/** ****************************************************************************** * File Name : ADC.c * Description : This file provides code for the configuration * of the ADC instances. ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "adc.h" /* USER CODE BEGIN 0 */ uint32_t ADC1_Buffer[ADC1_CHANEL_COUNT*ADC1_SAMPLE_COUNT]; uint32_t ADC2_Buffer[ADC2_CHANEL_COUNT*ADC2_SAMPLE_COUNT]; uint16_t ADC2_Buffer_Each[ADC2_CHANEL_COUNT][ADC2_SAMPLE_COUNT]; uint32_t ADC3_Buffer[ADC3_CHANEL_COUNT*ADC3_SAMPLE_COUNT]; uint16_t ADC3_Buffer_Each[ADC3_CHANEL_COUNT][ADC3_SAMPLE_COUNT]; uint8_t isDMAEnd_ADC1; uint8_t isDMAEnd_ADC2; uint8_t isDMAEnd_ADC3; struct ADC_VALUE adc_value; uint16_t ADCWDGHighThreshold = 3200; uint16_t ADCWDGLowThreshold = 820; uint8_t is60Hz; /* USER CODE END 0 */ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; ADC_HandleTypeDef hadc3; DMA_HandleTypeDef hdma_adc1; DMA_HandleTypeDef hdma_adc2; DMA_HandleTypeDef hdma_adc3; /* ADC1 init function */ void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = ENABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_56CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } /* ADC2 init function */ void MX_ADC2_Init(void) { ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.ScanConvMode = ENABLE; hadc2.Init.ContinuousConvMode = ENABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 2; hadc2.Init.DMAContinuousRequests = ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SEQ_CONV; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure the analog watchdog */ AnalogWDGConfig.WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG; AnalogWDGConfig.HighThreshold = 3722; AnalogWDGConfig.LowThreshold = 372; AnalogWDGConfig.Channel = ADC_CHANNEL_6; AnalogWDGConfig.ITMode = ENABLE; if (HAL_ADC_AnalogWDGConfig(&hadc2, &AnalogWDGConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_5; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_6; sConfig.Rank = 2; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } } /* ADC3 init function */ void MX_ADC3_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc3.Instance = ADC3; hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8; hadc3.Init.Resolution = ADC_RESOLUTION_12B; hadc3.Init.ScanConvMode = ENABLE; hadc3.Init.ContinuousConvMode = ENABLE; hadc3.Init.DiscontinuousConvMode = DISABLE; hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc3.Init.NbrOfConversion = 5; hadc3.Init.DMAContinuousRequests = ENABLE; hadc3.Init.EOCSelection = ADC_EOC_SEQ_CONV; if (HAL_ADC_Init(&hadc3) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_9; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_14; sConfig.Rank = 2; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_15; sConfig.Rank = 3; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = 4; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_7; sConfig.Rank = 5; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } } void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle) { GPIO_InitTypeDef GPIO_InitStruct = {0}; if(adcHandle->Instance==ADC1) { /* USER CODE BEGIN ADC1_MspInit 0 */ /* USER CODE END ADC1_MspInit 0 */ /* ADC1 clock enable */ __HAL_RCC_ADC1_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**ADC1 GPIO Configuration PA4 ------> ADC1_IN4 */ GPIO_InitStruct.Pin = ADC1_IN4_CP_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(ADC1_IN4_CP_GPIO_Port, &GPIO_InitStruct); /* ADC1 DMA Init */ /* ADC1 Init */ hdma_adc1.Instance = DMA2_Stream0; hdma_adc1.Init.Channel = DMA_CHANNEL_0; hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc1.Init.MemInc = DMA_MINC_ENABLE; hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc1.Init.Mode = DMA_CIRCULAR; hdma_adc1.Init.Priority = DMA_PRIORITY_LOW; hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc1) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc1); /* ADC1 interrupt Init */ HAL_NVIC_SetPriority(ADC_IRQn, 5, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); /* USER CODE BEGIN ADC1_MspInit 1 */ /* USER CODE END ADC1_MspInit 1 */ } else if(adcHandle->Instance==ADC2) { /* USER CODE BEGIN ADC2_MspInit 0 */ /* USER CODE END ADC2_MspInit 0 */ /* ADC2 clock enable */ __HAL_RCC_ADC2_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /**ADC2 GPIO Configuration PA5 ------> ADC2_IN5 PA6 ------> ADC2_IN6 */ GPIO_InitStruct.Pin = ADC2_IN5_Welding_Pin|ADC2_IN6_GF_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* ADC2 DMA Init */ /* ADC2 Init */ hdma_adc2.Instance = DMA2_Stream3; hdma_adc2.Init.Channel = DMA_CHANNEL_1; hdma_adc2.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc2.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc2.Init.MemInc = DMA_MINC_ENABLE; hdma_adc2.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc2.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc2.Init.Mode = DMA_CIRCULAR; hdma_adc2.Init.Priority = DMA_PRIORITY_LOW; hdma_adc2.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc2) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc2); /* ADC2 interrupt Init */ HAL_NVIC_SetPriority(ADC_IRQn, 5, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); /* USER CODE BEGIN ADC2_MspInit 1 */ /* USER CODE END ADC2_MspInit 1 */ } else if(adcHandle->Instance==ADC3) { /* USER CODE BEGIN ADC3_MspInit 0 */ /* USER CODE END ADC3_MspInit 0 */ /* ADC3 clock enable */ __HAL_RCC_ADC3_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); /**ADC3 GPIO Configuration PF3 ------> ADC3_IN9 PF4 ------> ADC3_IN14 PF5 ------> ADC3_IN15 PF6 ------> ADC3_IN4 PF9 ------> ADC3_IN7 */ GPIO_InitStruct.Pin = ADC3_IN9_Voltage_L1_Pin|ADC3_IN14_1998_Pin|ADC3_IN15_Temp_Pin|ADC3_IN4_GMI_VL1_Pin |ADC3_IN7_Current_L1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /* ADC3 DMA Init */ /* ADC3 Init */ hdma_adc3.Instance = DMA2_Stream1; hdma_adc3.Init.Channel = DMA_CHANNEL_2; hdma_adc3.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_adc3.Init.PeriphInc = DMA_PINC_DISABLE; hdma_adc3.Init.MemInc = DMA_MINC_ENABLE; hdma_adc3.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_adc3.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_adc3.Init.Mode = DMA_CIRCULAR; hdma_adc3.Init.Priority = DMA_PRIORITY_LOW; hdma_adc3.Init.FIFOMode = DMA_FIFOMODE_DISABLE; if (HAL_DMA_Init(&hdma_adc3) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(adcHandle,DMA_Handle,hdma_adc3); /* ADC3 interrupt Init */ HAL_NVIC_SetPriority(ADC_IRQn, 5, 0); HAL_NVIC_EnableIRQ(ADC_IRQn); /* USER CODE BEGIN ADC3_MspInit 1 */ /* USER CODE END ADC3_MspInit 1 */ } } void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle) { if(adcHandle->Instance==ADC1) { /* USER CODE BEGIN ADC1_MspDeInit 0 */ /* USER CODE END ADC1_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_ADC1_CLK_DISABLE(); /**ADC1 GPIO Configuration PA4 ------> ADC1_IN4 */ HAL_GPIO_DeInit(ADC1_IN4_CP_GPIO_Port, ADC1_IN4_CP_Pin); /* ADC1 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC1 interrupt Deinit */ /* USER CODE BEGIN ADC1:ADC_IRQn disable */ /** * Uncomment the line below to disable the "ADC_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC_IRQn); */ /* USER CODE END ADC1:ADC_IRQn disable */ /* USER CODE BEGIN ADC1_MspDeInit 1 */ /* USER CODE END ADC1_MspDeInit 1 */ } else if(adcHandle->Instance==ADC2) { /* USER CODE BEGIN ADC2_MspDeInit 0 */ /* USER CODE END ADC2_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_ADC2_CLK_DISABLE(); /**ADC2 GPIO Configuration PA5 ------> ADC2_IN5 PA6 ------> ADC2_IN6 */ HAL_GPIO_DeInit(GPIOA, ADC2_IN5_Welding_Pin|ADC2_IN6_GF_Pin); /* ADC2 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC2 interrupt Deinit */ /* USER CODE BEGIN ADC2:ADC_IRQn disable */ /** * Uncomment the line below to disable the "ADC_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC_IRQn); */ /* USER CODE END ADC2:ADC_IRQn disable */ /* USER CODE BEGIN ADC2_MspDeInit 1 */ /* USER CODE END ADC2_MspDeInit 1 */ } else if(adcHandle->Instance==ADC3) { /* USER CODE BEGIN ADC3_MspDeInit 0 */ /* USER CODE END ADC3_MspDeInit 0 */ /* Peripheral clock disable */ __HAL_RCC_ADC3_CLK_DISABLE(); /**ADC3 GPIO Configuration PF3 ------> ADC3_IN9 PF4 ------> ADC3_IN14 PF5 ------> ADC3_IN15 PF6 ------> ADC3_IN4 PF9 ------> ADC3_IN7 */ HAL_GPIO_DeInit(GPIOF, ADC3_IN9_Voltage_L1_Pin|ADC3_IN14_1998_Pin|ADC3_IN15_Temp_Pin|ADC3_IN4_GMI_VL1_Pin |ADC3_IN7_Current_L1_Pin); /* ADC3 DMA DeInit */ HAL_DMA_DeInit(adcHandle->DMA_Handle); /* ADC3 interrupt Deinit */ /* USER CODE BEGIN ADC3:ADC_IRQn disable */ /** * Uncomment the line below to disable the "ADC_IRQn" interrupt * Be aware, disabling shared interrupt may affect other IPs */ /* HAL_NVIC_DisableIRQ(ADC_IRQn); */ /* USER CODE END ADC3:ADC_IRQn disable */ /* USER CODE BEGIN ADC3_MspDeInit 1 */ /* USER CODE END ADC3_MspDeInit 1 */ } } /* USER CODE BEGIN 1 */ //------------------------------------------------------------------------------ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { if(hadc->Instance == ADC1) { HAL_ADC_Stop_DMA(&hadc1); isDMAEnd_ADC1 = ON; } if(hadc->Instance == ADC2) { HAL_ADC_Stop_DMA(&hadc2); isDMAEnd_ADC2 = ON; } if(hadc->Instance == ADC3) { HAL_ADC_Stop_DMA(&hadc3); isDMAEnd_ADC3 = ON; } } //------------------------------------------------------------------------------ uint8_t filter_move_avg(MOVE_AVG_FILTER *data, uint32_t value) { uint8_t result = FAIL; uint32_t buf = 0; data->buffer[data->idx_put] = value; if(++data->idx_put>=LIMIT_MOVE_FILTER)data->idx_put=0; for(int idx=0;idxbuffer[idx]; } data->value = buf/LIMIT_MOVE_FILTER; return result; } //------------------------------------------------------------------------------ uint8_t Current_filter_move_avg(MOVE_AVG_FILTER *data, uint32_t value) { uint8_t result = FAIL; uint32_t buf = 0; data->buffer[data->idx_put] = value; if(++data->idx_put>=CURRENT_LIMIT_MOVE_FILTER)data->idx_put=0; for(int idx=0;idxbuffer[idx]; } data->value = buf/CURRENT_LIMIT_MOVE_FILTER; return result; } //------------------------------------------------------------------------------ uint8_t Voltage_filter_move_avg(MOVE_AVG_FILTER *data, uint32_t value) { uint8_t result = FAIL; uint32_t buf = 0; data->buffer[data->idx_put] = value; if(++data->idx_put>=VOLTAGE_LIMIT_MOVE_FILTER)data->idx_put=0; for(int idx=0;idxbuffer[idx]; } data->value = buf/VOLTAGE_LIMIT_MOVE_FILTER; return result; } //------------------------------------------------------------------------------ /* uint16_t vRms_cal(uint16_t *data, uint16_t length) { float sum = 0; float *buffer = (float*)malloc(sizeof(float) * length); #ifdef MODIFY_CHECK_MALLOC_RESAULT if (buffer == NULL) { XP("\r\n*** MALLOC [NG] (vRms_cal: %d) ***\r\n\r\n", sizeof(float) * length); return HTK_U16_MAX; } #endif uint16_t result = 0; uint8_t dirUp = 0; uint8_t idx_Cnt = 0; uint16_t idx_1st, idx_2nd; for(uint16_t idx=1 ; idx data[idx-1]) { dirUp = ON; } if(dirUp) { if(data[idx] < data[idx-1]) { if(idx_Cnt == 0) { idx_1st = idx; } else { idx_2nd = idx; } idx_Cnt++; dirUp = OFF; } } if(idx_Cnt >= 2) break; } if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0)) { idx_1st = 0; idx_2nd = length-1; } //edward ADCWDGHighThreshold = data[idx_1st]-50; ADCWDGLowThreshold = data[idx_1st+((idx_2nd-idx_1st)/2)]+50; is60Hz = (((idx_2nd-idx_1st)<43)?ON:OFF); for(uint16_t idx=idx_1st ; idx 1948) && (dirUp == OFF)) { idx_1st = idx; idx_Cnt++; dirUp = ON ; } if((idx-idx_1st)>=69) { if((data[idx] < 2148) && (data[idx] > 1948)) { idx_2nd = idx; idx_Cnt++; } } if(idx_Cnt >= 2) break; } if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0) || (idx_2nd-idx_1st < 69) || (idx_2nd-idx_1st> 90)) { result = adc_value.ADC3_IN7_Current_L1.value; } else { //Avg offset Avg_offset_sum = 0 ; for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++) { Avg_offset_sum += data [idx] ; } Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ; for(uint16_t idx=idx_1st ; idx Avg_offset) buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ; else buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ; buffer[idx-idx_1st] *= 51.1 ; // /= 0.01957; , *= 51.1 ; sum += pow(buffer[idx-idx_1st],2); } sum /= (idx_2nd-idx_1st); result = (uint16_t) (sqrt(sum)*100); } free(buffer); return result; } /* uint16_t cRms_cal(uint16_t *data, uint16_t length) { float sum = 0; float *buffer = (float*)malloc(sizeof(float) * length); uint16_t result; //uint8_t dirUp = 0; //uint8_t idx_Cnt = 0; uint16_t idx_1st=0, idx_2nd=(length-1); // if the range too long, calculate all data average // if the range normal, calculate the normal counted data average for(uint16_t idx=idx_1st ; idx data[idx-1]) && (data[idx-1] > data[idx-2])) { dirUp = ON; } if(dirUp) { if((data[idx] < data[idx-1]) && (data[idx-1] < data[idx-2])) { if(idx_Cnt == 0) { idx_1st = idx; } else { idx_2nd = idx; } idx_Cnt++; dirUp = OFF; } } if(idx_Cnt >= 2) break; } if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0)) { idx_1st = 0; idx_2nd = length-1; } idx_1st = 0; idx_2nd = length-1; //Avg offset Avg_offset_sum = 0 ; for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++) { Avg_offset_sum += data [idx] ; } Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ; for(uint16_t idx=idx_1st ; idx Avg_offset) buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ; else buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ; buffer[idx-idx_1st] *= 1000; buffer[idx-idx_1st] /= 29.91;//27.21;//29.91; sum += pow(buffer[idx-idx_1st],2); } sum /= (idx_2nd-idx_1st); result = (uint16_t) (sqrt(sum)*100); if (result > 4000) { DEBUG_INFO("Avg_offset: %f\r\n", Avg_offset); DEBUG_INFO("idx_1st: %d\r\n", idx_1st); DEBUG_INFO("idx_2nd: %d\r\n", idx_2nd); DEBUG_INFO("sum: %f\r\n", sum); } /* if((idx_2nd- idx_1st) <= 10) { //result = 0; idx_1st = 0; idx_2nd = length-1; for(uint16_t idx=idx_1st ; idx Avg_offset) buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ; else buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ; buffer[idx-idx_1st] *= 1000; buffer[idx-idx_1st] /= 29.91;//27.21;//29.91; sum += pow(buffer[idx-idx_1st],2); } sum /= (idx_2nd-idx_1st); result = (uint16_t) (sqrt(sum)*100); } else { for(uint16_t idx=idx_1st ; idx Avg_offset) buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ; else buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ; buffer[idx-idx_1st] *= 1000; buffer[idx-idx_1st] /= 29.91;//27.21;//29.91; sum += pow(buffer[idx-idx_1st],2); } sum /= (idx_2nd-idx_1st); result = (uint16_t) (sqrt(sum)*100); } */ free(buffer); return result; } //------------------------------------------------------------------------------ uint16_t avg_cal(uint16_t *data, uint16_t length) { uint32_t result = 0; for(uint16_t idx=0;idx= -60 && rtn <= 194) return rtn; else return 0; } #else uint16_t getTemperature(uint16_t adc_raw) //3438 0度 , 3376 2度 { //uint16_t beta = 4050; //uint16_t r0 = 10000; //uint16_t Rntc = (uint16_t)((r0/(1-(adc_raw/4095.0)))-r0); //return (uint16_t)((1/((1/298.15)+((1/(beta*1.0))*log(Rntc/10000.0)))) - 273.15); if (adc_raw>3438) adc_raw = 3438 ; return (uint16_t) ((1526319.45/((363.15* log((8.82353*(adc_raw*3.3/4095)/ (3.3-(adc_raw*3.3/4095)))))+4203))-273.15) ; } #endif //-------------------------------------------------------------------------------------------------------------------- uint16_t vRms_cal2(uint16_t *data, uint16_t length) { float sum = 0; float *buffer = (float*)malloc(sizeof(float) * length); #ifdef MODIFY_CHECK_MALLOC_RESAULT if (buffer == NULL) { XP("\r\n*** MALLOC [NG] (vRms_cal2: %d) ***\r\n\r\n", sizeof(float) * length); return HTK_U16_MAX; } #endif uint16_t result = 0; uint8_t dirUp = 0; uint8_t idx_Cnt = 0; uint16_t idx_1st, idx_2nd; uint32_t Avg_offset_sum ; float Avg_offset ; #ifdef MODIFY_FUNC_VRMS_CAL2 for(uint16_t idx=3 ; idx 1948) && (dirUp == OFF)) { idx_1st = idx; idx_Cnt++; dirUp = ON ; } if((idx-idx_1st)>=69) { if((data[idx] < 2148) && (data[idx] > 1948)) { idx_2nd = idx; idx_Cnt++; } } if(idx_Cnt >= 2) break; } if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0) || (idx_2nd-idx_1st < 69) || (idx_2nd-idx_1st> 90)) { result = adc_value.ADC3_IN9_Voltage_L1.value; } else { //edward ADCWDGHighThreshold = data[idx_1st]-50; ADCWDGLowThreshold = data[idx_1st+((idx_2nd-idx_1st)/2)]+50; is60Hz = (((idx_2nd-idx_1st)<43)?ON:OFF); //Avg offset Avg_offset_sum = 0 ; for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++) { Avg_offset_sum += data [idx] ; } Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ; for(uint16_t idx=idx_1st ; idx Avg_offset) buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ; else buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ; buffer[idx-idx_1st] *= 314.136 ; // /= 0.00324;//*= 314.136 ; sum += pow(buffer[idx-idx_1st],2); } sum /= (idx_2nd-idx_1st); result = (uint16_t) (sqrt(sum)*100); } free(buffer); return result; } //------------------------------------------------------------------------------ /* uint16_t cRms_cal2(uint16_t *data, uint16_t length) { float sum = 0; float *buffer = (float*)malloc(sizeof(float) * length); #ifdef MODIFY_CHECK_MALLOC_RESAULT if (buffer == NULL) { XP("\r\n*** MALLOC [NG] (cRms_cal2: %d) ***\r\n\r\n", sizeof(float) * length); return HTK_U16_MAX; } #endif uint16_t result = 0; uint8_t dirUp = 0; uint8_t idx_Cnt = 0; uint16_t idx_1st, idx_2nd; uint32_t Avg_offset_sum ; float Avg_offset ; for(uint16_t idx=3 ; idx data[idx-1]) && (data[idx] > data[idx-2]) && (data[idx] > data[idx-3])) { dirUp = ON; } if(dirUp) { //if(data[idx] < data[idx-1]) if((data[idx] < data[idx-1]) && (data[idx] < data[idx-2]) && (data[idx] < data[idx-3])) { if(idx_Cnt == 0) { idx_1st = idx; } else { idx_2nd = idx; } idx_Cnt++; dirUp = OFF; } } if(idx_Cnt >= 2) break; } if((idx_1st>=length) || (idx_2nd>=length) || (idx_2nd==0)) { idx_1st = 0; idx_2nd = length-1; } //Avg offset Avg_offset_sum = 0 ; for (uint16_t idx = idx_1st; idx < idx_2nd ; idx++) { Avg_offset_sum += data [idx] ; } Avg_offset = (float)(Avg_offset_sum/(idx_2nd-idx_1st))*3.3/4095 ; for(uint16_t idx=idx_1st ; idx Avg_offset) buffer[idx-idx_1st] = buffer[idx-idx_1st] - Avg_offset ; else buffer[idx-idx_1st] = Avg_offset - buffer[idx-idx_1st] ; buffer[idx-idx_1st] /= 0.01957; sum += pow(buffer[idx-idx_1st],2); } sum /= (idx_2nd-idx_1st); result = (uint16_t) (sqrt(sum)*100); free(buffer); return result; } */ //------------------------------------------------------------------------------ uint16_t RlyVmax_cal(uint16_t *data, uint16_t length) { uint16_t result = 0 ; uint16_t idx_max_value = 0 ; for(uint16_t idx=3 ; idx data[idx-1]) && (data[idx] > data[idx-2]) && (data[idx] > data[idx-3])) if((data[idx] < data[idx-1]) && (data[idx] < data[idx-2]) && (data[idx] < data[idx-3])) { if ( data[idx] > idx_max_value) { idx_max_value = data[idx] ; } } } result = (uint16_t) (idx_max_value*100 *3.3/4095 ); //unit: 0.01V return result; } //------------------------------------------------------------------------------ uint16_t avg_v_cal(uint16_t *data, uint16_t length) { uint16_t result = 0; uint32_t idx_max_value = 0 ; for(uint16_t idx=0;idx