avg_cal(uint16_t *data, uint16_t length)
{
uint32_t result = 0;
for(uint16_t idx=0;idx= -60 && rtn <= 194)
return rtn;
else
return 0;
}
#else
uint16_t getTemperature(uint16_t adc_raw) //3438 0度 , 3376 2度
{
//uint16_t beta = 4050;
//uint16_t r0 = 10000;
//uint16_t Rntc = (uint16_t)((r0/(1-(adc_raw/4095.0)))-r0);
//return (uint16_t)((1/((1/298.15)+((1/(beta*1.0))*log(Rntc/10000.0)))) - 273.15);
if (adc_raw>3438) adc_raw = 3438 ;
return (uint16_t) ((1526319.45/((363.15* log((8.82353*(adc_raw*3.3/4095)/ (3.3-(adc_raw*3.3/4095)))))+4203))-273.15) ;
}
#endif
//--------------------------------------------------------------------------------------------------------------------
uint16_t vRms_cal2(uint16_t *data, uint16_t length)
{
float sum = 0;
float *buffer = (float*)malloc(sizeof(float) * length);
#ifdef MODIFY_CHECK_MALLOC_RESAULT
if (buffer == NULL)
{
XP("\r\n*** MALLOC [NG] (vRms_cal2: %d) ***\r\n\r\n", sizeof(float) * length);
return HTK_U16_MAX;
}
#endif
uint16_t result = 0;
uint8_t dirUp = 0;
uint8_t idx_Cnt = 0;
uint16_t idx_1st, idx_2nd;
uint32_t Avg_offset_sum ;
float Avg_offset ;
#ifdef MODIFY_FUNC_VRMS_CAL2
for(uint16_t idx=3 ; idx 1948) && (dirUp == OFF))
{
idx_1st = idx;
idx_Cnt++;
dirUp = ON ;
}
if((idx-idx_1st)>=69)
{
if((data[idx] < 2148) && (data[idx] > 1948))
{
idx_2nd = idx;
idx_Cnt++;
}
}
if(idx_Cnt >= 2)
break;
}
if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0) || (idx_2nd-idx_1st < 69) || (idx_2nd-idx_1st> 90))
{
result = adc_value.ADC3_IN9_Voltage_L1.value;
}
else
{
//edward
ADCWDGHighThreshold = data[idx_1st]-50;
ADCWDGLowThreshold = data[idx_1st+((idx_2nd-idx_1st)/2)]+50;
is60Hz = (((idx_2nd-idx_1st)<43)?ON:OFF);
//Avg offset
Avg_offset_sum = 0 ;
for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++)
{
Avg_offset_sum += data [idx] ;
}
Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ;
for(uint16_t idx=idx_1st ; idx Avg_offset)
buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ;
else
buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ;
buffer[idx-idx_1st] *= 314.136 ; // /= 0.00324;//*= 314.136 ;
sum += pow(buffer[idx-idx_1st],2);
}
sum /= (idx_2nd-idx_1st);
result = (uint16_t) (sqrt(sum)*100);
}
free(buffer);
return result;
}
//------------------------------------------------------------------------------
/*
uint16_t cRms_cal2(uint16_t *data, uint16_t length)
{
float sum = 0;
float *buffer = (float*)malloc(sizeof(float) * length);
#ifdef MODIFY_CHECK_MALLOC_RESAULT
if (buffer == NULL)
{
XP("\r\n*** MALLOC [NG] (cRms_cal2: %d) ***\r\n\r\n", sizeof(float) * length);
return HTK_U16_MAX;
}
#endif
uint16_t result = 0;
uint8_t dirUp = 0;
uint8_t idx_Cnt = 0;
uint16_t idx_1st, idx_2nd;
uint32_t Avg_offset_sum ;
float Avg_offset ;
for(uint16_t idx=3 ; idx data[idx-1]) && (data[idx] > data[idx-2]) && (data[idx] > data[idx-3]))
{
dirUp = ON;
}
if(dirUp)
{
//if(data[idx] < data[idx-1])
if((data[idx] < data[idx-1]) && (data[idx] < data[idx-2]) && (data[idx] < data[idx-3]))
{
if(idx_Cnt == 0)
{
idx_1st = idx;
}
else
{
idx_2nd = idx;
}
idx_Cnt++;
dirUp = OFF;
}
}
if(idx_Cnt >= 2)
break;
}
if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0))
{
idx_1st = 0;
idx_2nd = length-1;
}
//Avg offset
Avg_offset_sum = 0 ;
for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++)
{
Avg_offset_sum += data [idx] ;
}
Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ;
for(uint16_t idx=idx_1st ; idx Avg_offset)
buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ;
else
buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ;
buffer[idx-idx_1st] /= 0.01957;
sum += pow(buffer[idx-idx_1st],2);
}
sum /= (idx_2nd-idx_1st);
result = (uint16_t) (sqrt(sum)*100);
free(buffer);
return result;
}
*/
//------------------------------------------------------------------------------
uint16_t RlyVmax_cal(uint16_t *data, uint16_t length)
{
uint16_t result = 0 ;
uint16_t idx_max_value = 0 ;
for(uint16_t idx=3 ; idx data[idx-1]) && (data[idx] > data[idx-2]) && (data[idx] > data[idx-3]))
if((data[idx] < data[idx-1]) && (data[idx] < data[idx-2]) && (data[idx] < data[idx-3]))
{
if ( data[idx] > idx_max_value)
{
idx_max_value = data[idx] ;
}
}
}
result = (uint16_t) (idx_max_value*100 *3.3/4095 ); //unit: 0.01V
return result;
}
//------------------------------------------------------------------------------
uint16_t avg_v_cal(uint16_t *data, uint16_t length)
{
uint16_t result = 0;
uint32_t idx_max_value = 0 ;
for(uint16_t idx=0;idx