1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- #!/usr/bin/env python
- '''
- Robust line fitting.
- ==================
- Example of using cv2.fitLine function for fitting line
- to points in presence of outliers.
- Usage
- -----
- fitline.py
- Switch through different M-estimator functions and see,
- how well the robust functions fit the line even
- in case of ~50% of outliers.
- Keys
- ----
- SPACE - generate random points
- f - change distance function
- ESC - exit
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- import numpy as np
- import cv2
- # built-in modules
- import itertools as it
- # local modules
- from common import draw_str
- w, h = 512, 256
- def toint(p):
- return tuple(map(int, p))
- def sample_line(p1, p2, n, noise=0.0):
- p1 = np.float32(p1)
- t = np.random.rand(n,1)
- return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
- dist_func_names = it.cycle('DIST_L2 DIST_L1 DIST_L12 DIST_FAIR DIST_WELSCH DIST_HUBER'.split())
- if PY3:
- cur_func_name = next(dist_func_names)
- else:
- cur_func_name = dist_func_names.next()
- def update(_=None):
- noise = cv2.getTrackbarPos('noise', 'fit line')
- n = cv2.getTrackbarPos('point n', 'fit line')
- r = cv2.getTrackbarPos('outlier %', 'fit line') / 100.0
- outn = int(n*r)
- p0, p1 = (90, 80), (w-90, h-80)
- img = np.zeros((h, w, 3), np.uint8)
- cv2.line(img, toint(p0), toint(p1), (0, 255, 0))
- if n > 0:
- line_points = sample_line(p0, p1, n-outn, noise)
- outliers = np.random.rand(outn, 2) * (w, h)
- points = np.vstack([line_points, outliers])
- for p in line_points:
- cv2.circle(img, toint(p), 2, (255, 255, 255), -1)
- for p in outliers:
- cv2.circle(img, toint(p), 2, (64, 64, 255), -1)
- func = getattr(cv2, cur_func_name)
- vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01)
- cv2.line(img, (int(cx-vx*w), int(cy-vy*w)), (int(cx+vx*w), int(cy+vy*w)), (0, 0, 255))
- draw_str(img, (20, 20), cur_func_name)
- cv2.imshow('fit line', img)
- if __name__ == '__main__':
- print(__doc__)
- cv2.namedWindow('fit line')
- cv2.createTrackbar('noise', 'fit line', 3, 50, update)
- cv2.createTrackbar('point n', 'fit line', 100, 500, update)
- cv2.createTrackbar('outlier %', 'fit line', 30, 100, update)
- while True:
- update()
- ch = cv2.waitKey(0) & 0xFF
- if ch == ord('f'):
- if PY3:
- cur_func_name = next(dist_func_names)
- else:
- cur_func_name = dist_func_names.next()
- if ch == 27:
- break
|