fractions.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. # Originally contributed by Sjoerd Mullender.
  2. # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
  3. """Fraction, infinite-precision, real numbers."""
  4. from decimal import Decimal
  5. import math
  6. import numbers
  7. import operator
  8. import re
  9. import sys
  10. __all__ = ['Fraction', 'gcd']
  11. def gcd(a, b):
  12. """Calculate the Greatest Common Divisor of a and b.
  13. Unless b==0, the result will have the same sign as b (so that when
  14. b is divided by it, the result comes out positive).
  15. """
  16. import warnings
  17. warnings.warn('fractions.gcd() is deprecated. Use math.gcd() instead.',
  18. DeprecationWarning, 2)
  19. if type(a) is int is type(b):
  20. if (b or a) < 0:
  21. return -math.gcd(a, b)
  22. return math.gcd(a, b)
  23. return _gcd(a, b)
  24. def _gcd(a, b):
  25. # Supports non-integers for backward compatibility.
  26. while b:
  27. a, b = b, a%b
  28. return a
  29. # Constants related to the hash implementation; hash(x) is based
  30. # on the reduction of x modulo the prime _PyHASH_MODULUS.
  31. _PyHASH_MODULUS = sys.hash_info.modulus
  32. # Value to be used for rationals that reduce to infinity modulo
  33. # _PyHASH_MODULUS.
  34. _PyHASH_INF = sys.hash_info.inf
  35. _RATIONAL_FORMAT = re.compile(r"""
  36. \A\s* # optional whitespace at the start, then
  37. (?P<sign>[-+]?) # an optional sign, then
  38. (?=\d|\.\d) # lookahead for digit or .digit
  39. (?P<num>\d*) # numerator (possibly empty)
  40. (?: # followed by
  41. (?:/(?P<denom>\d+))? # an optional denominator
  42. | # or
  43. (?:\.(?P<decimal>\d*))? # an optional fractional part
  44. (?:E(?P<exp>[-+]?\d+))? # and optional exponent
  45. )
  46. \s*\Z # and optional whitespace to finish
  47. """, re.VERBOSE | re.IGNORECASE)
  48. class Fraction(numbers.Rational):
  49. """This class implements rational numbers.
  50. In the two-argument form of the constructor, Fraction(8, 6) will
  51. produce a rational number equivalent to 4/3. Both arguments must
  52. be Rational. The numerator defaults to 0 and the denominator
  53. defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
  54. Fractions can also be constructed from:
  55. - numeric strings similar to those accepted by the
  56. float constructor (for example, '-2.3' or '1e10')
  57. - strings of the form '123/456'
  58. - float and Decimal instances
  59. - other Rational instances (including integers)
  60. """
  61. __slots__ = ('_numerator', '_denominator')
  62. # We're immutable, so use __new__ not __init__
  63. def __new__(cls, numerator=0, denominator=None, _normalize=True):
  64. """Constructs a Rational.
  65. Takes a string like '3/2' or '1.5', another Rational instance, a
  66. numerator/denominator pair, or a float.
  67. Examples
  68. --------
  69. >>> Fraction(10, -8)
  70. Fraction(-5, 4)
  71. >>> Fraction(Fraction(1, 7), 5)
  72. Fraction(1, 35)
  73. >>> Fraction(Fraction(1, 7), Fraction(2, 3))
  74. Fraction(3, 14)
  75. >>> Fraction('314')
  76. Fraction(314, 1)
  77. >>> Fraction('-35/4')
  78. Fraction(-35, 4)
  79. >>> Fraction('3.1415') # conversion from numeric string
  80. Fraction(6283, 2000)
  81. >>> Fraction('-47e-2') # string may include a decimal exponent
  82. Fraction(-47, 100)
  83. >>> Fraction(1.47) # direct construction from float (exact conversion)
  84. Fraction(6620291452234629, 4503599627370496)
  85. >>> Fraction(2.25)
  86. Fraction(9, 4)
  87. >>> Fraction(Decimal('1.47'))
  88. Fraction(147, 100)
  89. """
  90. self = super(Fraction, cls).__new__(cls)
  91. if denominator is None:
  92. if type(numerator) is int:
  93. self._numerator = numerator
  94. self._denominator = 1
  95. return self
  96. elif isinstance(numerator, numbers.Rational):
  97. self._numerator = numerator.numerator
  98. self._denominator = numerator.denominator
  99. return self
  100. elif isinstance(numerator, float):
  101. # Exact conversion from float
  102. value = Fraction.from_float(numerator)
  103. self._numerator = value._numerator
  104. self._denominator = value._denominator
  105. return self
  106. elif isinstance(numerator, Decimal):
  107. value = Fraction.from_decimal(numerator)
  108. self._numerator = value._numerator
  109. self._denominator = value._denominator
  110. return self
  111. elif isinstance(numerator, str):
  112. # Handle construction from strings.
  113. m = _RATIONAL_FORMAT.match(numerator)
  114. if m is None:
  115. raise ValueError('Invalid literal for Fraction: %r' %
  116. numerator)
  117. numerator = int(m.group('num') or '0')
  118. denom = m.group('denom')
  119. if denom:
  120. denominator = int(denom)
  121. else:
  122. denominator = 1
  123. decimal = m.group('decimal')
  124. if decimal:
  125. scale = 10**len(decimal)
  126. numerator = numerator * scale + int(decimal)
  127. denominator *= scale
  128. exp = m.group('exp')
  129. if exp:
  130. exp = int(exp)
  131. if exp >= 0:
  132. numerator *= 10**exp
  133. else:
  134. denominator *= 10**-exp
  135. if m.group('sign') == '-':
  136. numerator = -numerator
  137. else:
  138. raise TypeError("argument should be a string "
  139. "or a Rational instance")
  140. elif type(numerator) is int is type(denominator):
  141. pass # *very* normal case
  142. elif (isinstance(numerator, numbers.Rational) and
  143. isinstance(denominator, numbers.Rational)):
  144. numerator, denominator = (
  145. numerator.numerator * denominator.denominator,
  146. denominator.numerator * numerator.denominator
  147. )
  148. else:
  149. raise TypeError("both arguments should be "
  150. "Rational instances")
  151. if denominator == 0:
  152. raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
  153. if _normalize:
  154. if type(numerator) is int is type(denominator):
  155. # *very* normal case
  156. g = math.gcd(numerator, denominator)
  157. if denominator < 0:
  158. g = -g
  159. else:
  160. g = _gcd(numerator, denominator)
  161. numerator //= g
  162. denominator //= g
  163. self._numerator = numerator
  164. self._denominator = denominator
  165. return self
  166. @classmethod
  167. def from_float(cls, f):
  168. """Converts a finite float to a rational number, exactly.
  169. Beware that Fraction.from_float(0.3) != Fraction(3, 10).
  170. """
  171. if isinstance(f, numbers.Integral):
  172. return cls(f)
  173. elif not isinstance(f, float):
  174. raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
  175. (cls.__name__, f, type(f).__name__))
  176. if math.isnan(f):
  177. raise ValueError("Cannot convert %r to %s." % (f, cls.__name__))
  178. if math.isinf(f):
  179. raise OverflowError("Cannot convert %r to %s." % (f, cls.__name__))
  180. return cls(*f.as_integer_ratio())
  181. @classmethod
  182. def from_decimal(cls, dec):
  183. """Converts a finite Decimal instance to a rational number, exactly."""
  184. from decimal import Decimal
  185. if isinstance(dec, numbers.Integral):
  186. dec = Decimal(int(dec))
  187. elif not isinstance(dec, Decimal):
  188. raise TypeError(
  189. "%s.from_decimal() only takes Decimals, not %r (%s)" %
  190. (cls.__name__, dec, type(dec).__name__))
  191. if dec.is_infinite():
  192. raise OverflowError(
  193. "Cannot convert %s to %s." % (dec, cls.__name__))
  194. if dec.is_nan():
  195. raise ValueError("Cannot convert %s to %s." % (dec, cls.__name__))
  196. sign, digits, exp = dec.as_tuple()
  197. digits = int(''.join(map(str, digits)))
  198. if sign:
  199. digits = -digits
  200. if exp >= 0:
  201. return cls(digits * 10 ** exp)
  202. else:
  203. return cls(digits, 10 ** -exp)
  204. def limit_denominator(self, max_denominator=1000000):
  205. """Closest Fraction to self with denominator at most max_denominator.
  206. >>> Fraction('3.141592653589793').limit_denominator(10)
  207. Fraction(22, 7)
  208. >>> Fraction('3.141592653589793').limit_denominator(100)
  209. Fraction(311, 99)
  210. >>> Fraction(4321, 8765).limit_denominator(10000)
  211. Fraction(4321, 8765)
  212. """
  213. # Algorithm notes: For any real number x, define a *best upper
  214. # approximation* to x to be a rational number p/q such that:
  215. #
  216. # (1) p/q >= x, and
  217. # (2) if p/q > r/s >= x then s > q, for any rational r/s.
  218. #
  219. # Define *best lower approximation* similarly. Then it can be
  220. # proved that a rational number is a best upper or lower
  221. # approximation to x if, and only if, it is a convergent or
  222. # semiconvergent of the (unique shortest) continued fraction
  223. # associated to x.
  224. #
  225. # To find a best rational approximation with denominator <= M,
  226. # we find the best upper and lower approximations with
  227. # denominator <= M and take whichever of these is closer to x.
  228. # In the event of a tie, the bound with smaller denominator is
  229. # chosen. If both denominators are equal (which can happen
  230. # only when max_denominator == 1 and self is midway between
  231. # two integers) the lower bound---i.e., the floor of self, is
  232. # taken.
  233. if max_denominator < 1:
  234. raise ValueError("max_denominator should be at least 1")
  235. if self._denominator <= max_denominator:
  236. return Fraction(self)
  237. p0, q0, p1, q1 = 0, 1, 1, 0
  238. n, d = self._numerator, self._denominator
  239. while True:
  240. a = n//d
  241. q2 = q0+a*q1
  242. if q2 > max_denominator:
  243. break
  244. p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
  245. n, d = d, n-a*d
  246. k = (max_denominator-q0)//q1
  247. bound1 = Fraction(p0+k*p1, q0+k*q1)
  248. bound2 = Fraction(p1, q1)
  249. if abs(bound2 - self) <= abs(bound1-self):
  250. return bound2
  251. else:
  252. return bound1
  253. @property
  254. def numerator(a):
  255. return a._numerator
  256. @property
  257. def denominator(a):
  258. return a._denominator
  259. def __repr__(self):
  260. """repr(self)"""
  261. return '%s(%s, %s)' % (self.__class__.__name__,
  262. self._numerator, self._denominator)
  263. def __str__(self):
  264. """str(self)"""
  265. if self._denominator == 1:
  266. return str(self._numerator)
  267. else:
  268. return '%s/%s' % (self._numerator, self._denominator)
  269. def _operator_fallbacks(monomorphic_operator, fallback_operator):
  270. """Generates forward and reverse operators given a purely-rational
  271. operator and a function from the operator module.
  272. Use this like:
  273. __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
  274. In general, we want to implement the arithmetic operations so
  275. that mixed-mode operations either call an implementation whose
  276. author knew about the types of both arguments, or convert both
  277. to the nearest built in type and do the operation there. In
  278. Fraction, that means that we define __add__ and __radd__ as:
  279. def __add__(self, other):
  280. # Both types have numerators/denominator attributes,
  281. # so do the operation directly
  282. if isinstance(other, (int, Fraction)):
  283. return Fraction(self.numerator * other.denominator +
  284. other.numerator * self.denominator,
  285. self.denominator * other.denominator)
  286. # float and complex don't have those operations, but we
  287. # know about those types, so special case them.
  288. elif isinstance(other, float):
  289. return float(self) + other
  290. elif isinstance(other, complex):
  291. return complex(self) + other
  292. # Let the other type take over.
  293. return NotImplemented
  294. def __radd__(self, other):
  295. # radd handles more types than add because there's
  296. # nothing left to fall back to.
  297. if isinstance(other, numbers.Rational):
  298. return Fraction(self.numerator * other.denominator +
  299. other.numerator * self.denominator,
  300. self.denominator * other.denominator)
  301. elif isinstance(other, Real):
  302. return float(other) + float(self)
  303. elif isinstance(other, Complex):
  304. return complex(other) + complex(self)
  305. return NotImplemented
  306. There are 5 different cases for a mixed-type addition on
  307. Fraction. I'll refer to all of the above code that doesn't
  308. refer to Fraction, float, or complex as "boilerplate". 'r'
  309. will be an instance of Fraction, which is a subtype of
  310. Rational (r : Fraction <: Rational), and b : B <:
  311. Complex. The first three involve 'r + b':
  312. 1. If B <: Fraction, int, float, or complex, we handle
  313. that specially, and all is well.
  314. 2. If Fraction falls back to the boilerplate code, and it
  315. were to return a value from __add__, we'd miss the
  316. possibility that B defines a more intelligent __radd__,
  317. so the boilerplate should return NotImplemented from
  318. __add__. In particular, we don't handle Rational
  319. here, even though we could get an exact answer, in case
  320. the other type wants to do something special.
  321. 3. If B <: Fraction, Python tries B.__radd__ before
  322. Fraction.__add__. This is ok, because it was
  323. implemented with knowledge of Fraction, so it can
  324. handle those instances before delegating to Real or
  325. Complex.
  326. The next two situations describe 'b + r'. We assume that b
  327. didn't know about Fraction in its implementation, and that it
  328. uses similar boilerplate code:
  329. 4. If B <: Rational, then __radd_ converts both to the
  330. builtin rational type (hey look, that's us) and
  331. proceeds.
  332. 5. Otherwise, __radd__ tries to find the nearest common
  333. base ABC, and fall back to its builtin type. Since this
  334. class doesn't subclass a concrete type, there's no
  335. implementation to fall back to, so we need to try as
  336. hard as possible to return an actual value, or the user
  337. will get a TypeError.
  338. """
  339. def forward(a, b):
  340. if isinstance(b, (int, Fraction)):
  341. return monomorphic_operator(a, b)
  342. elif isinstance(b, float):
  343. return fallback_operator(float(a), b)
  344. elif isinstance(b, complex):
  345. return fallback_operator(complex(a), b)
  346. else:
  347. return NotImplemented
  348. forward.__name__ = '__' + fallback_operator.__name__ + '__'
  349. forward.__doc__ = monomorphic_operator.__doc__
  350. def reverse(b, a):
  351. if isinstance(a, numbers.Rational):
  352. # Includes ints.
  353. return monomorphic_operator(a, b)
  354. elif isinstance(a, numbers.Real):
  355. return fallback_operator(float(a), float(b))
  356. elif isinstance(a, numbers.Complex):
  357. return fallback_operator(complex(a), complex(b))
  358. else:
  359. return NotImplemented
  360. reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
  361. reverse.__doc__ = monomorphic_operator.__doc__
  362. return forward, reverse
  363. def _add(a, b):
  364. """a + b"""
  365. da, db = a.denominator, b.denominator
  366. return Fraction(a.numerator * db + b.numerator * da,
  367. da * db)
  368. __add__, __radd__ = _operator_fallbacks(_add, operator.add)
  369. def _sub(a, b):
  370. """a - b"""
  371. da, db = a.denominator, b.denominator
  372. return Fraction(a.numerator * db - b.numerator * da,
  373. da * db)
  374. __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
  375. def _mul(a, b):
  376. """a * b"""
  377. return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
  378. __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
  379. def _div(a, b):
  380. """a / b"""
  381. return Fraction(a.numerator * b.denominator,
  382. a.denominator * b.numerator)
  383. __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
  384. def __floordiv__(a, b):
  385. """a // b"""
  386. return math.floor(a / b)
  387. def __rfloordiv__(b, a):
  388. """a // b"""
  389. return math.floor(a / b)
  390. def __mod__(a, b):
  391. """a % b"""
  392. div = a // b
  393. return a - b * div
  394. def __rmod__(b, a):
  395. """a % b"""
  396. div = a // b
  397. return a - b * div
  398. def __pow__(a, b):
  399. """a ** b
  400. If b is not an integer, the result will be a float or complex
  401. since roots are generally irrational. If b is an integer, the
  402. result will be rational.
  403. """
  404. if isinstance(b, numbers.Rational):
  405. if b.denominator == 1:
  406. power = b.numerator
  407. if power >= 0:
  408. return Fraction(a._numerator ** power,
  409. a._denominator ** power,
  410. _normalize=False)
  411. else:
  412. return Fraction(a._denominator ** -power,
  413. a._numerator ** -power,
  414. _normalize=False)
  415. else:
  416. # A fractional power will generally produce an
  417. # irrational number.
  418. return float(a) ** float(b)
  419. else:
  420. return float(a) ** b
  421. def __rpow__(b, a):
  422. """a ** b"""
  423. if b._denominator == 1 and b._numerator >= 0:
  424. # If a is an int, keep it that way if possible.
  425. return a ** b._numerator
  426. if isinstance(a, numbers.Rational):
  427. return Fraction(a.numerator, a.denominator) ** b
  428. if b._denominator == 1:
  429. return a ** b._numerator
  430. return a ** float(b)
  431. def __pos__(a):
  432. """+a: Coerces a subclass instance to Fraction"""
  433. return Fraction(a._numerator, a._denominator, _normalize=False)
  434. def __neg__(a):
  435. """-a"""
  436. return Fraction(-a._numerator, a._denominator, _normalize=False)
  437. def __abs__(a):
  438. """abs(a)"""
  439. return Fraction(abs(a._numerator), a._denominator, _normalize=False)
  440. def __trunc__(a):
  441. """trunc(a)"""
  442. if a._numerator < 0:
  443. return -(-a._numerator // a._denominator)
  444. else:
  445. return a._numerator // a._denominator
  446. def __floor__(a):
  447. """Will be math.floor(a) in 3.0."""
  448. return a.numerator // a.denominator
  449. def __ceil__(a):
  450. """Will be math.ceil(a) in 3.0."""
  451. # The negations cleverly convince floordiv to return the ceiling.
  452. return -(-a.numerator // a.denominator)
  453. def __round__(self, ndigits=None):
  454. """Will be round(self, ndigits) in 3.0.
  455. Rounds half toward even.
  456. """
  457. if ndigits is None:
  458. floor, remainder = divmod(self.numerator, self.denominator)
  459. if remainder * 2 < self.denominator:
  460. return floor
  461. elif remainder * 2 > self.denominator:
  462. return floor + 1
  463. # Deal with the half case:
  464. elif floor % 2 == 0:
  465. return floor
  466. else:
  467. return floor + 1
  468. shift = 10**abs(ndigits)
  469. # See _operator_fallbacks.forward to check that the results of
  470. # these operations will always be Fraction and therefore have
  471. # round().
  472. if ndigits > 0:
  473. return Fraction(round(self * shift), shift)
  474. else:
  475. return Fraction(round(self / shift) * shift)
  476. def __hash__(self):
  477. """hash(self)"""
  478. # XXX since this method is expensive, consider caching the result
  479. # In order to make sure that the hash of a Fraction agrees
  480. # with the hash of a numerically equal integer, float or
  481. # Decimal instance, we follow the rules for numeric hashes
  482. # outlined in the documentation. (See library docs, 'Built-in
  483. # Types').
  484. # dinv is the inverse of self._denominator modulo the prime
  485. # _PyHASH_MODULUS, or 0 if self._denominator is divisible by
  486. # _PyHASH_MODULUS.
  487. dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
  488. if not dinv:
  489. hash_ = _PyHASH_INF
  490. else:
  491. hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS
  492. result = hash_ if self >= 0 else -hash_
  493. return -2 if result == -1 else result
  494. def __eq__(a, b):
  495. """a == b"""
  496. if type(b) is int:
  497. return a._numerator == b and a._denominator == 1
  498. if isinstance(b, numbers.Rational):
  499. return (a._numerator == b.numerator and
  500. a._denominator == b.denominator)
  501. if isinstance(b, numbers.Complex) and b.imag == 0:
  502. b = b.real
  503. if isinstance(b, float):
  504. if math.isnan(b) or math.isinf(b):
  505. # comparisons with an infinity or nan should behave in
  506. # the same way for any finite a, so treat a as zero.
  507. return 0.0 == b
  508. else:
  509. return a == a.from_float(b)
  510. else:
  511. # Since a doesn't know how to compare with b, let's give b
  512. # a chance to compare itself with a.
  513. return NotImplemented
  514. def _richcmp(self, other, op):
  515. """Helper for comparison operators, for internal use only.
  516. Implement comparison between a Rational instance `self`, and
  517. either another Rational instance or a float `other`. If
  518. `other` is not a Rational instance or a float, return
  519. NotImplemented. `op` should be one of the six standard
  520. comparison operators.
  521. """
  522. # convert other to a Rational instance where reasonable.
  523. if isinstance(other, numbers.Rational):
  524. return op(self._numerator * other.denominator,
  525. self._denominator * other.numerator)
  526. if isinstance(other, float):
  527. if math.isnan(other) or math.isinf(other):
  528. return op(0.0, other)
  529. else:
  530. return op(self, self.from_float(other))
  531. else:
  532. return NotImplemented
  533. def __lt__(a, b):
  534. """a < b"""
  535. return a._richcmp(b, operator.lt)
  536. def __gt__(a, b):
  537. """a > b"""
  538. return a._richcmp(b, operator.gt)
  539. def __le__(a, b):
  540. """a <= b"""
  541. return a._richcmp(b, operator.le)
  542. def __ge__(a, b):
  543. """a >= b"""
  544. return a._richcmp(b, operator.ge)
  545. def __bool__(a):
  546. """a != 0"""
  547. return a._numerator != 0
  548. # support for pickling, copy, and deepcopy
  549. def __reduce__(self):
  550. return (self.__class__, (str(self),))
  551. def __copy__(self):
  552. if type(self) == Fraction:
  553. return self # I'm immutable; therefore I am my own clone
  554. return self.__class__(self._numerator, self._denominator)
  555. def __deepcopy__(self, memo):
  556. if type(self) == Fraction:
  557. return self # My components are also immutable
  558. return self.__class__(self._numerator, self._denominator)