csv.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. """
  2. csv.py - read/write/investigate CSV files
  3. """
  4. import re
  5. from _csv import Error, __version__, writer, reader, register_dialect, \
  6. unregister_dialect, get_dialect, list_dialects, \
  7. field_size_limit, \
  8. QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
  9. __doc__
  10. from _csv import Dialect as _Dialect
  11. from io import StringIO
  12. __all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
  13. "Error", "Dialect", "__doc__", "excel", "excel_tab",
  14. "field_size_limit", "reader", "writer",
  15. "register_dialect", "get_dialect", "list_dialects", "Sniffer",
  16. "unregister_dialect", "__version__", "DictReader", "DictWriter" ]
  17. class Dialect:
  18. """Describe a CSV dialect.
  19. This must be subclassed (see csv.excel). Valid attributes are:
  20. delimiter, quotechar, escapechar, doublequote, skipinitialspace,
  21. lineterminator, quoting.
  22. """
  23. _name = ""
  24. _valid = False
  25. # placeholders
  26. delimiter = None
  27. quotechar = None
  28. escapechar = None
  29. doublequote = None
  30. skipinitialspace = None
  31. lineterminator = None
  32. quoting = None
  33. def __init__(self):
  34. if self.__class__ != Dialect:
  35. self._valid = True
  36. self._validate()
  37. def _validate(self):
  38. try:
  39. _Dialect(self)
  40. except TypeError as e:
  41. # We do this for compatibility with py2.3
  42. raise Error(str(e))
  43. class excel(Dialect):
  44. """Describe the usual properties of Excel-generated CSV files."""
  45. delimiter = ','
  46. quotechar = '"'
  47. doublequote = True
  48. skipinitialspace = False
  49. lineterminator = '\r\n'
  50. quoting = QUOTE_MINIMAL
  51. register_dialect("excel", excel)
  52. class excel_tab(excel):
  53. """Describe the usual properties of Excel-generated TAB-delimited files."""
  54. delimiter = '\t'
  55. register_dialect("excel-tab", excel_tab)
  56. class unix_dialect(Dialect):
  57. """Describe the usual properties of Unix-generated CSV files."""
  58. delimiter = ','
  59. quotechar = '"'
  60. doublequote = True
  61. skipinitialspace = False
  62. lineterminator = '\n'
  63. quoting = QUOTE_ALL
  64. register_dialect("unix", unix_dialect)
  65. class DictReader:
  66. def __init__(self, f, fieldnames=None, restkey=None, restval=None,
  67. dialect="excel", *args, **kwds):
  68. self._fieldnames = fieldnames # list of keys for the dict
  69. self.restkey = restkey # key to catch long rows
  70. self.restval = restval # default value for short rows
  71. self.reader = reader(f, dialect, *args, **kwds)
  72. self.dialect = dialect
  73. self.line_num = 0
  74. def __iter__(self):
  75. return self
  76. @property
  77. def fieldnames(self):
  78. if self._fieldnames is None:
  79. try:
  80. self._fieldnames = next(self.reader)
  81. except StopIteration:
  82. pass
  83. self.line_num = self.reader.line_num
  84. return self._fieldnames
  85. @fieldnames.setter
  86. def fieldnames(self, value):
  87. self._fieldnames = value
  88. def __next__(self):
  89. if self.line_num == 0:
  90. # Used only for its side effect.
  91. self.fieldnames
  92. row = next(self.reader)
  93. self.line_num = self.reader.line_num
  94. # unlike the basic reader, we prefer not to return blanks,
  95. # because we will typically wind up with a dict full of None
  96. # values
  97. while row == []:
  98. row = next(self.reader)
  99. d = dict(zip(self.fieldnames, row))
  100. lf = len(self.fieldnames)
  101. lr = len(row)
  102. if lf < lr:
  103. d[self.restkey] = row[lf:]
  104. elif lf > lr:
  105. for key in self.fieldnames[lr:]:
  106. d[key] = self.restval
  107. return d
  108. class DictWriter:
  109. def __init__(self, f, fieldnames, restval="", extrasaction="raise",
  110. dialect="excel", *args, **kwds):
  111. self.fieldnames = fieldnames # list of keys for the dict
  112. self.restval = restval # for writing short dicts
  113. if extrasaction.lower() not in ("raise", "ignore"):
  114. raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
  115. % extrasaction)
  116. self.extrasaction = extrasaction
  117. self.writer = writer(f, dialect, *args, **kwds)
  118. def writeheader(self):
  119. header = dict(zip(self.fieldnames, self.fieldnames))
  120. self.writerow(header)
  121. def _dict_to_list(self, rowdict):
  122. if self.extrasaction == "raise":
  123. wrong_fields = [k for k in rowdict if k not in self.fieldnames]
  124. if wrong_fields:
  125. raise ValueError("dict contains fields not in fieldnames: "
  126. + ", ".join([repr(x) for x in wrong_fields]))
  127. return (rowdict.get(key, self.restval) for key in self.fieldnames)
  128. def writerow(self, rowdict):
  129. return self.writer.writerow(self._dict_to_list(rowdict))
  130. def writerows(self, rowdicts):
  131. return self.writer.writerows(map(self._dict_to_list, rowdicts))
  132. # Guard Sniffer's type checking against builds that exclude complex()
  133. try:
  134. complex
  135. except NameError:
  136. complex = float
  137. class Sniffer:
  138. '''
  139. "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
  140. Returns a Dialect object.
  141. '''
  142. def __init__(self):
  143. # in case there is more than one possible delimiter
  144. self.preferred = [',', '\t', ';', ' ', ':']
  145. def sniff(self, sample, delimiters=None):
  146. """
  147. Returns a dialect (or None) corresponding to the sample
  148. """
  149. quotechar, doublequote, delimiter, skipinitialspace = \
  150. self._guess_quote_and_delimiter(sample, delimiters)
  151. if not delimiter:
  152. delimiter, skipinitialspace = self._guess_delimiter(sample,
  153. delimiters)
  154. if not delimiter:
  155. raise Error("Could not determine delimiter")
  156. class dialect(Dialect):
  157. _name = "sniffed"
  158. lineterminator = '\r\n'
  159. quoting = QUOTE_MINIMAL
  160. # escapechar = ''
  161. dialect.doublequote = doublequote
  162. dialect.delimiter = delimiter
  163. # _csv.reader won't accept a quotechar of ''
  164. dialect.quotechar = quotechar or '"'
  165. dialect.skipinitialspace = skipinitialspace
  166. return dialect
  167. def _guess_quote_and_delimiter(self, data, delimiters):
  168. """
  169. Looks for text enclosed between two identical quotes
  170. (the probable quotechar) which are preceded and followed
  171. by the same character (the probable delimiter).
  172. For example:
  173. ,'some text',
  174. The quote with the most wins, same with the delimiter.
  175. If there is no quotechar the delimiter can't be determined
  176. this way.
  177. """
  178. matches = []
  179. for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
  180. '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?",
  181. '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?"
  182. '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space)
  183. regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
  184. matches = regexp.findall(data)
  185. if matches:
  186. break
  187. if not matches:
  188. # (quotechar, doublequote, delimiter, skipinitialspace)
  189. return ('', False, None, 0)
  190. quotes = {}
  191. delims = {}
  192. spaces = 0
  193. groupindex = regexp.groupindex
  194. for m in matches:
  195. n = groupindex['quote'] - 1
  196. key = m[n]
  197. if key:
  198. quotes[key] = quotes.get(key, 0) + 1
  199. try:
  200. n = groupindex['delim'] - 1
  201. key = m[n]
  202. except KeyError:
  203. continue
  204. if key and (delimiters is None or key in delimiters):
  205. delims[key] = delims.get(key, 0) + 1
  206. try:
  207. n = groupindex['space'] - 1
  208. except KeyError:
  209. continue
  210. if m[n]:
  211. spaces += 1
  212. quotechar = max(quotes, key=quotes.get)
  213. if delims:
  214. delim = max(delims, key=delims.get)
  215. skipinitialspace = delims[delim] == spaces
  216. if delim == '\n': # most likely a file with a single column
  217. delim = ''
  218. else:
  219. # there is *no* delimiter, it's a single column of quoted data
  220. delim = ''
  221. skipinitialspace = 0
  222. # if we see an extra quote between delimiters, we've got a
  223. # double quoted format
  224. dq_regexp = re.compile(
  225. r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
  226. {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)
  227. if dq_regexp.search(data):
  228. doublequote = True
  229. else:
  230. doublequote = False
  231. return (quotechar, doublequote, delim, skipinitialspace)
  232. def _guess_delimiter(self, data, delimiters):
  233. """
  234. The delimiter /should/ occur the same number of times on
  235. each row. However, due to malformed data, it may not. We don't want
  236. an all or nothing approach, so we allow for small variations in this
  237. number.
  238. 1) build a table of the frequency of each character on every line.
  239. 2) build a table of frequencies of this frequency (meta-frequency?),
  240. e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows,
  241. 7 times in 2 rows'
  242. 3) use the mode of the meta-frequency to determine the /expected/
  243. frequency for that character
  244. 4) find out how often the character actually meets that goal
  245. 5) the character that best meets its goal is the delimiter
  246. For performance reasons, the data is evaluated in chunks, so it can
  247. try and evaluate the smallest portion of the data possible, evaluating
  248. additional chunks as necessary.
  249. """
  250. data = list(filter(None, data.split('\n')))
  251. ascii = [chr(c) for c in range(127)] # 7-bit ASCII
  252. # build frequency tables
  253. chunkLength = min(10, len(data))
  254. iteration = 0
  255. charFrequency = {}
  256. modes = {}
  257. delims = {}
  258. start, end = 0, min(chunkLength, len(data))
  259. while start < len(data):
  260. iteration += 1
  261. for line in data[start:end]:
  262. for char in ascii:
  263. metaFrequency = charFrequency.get(char, {})
  264. # must count even if frequency is 0
  265. freq = line.count(char)
  266. # value is the mode
  267. metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
  268. charFrequency[char] = metaFrequency
  269. for char in charFrequency.keys():
  270. items = list(charFrequency[char].items())
  271. if len(items) == 1 and items[0][0] == 0:
  272. continue
  273. # get the mode of the frequencies
  274. if len(items) > 1:
  275. modes[char] = max(items, key=lambda x: x[1])
  276. # adjust the mode - subtract the sum of all
  277. # other frequencies
  278. items.remove(modes[char])
  279. modes[char] = (modes[char][0], modes[char][1]
  280. - sum(item[1] for item in items))
  281. else:
  282. modes[char] = items[0]
  283. # build a list of possible delimiters
  284. modeList = modes.items()
  285. total = float(chunkLength * iteration)
  286. # (rows of consistent data) / (number of rows) = 100%
  287. consistency = 1.0
  288. # minimum consistency threshold
  289. threshold = 0.9
  290. while len(delims) == 0 and consistency >= threshold:
  291. for k, v in modeList:
  292. if v[0] > 0 and v[1] > 0:
  293. if ((v[1]/total) >= consistency and
  294. (delimiters is None or k in delimiters)):
  295. delims[k] = v
  296. consistency -= 0.01
  297. if len(delims) == 1:
  298. delim = list(delims.keys())[0]
  299. skipinitialspace = (data[0].count(delim) ==
  300. data[0].count("%c " % delim))
  301. return (delim, skipinitialspace)
  302. # analyze another chunkLength lines
  303. start = end
  304. end += chunkLength
  305. if not delims:
  306. return ('', 0)
  307. # if there's more than one, fall back to a 'preferred' list
  308. if len(delims) > 1:
  309. for d in self.preferred:
  310. if d in delims.keys():
  311. skipinitialspace = (data[0].count(d) ==
  312. data[0].count("%c " % d))
  313. return (d, skipinitialspace)
  314. # nothing else indicates a preference, pick the character that
  315. # dominates(?)
  316. items = [(v,k) for (k,v) in delims.items()]
  317. items.sort()
  318. delim = items[-1][1]
  319. skipinitialspace = (data[0].count(delim) ==
  320. data[0].count("%c " % delim))
  321. return (delim, skipinitialspace)
  322. def has_header(self, sample):
  323. # Creates a dictionary of types of data in each column. If any
  324. # column is of a single type (say, integers), *except* for the first
  325. # row, then the first row is presumed to be labels. If the type
  326. # can't be determined, it is assumed to be a string in which case
  327. # the length of the string is the determining factor: if all of the
  328. # rows except for the first are the same length, it's a header.
  329. # Finally, a 'vote' is taken at the end for each column, adding or
  330. # subtracting from the likelihood of the first row being a header.
  331. rdr = reader(StringIO(sample), self.sniff(sample))
  332. header = next(rdr) # assume first row is header
  333. columns = len(header)
  334. columnTypes = {}
  335. for i in range(columns): columnTypes[i] = None
  336. checked = 0
  337. for row in rdr:
  338. # arbitrary number of rows to check, to keep it sane
  339. if checked > 20:
  340. break
  341. checked += 1
  342. if len(row) != columns:
  343. continue # skip rows that have irregular number of columns
  344. for col in list(columnTypes.keys()):
  345. for thisType in [int, float, complex]:
  346. try:
  347. thisType(row[col])
  348. break
  349. except (ValueError, OverflowError):
  350. pass
  351. else:
  352. # fallback to length of string
  353. thisType = len(row[col])
  354. if thisType != columnTypes[col]:
  355. if columnTypes[col] is None: # add new column type
  356. columnTypes[col] = thisType
  357. else:
  358. # type is inconsistent, remove column from
  359. # consideration
  360. del columnTypes[col]
  361. # finally, compare results against first row and "vote"
  362. # on whether it's a header
  363. hasHeader = 0
  364. for col, colType in columnTypes.items():
  365. if type(colType) == type(0): # it's a length
  366. if len(header[col]) != colType:
  367. hasHeader += 1
  368. else:
  369. hasHeader -= 1
  370. else: # attempt typecast
  371. try:
  372. colType(header[col])
  373. except (ValueError, TypeError):
  374. hasHeader += 1
  375. else:
  376. hasHeader -= 1
  377. return hasHeader > 0