123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- #!/usr/bin/env python
- '''
- Camshift tracker
- ================
- This is a demo that shows mean-shift based tracking
- You select a color objects such as your face and it tracks it.
- This reads from video camera (0 by default, or the camera number the user enters)
- http://www.robinhewitt.com/research/track/camshift.html
- Usage:
- ------
- camshift.py [<video source>]
- To initialize tracking, select the object with mouse
- Keys:
- -----
- ESC - exit
- b - toggle back-projected probability visualization
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- xrange = range
- import numpy as np
- import cv2
- # local module
- import video
- class App(object):
- def __init__(self, video_src):
- self.cam = video.create_capture(video_src)
- ret, self.frame = self.cam.read()
- cv2.namedWindow('camshift')
- cv2.setMouseCallback('camshift', self.onmouse)
- self.selection = None
- self.drag_start = None
- self.tracking_state = 0
- self.show_backproj = False
- def onmouse(self, event, x, y, flags, param):
- x, y = np.int16([x, y]) # BUG
- if event == cv2.EVENT_LBUTTONDOWN:
- self.drag_start = (x, y)
- self.tracking_state = 0
- return
- if self.drag_start:
- if flags & cv2.EVENT_FLAG_LBUTTON:
- h, w = self.frame.shape[:2]
- xo, yo = self.drag_start
- x0, y0 = np.maximum(0, np.minimum([xo, yo], [x, y]))
- x1, y1 = np.minimum([w, h], np.maximum([xo, yo], [x, y]))
- self.selection = None
- if x1-x0 > 0 and y1-y0 > 0:
- self.selection = (x0, y0, x1, y1)
- else:
- self.drag_start = None
- if self.selection is not None:
- self.tracking_state = 1
- def show_hist(self):
- bin_count = self.hist.shape[0]
- bin_w = 24
- img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
- for i in xrange(bin_count):
- h = int(self.hist[i])
- cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
- img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
- cv2.imshow('hist', img)
- def run(self):
- while True:
- ret, self.frame = self.cam.read()
- vis = self.frame.copy()
- hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
- mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
- if self.selection:
- x0, y0, x1, y1 = self.selection
- self.track_window = (x0, y0, x1-x0, y1-y0)
- hsv_roi = hsv[y0:y1, x0:x1]
- mask_roi = mask[y0:y1, x0:x1]
- hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
- cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
- self.hist = hist.reshape(-1)
- self.show_hist()
- vis_roi = vis[y0:y1, x0:x1]
- cv2.bitwise_not(vis_roi, vis_roi)
- vis[mask == 0] = 0
- if self.tracking_state == 1:
- self.selection = None
- prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
- prob &= mask
- term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
- track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
- if self.show_backproj:
- vis[:] = prob[...,np.newaxis]
- try:
- cv2.ellipse(vis, track_box, (0, 0, 255), 2)
- except:
- print(track_box)
- cv2.imshow('camshift', vis)
- ch = 0xFF & cv2.waitKey(5)
- if ch == 27:
- break
- if ch == ord('b'):
- self.show_backproj = not self.show_backproj
- cv2.destroyAllWindows()
- if __name__ == '__main__':
- import sys
- try:
- video_src = sys.argv[1]
- except:
- video_src = 0
- print(__doc__)
- App(video_src).run()
|