_pydecimal.py 222 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380
  1. # Copyright (c) 2004 Python Software Foundation.
  2. # All rights reserved.
  3. # Written by Eric Price <eprice at tjhsst.edu>
  4. # and Facundo Batista <facundo at taniquetil.com.ar>
  5. # and Raymond Hettinger <python at rcn.com>
  6. # and Aahz <aahz at pobox.com>
  7. # and Tim Peters
  8. # This module should be kept in sync with the latest updates of the
  9. # IBM specification as it evolves. Those updates will be treated
  10. # as bug fixes (deviation from the spec is a compatibility, usability
  11. # bug) and will be backported. At this point the spec is stabilizing
  12. # and the updates are becoming fewer, smaller, and less significant.
  13. """
  14. This is an implementation of decimal floating point arithmetic based on
  15. the General Decimal Arithmetic Specification:
  16. http://speleotrove.com/decimal/decarith.html
  17. and IEEE standard 854-1987:
  18. http://en.wikipedia.org/wiki/IEEE_854-1987
  19. Decimal floating point has finite precision with arbitrarily large bounds.
  20. The purpose of this module is to support arithmetic using familiar
  21. "schoolhouse" rules and to avoid some of the tricky representation
  22. issues associated with binary floating point. The package is especially
  23. useful for financial applications or for contexts where users have
  24. expectations that are at odds with binary floating point (for instance,
  25. in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
  26. of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected
  27. Decimal('0.00')).
  28. Here are some examples of using the decimal module:
  29. >>> from decimal import *
  30. >>> setcontext(ExtendedContext)
  31. >>> Decimal(0)
  32. Decimal('0')
  33. >>> Decimal('1')
  34. Decimal('1')
  35. >>> Decimal('-.0123')
  36. Decimal('-0.0123')
  37. >>> Decimal(123456)
  38. Decimal('123456')
  39. >>> Decimal('123.45e12345678')
  40. Decimal('1.2345E+12345680')
  41. >>> Decimal('1.33') + Decimal('1.27')
  42. Decimal('2.60')
  43. >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
  44. Decimal('-2.20')
  45. >>> dig = Decimal(1)
  46. >>> print(dig / Decimal(3))
  47. 0.333333333
  48. >>> getcontext().prec = 18
  49. >>> print(dig / Decimal(3))
  50. 0.333333333333333333
  51. >>> print(dig.sqrt())
  52. 1
  53. >>> print(Decimal(3).sqrt())
  54. 1.73205080756887729
  55. >>> print(Decimal(3) ** 123)
  56. 4.85192780976896427E+58
  57. >>> inf = Decimal(1) / Decimal(0)
  58. >>> print(inf)
  59. Infinity
  60. >>> neginf = Decimal(-1) / Decimal(0)
  61. >>> print(neginf)
  62. -Infinity
  63. >>> print(neginf + inf)
  64. NaN
  65. >>> print(neginf * inf)
  66. -Infinity
  67. >>> print(dig / 0)
  68. Infinity
  69. >>> getcontext().traps[DivisionByZero] = 1
  70. >>> print(dig / 0)
  71. Traceback (most recent call last):
  72. ...
  73. ...
  74. ...
  75. decimal.DivisionByZero: x / 0
  76. >>> c = Context()
  77. >>> c.traps[InvalidOperation] = 0
  78. >>> print(c.flags[InvalidOperation])
  79. 0
  80. >>> c.divide(Decimal(0), Decimal(0))
  81. Decimal('NaN')
  82. >>> c.traps[InvalidOperation] = 1
  83. >>> print(c.flags[InvalidOperation])
  84. 1
  85. >>> c.flags[InvalidOperation] = 0
  86. >>> print(c.flags[InvalidOperation])
  87. 0
  88. >>> print(c.divide(Decimal(0), Decimal(0)))
  89. Traceback (most recent call last):
  90. ...
  91. ...
  92. ...
  93. decimal.InvalidOperation: 0 / 0
  94. >>> print(c.flags[InvalidOperation])
  95. 1
  96. >>> c.flags[InvalidOperation] = 0
  97. >>> c.traps[InvalidOperation] = 0
  98. >>> print(c.divide(Decimal(0), Decimal(0)))
  99. NaN
  100. >>> print(c.flags[InvalidOperation])
  101. 1
  102. >>>
  103. """
  104. __all__ = [
  105. # Two major classes
  106. 'Decimal', 'Context',
  107. # Named tuple representation
  108. 'DecimalTuple',
  109. # Contexts
  110. 'DefaultContext', 'BasicContext', 'ExtendedContext',
  111. # Exceptions
  112. 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
  113. 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
  114. 'FloatOperation',
  115. # Exceptional conditions that trigger InvalidOperation
  116. 'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined',
  117. # Constants for use in setting up contexts
  118. 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
  119. 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
  120. # Functions for manipulating contexts
  121. 'setcontext', 'getcontext', 'localcontext',
  122. # Limits for the C version for compatibility
  123. 'MAX_PREC', 'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY',
  124. # C version: compile time choice that enables the thread local context
  125. 'HAVE_THREADS'
  126. ]
  127. __xname__ = __name__ # sys.modules lookup (--without-threads)
  128. __name__ = 'decimal' # For pickling
  129. __version__ = '1.70' # Highest version of the spec this complies with
  130. # See http://speleotrove.com/decimal/
  131. __libmpdec_version__ = "2.4.1" # compatible libmpdec version
  132. import math as _math
  133. import numbers as _numbers
  134. import sys
  135. try:
  136. from collections import namedtuple as _namedtuple
  137. DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
  138. except ImportError:
  139. DecimalTuple = lambda *args: args
  140. # Rounding
  141. ROUND_DOWN = 'ROUND_DOWN'
  142. ROUND_HALF_UP = 'ROUND_HALF_UP'
  143. ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
  144. ROUND_CEILING = 'ROUND_CEILING'
  145. ROUND_FLOOR = 'ROUND_FLOOR'
  146. ROUND_UP = 'ROUND_UP'
  147. ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
  148. ROUND_05UP = 'ROUND_05UP'
  149. # Compatibility with the C version
  150. HAVE_THREADS = True
  151. if sys.maxsize == 2**63-1:
  152. MAX_PREC = 999999999999999999
  153. MAX_EMAX = 999999999999999999
  154. MIN_EMIN = -999999999999999999
  155. else:
  156. MAX_PREC = 425000000
  157. MAX_EMAX = 425000000
  158. MIN_EMIN = -425000000
  159. MIN_ETINY = MIN_EMIN - (MAX_PREC-1)
  160. # Errors
  161. class DecimalException(ArithmeticError):
  162. """Base exception class.
  163. Used exceptions derive from this.
  164. If an exception derives from another exception besides this (such as
  165. Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
  166. called if the others are present. This isn't actually used for
  167. anything, though.
  168. handle -- Called when context._raise_error is called and the
  169. trap_enabler is not set. First argument is self, second is the
  170. context. More arguments can be given, those being after
  171. the explanation in _raise_error (For example,
  172. context._raise_error(NewError, '(-x)!', self._sign) would
  173. call NewError().handle(context, self._sign).)
  174. To define a new exception, it should be sufficient to have it derive
  175. from DecimalException.
  176. """
  177. def handle(self, context, *args):
  178. pass
  179. class Clamped(DecimalException):
  180. """Exponent of a 0 changed to fit bounds.
  181. This occurs and signals clamped if the exponent of a result has been
  182. altered in order to fit the constraints of a specific concrete
  183. representation. This may occur when the exponent of a zero result would
  184. be outside the bounds of a representation, or when a large normal
  185. number would have an encoded exponent that cannot be represented. In
  186. this latter case, the exponent is reduced to fit and the corresponding
  187. number of zero digits are appended to the coefficient ("fold-down").
  188. """
  189. class InvalidOperation(DecimalException):
  190. """An invalid operation was performed.
  191. Various bad things cause this:
  192. Something creates a signaling NaN
  193. -INF + INF
  194. 0 * (+-)INF
  195. (+-)INF / (+-)INF
  196. x % 0
  197. (+-)INF % x
  198. x._rescale( non-integer )
  199. sqrt(-x) , x > 0
  200. 0 ** 0
  201. x ** (non-integer)
  202. x ** (+-)INF
  203. An operand is invalid
  204. The result of the operation after these is a quiet positive NaN,
  205. except when the cause is a signaling NaN, in which case the result is
  206. also a quiet NaN, but with the original sign, and an optional
  207. diagnostic information.
  208. """
  209. def handle(self, context, *args):
  210. if args:
  211. ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
  212. return ans._fix_nan(context)
  213. return _NaN
  214. class ConversionSyntax(InvalidOperation):
  215. """Trying to convert badly formed string.
  216. This occurs and signals invalid-operation if a string is being
  217. converted to a number and it does not conform to the numeric string
  218. syntax. The result is [0,qNaN].
  219. """
  220. def handle(self, context, *args):
  221. return _NaN
  222. class DivisionByZero(DecimalException, ZeroDivisionError):
  223. """Division by 0.
  224. This occurs and signals division-by-zero if division of a finite number
  225. by zero was attempted (during a divide-integer or divide operation, or a
  226. power operation with negative right-hand operand), and the dividend was
  227. not zero.
  228. The result of the operation is [sign,inf], where sign is the exclusive
  229. or of the signs of the operands for divide, or is 1 for an odd power of
  230. -0, for power.
  231. """
  232. def handle(self, context, sign, *args):
  233. return _SignedInfinity[sign]
  234. class DivisionImpossible(InvalidOperation):
  235. """Cannot perform the division adequately.
  236. This occurs and signals invalid-operation if the integer result of a
  237. divide-integer or remainder operation had too many digits (would be
  238. longer than precision). The result is [0,qNaN].
  239. """
  240. def handle(self, context, *args):
  241. return _NaN
  242. class DivisionUndefined(InvalidOperation, ZeroDivisionError):
  243. """Undefined result of division.
  244. This occurs and signals invalid-operation if division by zero was
  245. attempted (during a divide-integer, divide, or remainder operation), and
  246. the dividend is also zero. The result is [0,qNaN].
  247. """
  248. def handle(self, context, *args):
  249. return _NaN
  250. class Inexact(DecimalException):
  251. """Had to round, losing information.
  252. This occurs and signals inexact whenever the result of an operation is
  253. not exact (that is, it needed to be rounded and any discarded digits
  254. were non-zero), or if an overflow or underflow condition occurs. The
  255. result in all cases is unchanged.
  256. The inexact signal may be tested (or trapped) to determine if a given
  257. operation (or sequence of operations) was inexact.
  258. """
  259. class InvalidContext(InvalidOperation):
  260. """Invalid context. Unknown rounding, for example.
  261. This occurs and signals invalid-operation if an invalid context was
  262. detected during an operation. This can occur if contexts are not checked
  263. on creation and either the precision exceeds the capability of the
  264. underlying concrete representation or an unknown or unsupported rounding
  265. was specified. These aspects of the context need only be checked when
  266. the values are required to be used. The result is [0,qNaN].
  267. """
  268. def handle(self, context, *args):
  269. return _NaN
  270. class Rounded(DecimalException):
  271. """Number got rounded (not necessarily changed during rounding).
  272. This occurs and signals rounded whenever the result of an operation is
  273. rounded (that is, some zero or non-zero digits were discarded from the
  274. coefficient), or if an overflow or underflow condition occurs. The
  275. result in all cases is unchanged.
  276. The rounded signal may be tested (or trapped) to determine if a given
  277. operation (or sequence of operations) caused a loss of precision.
  278. """
  279. class Subnormal(DecimalException):
  280. """Exponent < Emin before rounding.
  281. This occurs and signals subnormal whenever the result of a conversion or
  282. operation is subnormal (that is, its adjusted exponent is less than
  283. Emin, before any rounding). The result in all cases is unchanged.
  284. The subnormal signal may be tested (or trapped) to determine if a given
  285. or operation (or sequence of operations) yielded a subnormal result.
  286. """
  287. class Overflow(Inexact, Rounded):
  288. """Numerical overflow.
  289. This occurs and signals overflow if the adjusted exponent of a result
  290. (from a conversion or from an operation that is not an attempt to divide
  291. by zero), after rounding, would be greater than the largest value that
  292. can be handled by the implementation (the value Emax).
  293. The result depends on the rounding mode:
  294. For round-half-up and round-half-even (and for round-half-down and
  295. round-up, if implemented), the result of the operation is [sign,inf],
  296. where sign is the sign of the intermediate result. For round-down, the
  297. result is the largest finite number that can be represented in the
  298. current precision, with the sign of the intermediate result. For
  299. round-ceiling, the result is the same as for round-down if the sign of
  300. the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
  301. the result is the same as for round-down if the sign of the intermediate
  302. result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
  303. will also be raised.
  304. """
  305. def handle(self, context, sign, *args):
  306. if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
  307. ROUND_HALF_DOWN, ROUND_UP):
  308. return _SignedInfinity[sign]
  309. if sign == 0:
  310. if context.rounding == ROUND_CEILING:
  311. return _SignedInfinity[sign]
  312. return _dec_from_triple(sign, '9'*context.prec,
  313. context.Emax-context.prec+1)
  314. if sign == 1:
  315. if context.rounding == ROUND_FLOOR:
  316. return _SignedInfinity[sign]
  317. return _dec_from_triple(sign, '9'*context.prec,
  318. context.Emax-context.prec+1)
  319. class Underflow(Inexact, Rounded, Subnormal):
  320. """Numerical underflow with result rounded to 0.
  321. This occurs and signals underflow if a result is inexact and the
  322. adjusted exponent of the result would be smaller (more negative) than
  323. the smallest value that can be handled by the implementation (the value
  324. Emin). That is, the result is both inexact and subnormal.
  325. The result after an underflow will be a subnormal number rounded, if
  326. necessary, so that its exponent is not less than Etiny. This may result
  327. in 0 with the sign of the intermediate result and an exponent of Etiny.
  328. In all cases, Inexact, Rounded, and Subnormal will also be raised.
  329. """
  330. class FloatOperation(DecimalException, TypeError):
  331. """Enable stricter semantics for mixing floats and Decimals.
  332. If the signal is not trapped (default), mixing floats and Decimals is
  333. permitted in the Decimal() constructor, context.create_decimal() and
  334. all comparison operators. Both conversion and comparisons are exact.
  335. Any occurrence of a mixed operation is silently recorded by setting
  336. FloatOperation in the context flags. Explicit conversions with
  337. Decimal.from_float() or context.create_decimal_from_float() do not
  338. set the flag.
  339. Otherwise (the signal is trapped), only equality comparisons and explicit
  340. conversions are silent. All other mixed operations raise FloatOperation.
  341. """
  342. # List of public traps and flags
  343. _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
  344. Underflow, InvalidOperation, Subnormal, FloatOperation]
  345. # Map conditions (per the spec) to signals
  346. _condition_map = {ConversionSyntax:InvalidOperation,
  347. DivisionImpossible:InvalidOperation,
  348. DivisionUndefined:InvalidOperation,
  349. InvalidContext:InvalidOperation}
  350. # Valid rounding modes
  351. _rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING,
  352. ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP)
  353. ##### Context Functions ##################################################
  354. # The getcontext() and setcontext() function manage access to a thread-local
  355. # current context. Py2.4 offers direct support for thread locals. If that
  356. # is not available, use threading.current_thread() which is slower but will
  357. # work for older Pythons. If threads are not part of the build, create a
  358. # mock threading object with threading.local() returning the module namespace.
  359. try:
  360. import threading
  361. except ImportError:
  362. # Python was compiled without threads; create a mock object instead
  363. class MockThreading(object):
  364. def local(self, sys=sys):
  365. return sys.modules[__xname__]
  366. threading = MockThreading()
  367. del MockThreading
  368. try:
  369. threading.local
  370. except AttributeError:
  371. # To fix reloading, force it to create a new context
  372. # Old contexts have different exceptions in their dicts, making problems.
  373. if hasattr(threading.current_thread(), '__decimal_context__'):
  374. del threading.current_thread().__decimal_context__
  375. def setcontext(context):
  376. """Set this thread's context to context."""
  377. if context in (DefaultContext, BasicContext, ExtendedContext):
  378. context = context.copy()
  379. context.clear_flags()
  380. threading.current_thread().__decimal_context__ = context
  381. def getcontext():
  382. """Returns this thread's context.
  383. If this thread does not yet have a context, returns
  384. a new context and sets this thread's context.
  385. New contexts are copies of DefaultContext.
  386. """
  387. try:
  388. return threading.current_thread().__decimal_context__
  389. except AttributeError:
  390. context = Context()
  391. threading.current_thread().__decimal_context__ = context
  392. return context
  393. else:
  394. local = threading.local()
  395. if hasattr(local, '__decimal_context__'):
  396. del local.__decimal_context__
  397. def getcontext(_local=local):
  398. """Returns this thread's context.
  399. If this thread does not yet have a context, returns
  400. a new context and sets this thread's context.
  401. New contexts are copies of DefaultContext.
  402. """
  403. try:
  404. return _local.__decimal_context__
  405. except AttributeError:
  406. context = Context()
  407. _local.__decimal_context__ = context
  408. return context
  409. def setcontext(context, _local=local):
  410. """Set this thread's context to context."""
  411. if context in (DefaultContext, BasicContext, ExtendedContext):
  412. context = context.copy()
  413. context.clear_flags()
  414. _local.__decimal_context__ = context
  415. del threading, local # Don't contaminate the namespace
  416. def localcontext(ctx=None):
  417. """Return a context manager for a copy of the supplied context
  418. Uses a copy of the current context if no context is specified
  419. The returned context manager creates a local decimal context
  420. in a with statement:
  421. def sin(x):
  422. with localcontext() as ctx:
  423. ctx.prec += 2
  424. # Rest of sin calculation algorithm
  425. # uses a precision 2 greater than normal
  426. return +s # Convert result to normal precision
  427. def sin(x):
  428. with localcontext(ExtendedContext):
  429. # Rest of sin calculation algorithm
  430. # uses the Extended Context from the
  431. # General Decimal Arithmetic Specification
  432. return +s # Convert result to normal context
  433. >>> setcontext(DefaultContext)
  434. >>> print(getcontext().prec)
  435. 28
  436. >>> with localcontext():
  437. ... ctx = getcontext()
  438. ... ctx.prec += 2
  439. ... print(ctx.prec)
  440. ...
  441. 30
  442. >>> with localcontext(ExtendedContext):
  443. ... print(getcontext().prec)
  444. ...
  445. 9
  446. >>> print(getcontext().prec)
  447. 28
  448. """
  449. if ctx is None: ctx = getcontext()
  450. return _ContextManager(ctx)
  451. ##### Decimal class #######################################################
  452. # Do not subclass Decimal from numbers.Real and do not register it as such
  453. # (because Decimals are not interoperable with floats). See the notes in
  454. # numbers.py for more detail.
  455. class Decimal(object):
  456. """Floating point class for decimal arithmetic."""
  457. __slots__ = ('_exp','_int','_sign', '_is_special')
  458. # Generally, the value of the Decimal instance is given by
  459. # (-1)**_sign * _int * 10**_exp
  460. # Special values are signified by _is_special == True
  461. # We're immutable, so use __new__ not __init__
  462. def __new__(cls, value="0", context=None):
  463. """Create a decimal point instance.
  464. >>> Decimal('3.14') # string input
  465. Decimal('3.14')
  466. >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
  467. Decimal('3.14')
  468. >>> Decimal(314) # int
  469. Decimal('314')
  470. >>> Decimal(Decimal(314)) # another decimal instance
  471. Decimal('314')
  472. >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
  473. Decimal('3.14')
  474. """
  475. # Note that the coefficient, self._int, is actually stored as
  476. # a string rather than as a tuple of digits. This speeds up
  477. # the "digits to integer" and "integer to digits" conversions
  478. # that are used in almost every arithmetic operation on
  479. # Decimals. This is an internal detail: the as_tuple function
  480. # and the Decimal constructor still deal with tuples of
  481. # digits.
  482. self = object.__new__(cls)
  483. # From a string
  484. # REs insist on real strings, so we can too.
  485. if isinstance(value, str):
  486. m = _parser(value.strip())
  487. if m is None:
  488. if context is None:
  489. context = getcontext()
  490. return context._raise_error(ConversionSyntax,
  491. "Invalid literal for Decimal: %r" % value)
  492. if m.group('sign') == "-":
  493. self._sign = 1
  494. else:
  495. self._sign = 0
  496. intpart = m.group('int')
  497. if intpart is not None:
  498. # finite number
  499. fracpart = m.group('frac') or ''
  500. exp = int(m.group('exp') or '0')
  501. self._int = str(int(intpart+fracpart))
  502. self._exp = exp - len(fracpart)
  503. self._is_special = False
  504. else:
  505. diag = m.group('diag')
  506. if diag is not None:
  507. # NaN
  508. self._int = str(int(diag or '0')).lstrip('0')
  509. if m.group('signal'):
  510. self._exp = 'N'
  511. else:
  512. self._exp = 'n'
  513. else:
  514. # infinity
  515. self._int = '0'
  516. self._exp = 'F'
  517. self._is_special = True
  518. return self
  519. # From an integer
  520. if isinstance(value, int):
  521. if value >= 0:
  522. self._sign = 0
  523. else:
  524. self._sign = 1
  525. self._exp = 0
  526. self._int = str(abs(value))
  527. self._is_special = False
  528. return self
  529. # From another decimal
  530. if isinstance(value, Decimal):
  531. self._exp = value._exp
  532. self._sign = value._sign
  533. self._int = value._int
  534. self._is_special = value._is_special
  535. return self
  536. # From an internal working value
  537. if isinstance(value, _WorkRep):
  538. self._sign = value.sign
  539. self._int = str(value.int)
  540. self._exp = int(value.exp)
  541. self._is_special = False
  542. return self
  543. # tuple/list conversion (possibly from as_tuple())
  544. if isinstance(value, (list,tuple)):
  545. if len(value) != 3:
  546. raise ValueError('Invalid tuple size in creation of Decimal '
  547. 'from list or tuple. The list or tuple '
  548. 'should have exactly three elements.')
  549. # process sign. The isinstance test rejects floats
  550. if not (isinstance(value[0], int) and value[0] in (0,1)):
  551. raise ValueError("Invalid sign. The first value in the tuple "
  552. "should be an integer; either 0 for a "
  553. "positive number or 1 for a negative number.")
  554. self._sign = value[0]
  555. if value[2] == 'F':
  556. # infinity: value[1] is ignored
  557. self._int = '0'
  558. self._exp = value[2]
  559. self._is_special = True
  560. else:
  561. # process and validate the digits in value[1]
  562. digits = []
  563. for digit in value[1]:
  564. if isinstance(digit, int) and 0 <= digit <= 9:
  565. # skip leading zeros
  566. if digits or digit != 0:
  567. digits.append(digit)
  568. else:
  569. raise ValueError("The second value in the tuple must "
  570. "be composed of integers in the range "
  571. "0 through 9.")
  572. if value[2] in ('n', 'N'):
  573. # NaN: digits form the diagnostic
  574. self._int = ''.join(map(str, digits))
  575. self._exp = value[2]
  576. self._is_special = True
  577. elif isinstance(value[2], int):
  578. # finite number: digits give the coefficient
  579. self._int = ''.join(map(str, digits or [0]))
  580. self._exp = value[2]
  581. self._is_special = False
  582. else:
  583. raise ValueError("The third value in the tuple must "
  584. "be an integer, or one of the "
  585. "strings 'F', 'n', 'N'.")
  586. return self
  587. if isinstance(value, float):
  588. if context is None:
  589. context = getcontext()
  590. context._raise_error(FloatOperation,
  591. "strict semantics for mixing floats and Decimals are "
  592. "enabled")
  593. value = Decimal.from_float(value)
  594. self._exp = value._exp
  595. self._sign = value._sign
  596. self._int = value._int
  597. self._is_special = value._is_special
  598. return self
  599. raise TypeError("Cannot convert %r to Decimal" % value)
  600. @classmethod
  601. def from_float(cls, f):
  602. """Converts a float to a decimal number, exactly.
  603. Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
  604. Since 0.1 is not exactly representable in binary floating point, the
  605. value is stored as the nearest representable value which is
  606. 0x1.999999999999ap-4. The exact equivalent of the value in decimal
  607. is 0.1000000000000000055511151231257827021181583404541015625.
  608. >>> Decimal.from_float(0.1)
  609. Decimal('0.1000000000000000055511151231257827021181583404541015625')
  610. >>> Decimal.from_float(float('nan'))
  611. Decimal('NaN')
  612. >>> Decimal.from_float(float('inf'))
  613. Decimal('Infinity')
  614. >>> Decimal.from_float(-float('inf'))
  615. Decimal('-Infinity')
  616. >>> Decimal.from_float(-0.0)
  617. Decimal('-0')
  618. """
  619. if isinstance(f, int): # handle integer inputs
  620. return cls(f)
  621. if not isinstance(f, float):
  622. raise TypeError("argument must be int or float.")
  623. if _math.isinf(f) or _math.isnan(f):
  624. return cls(repr(f))
  625. if _math.copysign(1.0, f) == 1.0:
  626. sign = 0
  627. else:
  628. sign = 1
  629. n, d = abs(f).as_integer_ratio()
  630. k = d.bit_length() - 1
  631. result = _dec_from_triple(sign, str(n*5**k), -k)
  632. if cls is Decimal:
  633. return result
  634. else:
  635. return cls(result)
  636. def _isnan(self):
  637. """Returns whether the number is not actually one.
  638. 0 if a number
  639. 1 if NaN
  640. 2 if sNaN
  641. """
  642. if self._is_special:
  643. exp = self._exp
  644. if exp == 'n':
  645. return 1
  646. elif exp == 'N':
  647. return 2
  648. return 0
  649. def _isinfinity(self):
  650. """Returns whether the number is infinite
  651. 0 if finite or not a number
  652. 1 if +INF
  653. -1 if -INF
  654. """
  655. if self._exp == 'F':
  656. if self._sign:
  657. return -1
  658. return 1
  659. return 0
  660. def _check_nans(self, other=None, context=None):
  661. """Returns whether the number is not actually one.
  662. if self, other are sNaN, signal
  663. if self, other are NaN return nan
  664. return 0
  665. Done before operations.
  666. """
  667. self_is_nan = self._isnan()
  668. if other is None:
  669. other_is_nan = False
  670. else:
  671. other_is_nan = other._isnan()
  672. if self_is_nan or other_is_nan:
  673. if context is None:
  674. context = getcontext()
  675. if self_is_nan == 2:
  676. return context._raise_error(InvalidOperation, 'sNaN',
  677. self)
  678. if other_is_nan == 2:
  679. return context._raise_error(InvalidOperation, 'sNaN',
  680. other)
  681. if self_is_nan:
  682. return self._fix_nan(context)
  683. return other._fix_nan(context)
  684. return 0
  685. def _compare_check_nans(self, other, context):
  686. """Version of _check_nans used for the signaling comparisons
  687. compare_signal, __le__, __lt__, __ge__, __gt__.
  688. Signal InvalidOperation if either self or other is a (quiet
  689. or signaling) NaN. Signaling NaNs take precedence over quiet
  690. NaNs.
  691. Return 0 if neither operand is a NaN.
  692. """
  693. if context is None:
  694. context = getcontext()
  695. if self._is_special or other._is_special:
  696. if self.is_snan():
  697. return context._raise_error(InvalidOperation,
  698. 'comparison involving sNaN',
  699. self)
  700. elif other.is_snan():
  701. return context._raise_error(InvalidOperation,
  702. 'comparison involving sNaN',
  703. other)
  704. elif self.is_qnan():
  705. return context._raise_error(InvalidOperation,
  706. 'comparison involving NaN',
  707. self)
  708. elif other.is_qnan():
  709. return context._raise_error(InvalidOperation,
  710. 'comparison involving NaN',
  711. other)
  712. return 0
  713. def __bool__(self):
  714. """Return True if self is nonzero; otherwise return False.
  715. NaNs and infinities are considered nonzero.
  716. """
  717. return self._is_special or self._int != '0'
  718. def _cmp(self, other):
  719. """Compare the two non-NaN decimal instances self and other.
  720. Returns -1 if self < other, 0 if self == other and 1
  721. if self > other. This routine is for internal use only."""
  722. if self._is_special or other._is_special:
  723. self_inf = self._isinfinity()
  724. other_inf = other._isinfinity()
  725. if self_inf == other_inf:
  726. return 0
  727. elif self_inf < other_inf:
  728. return -1
  729. else:
  730. return 1
  731. # check for zeros; Decimal('0') == Decimal('-0')
  732. if not self:
  733. if not other:
  734. return 0
  735. else:
  736. return -((-1)**other._sign)
  737. if not other:
  738. return (-1)**self._sign
  739. # If different signs, neg one is less
  740. if other._sign < self._sign:
  741. return -1
  742. if self._sign < other._sign:
  743. return 1
  744. self_adjusted = self.adjusted()
  745. other_adjusted = other.adjusted()
  746. if self_adjusted == other_adjusted:
  747. self_padded = self._int + '0'*(self._exp - other._exp)
  748. other_padded = other._int + '0'*(other._exp - self._exp)
  749. if self_padded == other_padded:
  750. return 0
  751. elif self_padded < other_padded:
  752. return -(-1)**self._sign
  753. else:
  754. return (-1)**self._sign
  755. elif self_adjusted > other_adjusted:
  756. return (-1)**self._sign
  757. else: # self_adjusted < other_adjusted
  758. return -((-1)**self._sign)
  759. # Note: The Decimal standard doesn't cover rich comparisons for
  760. # Decimals. In particular, the specification is silent on the
  761. # subject of what should happen for a comparison involving a NaN.
  762. # We take the following approach:
  763. #
  764. # == comparisons involving a quiet NaN always return False
  765. # != comparisons involving a quiet NaN always return True
  766. # == or != comparisons involving a signaling NaN signal
  767. # InvalidOperation, and return False or True as above if the
  768. # InvalidOperation is not trapped.
  769. # <, >, <= and >= comparisons involving a (quiet or signaling)
  770. # NaN signal InvalidOperation, and return False if the
  771. # InvalidOperation is not trapped.
  772. #
  773. # This behavior is designed to conform as closely as possible to
  774. # that specified by IEEE 754.
  775. def __eq__(self, other, context=None):
  776. self, other = _convert_for_comparison(self, other, equality_op=True)
  777. if other is NotImplemented:
  778. return other
  779. if self._check_nans(other, context):
  780. return False
  781. return self._cmp(other) == 0
  782. def __lt__(self, other, context=None):
  783. self, other = _convert_for_comparison(self, other)
  784. if other is NotImplemented:
  785. return other
  786. ans = self._compare_check_nans(other, context)
  787. if ans:
  788. return False
  789. return self._cmp(other) < 0
  790. def __le__(self, other, context=None):
  791. self, other = _convert_for_comparison(self, other)
  792. if other is NotImplemented:
  793. return other
  794. ans = self._compare_check_nans(other, context)
  795. if ans:
  796. return False
  797. return self._cmp(other) <= 0
  798. def __gt__(self, other, context=None):
  799. self, other = _convert_for_comparison(self, other)
  800. if other is NotImplemented:
  801. return other
  802. ans = self._compare_check_nans(other, context)
  803. if ans:
  804. return False
  805. return self._cmp(other) > 0
  806. def __ge__(self, other, context=None):
  807. self, other = _convert_for_comparison(self, other)
  808. if other is NotImplemented:
  809. return other
  810. ans = self._compare_check_nans(other, context)
  811. if ans:
  812. return False
  813. return self._cmp(other) >= 0
  814. def compare(self, other, context=None):
  815. """Compare self to other. Return a decimal value:
  816. a or b is a NaN ==> Decimal('NaN')
  817. a < b ==> Decimal('-1')
  818. a == b ==> Decimal('0')
  819. a > b ==> Decimal('1')
  820. """
  821. other = _convert_other(other, raiseit=True)
  822. # Compare(NaN, NaN) = NaN
  823. if (self._is_special or other and other._is_special):
  824. ans = self._check_nans(other, context)
  825. if ans:
  826. return ans
  827. return Decimal(self._cmp(other))
  828. def __hash__(self):
  829. """x.__hash__() <==> hash(x)"""
  830. # In order to make sure that the hash of a Decimal instance
  831. # agrees with the hash of a numerically equal integer, float
  832. # or Fraction, we follow the rules for numeric hashes outlined
  833. # in the documentation. (See library docs, 'Built-in Types').
  834. if self._is_special:
  835. if self.is_snan():
  836. raise TypeError('Cannot hash a signaling NaN value.')
  837. elif self.is_nan():
  838. return _PyHASH_NAN
  839. else:
  840. if self._sign:
  841. return -_PyHASH_INF
  842. else:
  843. return _PyHASH_INF
  844. if self._exp >= 0:
  845. exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
  846. else:
  847. exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
  848. hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
  849. ans = hash_ if self >= 0 else -hash_
  850. return -2 if ans == -1 else ans
  851. def as_tuple(self):
  852. """Represents the number as a triple tuple.
  853. To show the internals exactly as they are.
  854. """
  855. return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
  856. def __repr__(self):
  857. """Represents the number as an instance of Decimal."""
  858. # Invariant: eval(repr(d)) == d
  859. return "Decimal('%s')" % str(self)
  860. def __str__(self, eng=False, context=None):
  861. """Return string representation of the number in scientific notation.
  862. Captures all of the information in the underlying representation.
  863. """
  864. sign = ['', '-'][self._sign]
  865. if self._is_special:
  866. if self._exp == 'F':
  867. return sign + 'Infinity'
  868. elif self._exp == 'n':
  869. return sign + 'NaN' + self._int
  870. else: # self._exp == 'N'
  871. return sign + 'sNaN' + self._int
  872. # number of digits of self._int to left of decimal point
  873. leftdigits = self._exp + len(self._int)
  874. # dotplace is number of digits of self._int to the left of the
  875. # decimal point in the mantissa of the output string (that is,
  876. # after adjusting the exponent)
  877. if self._exp <= 0 and leftdigits > -6:
  878. # no exponent required
  879. dotplace = leftdigits
  880. elif not eng:
  881. # usual scientific notation: 1 digit on left of the point
  882. dotplace = 1
  883. elif self._int == '0':
  884. # engineering notation, zero
  885. dotplace = (leftdigits + 1) % 3 - 1
  886. else:
  887. # engineering notation, nonzero
  888. dotplace = (leftdigits - 1) % 3 + 1
  889. if dotplace <= 0:
  890. intpart = '0'
  891. fracpart = '.' + '0'*(-dotplace) + self._int
  892. elif dotplace >= len(self._int):
  893. intpart = self._int+'0'*(dotplace-len(self._int))
  894. fracpart = ''
  895. else:
  896. intpart = self._int[:dotplace]
  897. fracpart = '.' + self._int[dotplace:]
  898. if leftdigits == dotplace:
  899. exp = ''
  900. else:
  901. if context is None:
  902. context = getcontext()
  903. exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
  904. return sign + intpart + fracpart + exp
  905. def to_eng_string(self, context=None):
  906. """Convert to engineering-type string.
  907. Engineering notation has an exponent which is a multiple of 3, so there
  908. are up to 3 digits left of the decimal place.
  909. Same rules for when in exponential and when as a value as in __str__.
  910. """
  911. return self.__str__(eng=True, context=context)
  912. def __neg__(self, context=None):
  913. """Returns a copy with the sign switched.
  914. Rounds, if it has reason.
  915. """
  916. if self._is_special:
  917. ans = self._check_nans(context=context)
  918. if ans:
  919. return ans
  920. if context is None:
  921. context = getcontext()
  922. if not self and context.rounding != ROUND_FLOOR:
  923. # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
  924. # in ROUND_FLOOR rounding mode.
  925. ans = self.copy_abs()
  926. else:
  927. ans = self.copy_negate()
  928. return ans._fix(context)
  929. def __pos__(self, context=None):
  930. """Returns a copy, unless it is a sNaN.
  931. Rounds the number (if more than precision digits)
  932. """
  933. if self._is_special:
  934. ans = self._check_nans(context=context)
  935. if ans:
  936. return ans
  937. if context is None:
  938. context = getcontext()
  939. if not self and context.rounding != ROUND_FLOOR:
  940. # + (-0) = 0, except in ROUND_FLOOR rounding mode.
  941. ans = self.copy_abs()
  942. else:
  943. ans = Decimal(self)
  944. return ans._fix(context)
  945. def __abs__(self, round=True, context=None):
  946. """Returns the absolute value of self.
  947. If the keyword argument 'round' is false, do not round. The
  948. expression self.__abs__(round=False) is equivalent to
  949. self.copy_abs().
  950. """
  951. if not round:
  952. return self.copy_abs()
  953. if self._is_special:
  954. ans = self._check_nans(context=context)
  955. if ans:
  956. return ans
  957. if self._sign:
  958. ans = self.__neg__(context=context)
  959. else:
  960. ans = self.__pos__(context=context)
  961. return ans
  962. def __add__(self, other, context=None):
  963. """Returns self + other.
  964. -INF + INF (or the reverse) cause InvalidOperation errors.
  965. """
  966. other = _convert_other(other)
  967. if other is NotImplemented:
  968. return other
  969. if context is None:
  970. context = getcontext()
  971. if self._is_special or other._is_special:
  972. ans = self._check_nans(other, context)
  973. if ans:
  974. return ans
  975. if self._isinfinity():
  976. # If both INF, same sign => same as both, opposite => error.
  977. if self._sign != other._sign and other._isinfinity():
  978. return context._raise_error(InvalidOperation, '-INF + INF')
  979. return Decimal(self)
  980. if other._isinfinity():
  981. return Decimal(other) # Can't both be infinity here
  982. exp = min(self._exp, other._exp)
  983. negativezero = 0
  984. if context.rounding == ROUND_FLOOR and self._sign != other._sign:
  985. # If the answer is 0, the sign should be negative, in this case.
  986. negativezero = 1
  987. if not self and not other:
  988. sign = min(self._sign, other._sign)
  989. if negativezero:
  990. sign = 1
  991. ans = _dec_from_triple(sign, '0', exp)
  992. ans = ans._fix(context)
  993. return ans
  994. if not self:
  995. exp = max(exp, other._exp - context.prec-1)
  996. ans = other._rescale(exp, context.rounding)
  997. ans = ans._fix(context)
  998. return ans
  999. if not other:
  1000. exp = max(exp, self._exp - context.prec-1)
  1001. ans = self._rescale(exp, context.rounding)
  1002. ans = ans._fix(context)
  1003. return ans
  1004. op1 = _WorkRep(self)
  1005. op2 = _WorkRep(other)
  1006. op1, op2 = _normalize(op1, op2, context.prec)
  1007. result = _WorkRep()
  1008. if op1.sign != op2.sign:
  1009. # Equal and opposite
  1010. if op1.int == op2.int:
  1011. ans = _dec_from_triple(negativezero, '0', exp)
  1012. ans = ans._fix(context)
  1013. return ans
  1014. if op1.int < op2.int:
  1015. op1, op2 = op2, op1
  1016. # OK, now abs(op1) > abs(op2)
  1017. if op1.sign == 1:
  1018. result.sign = 1
  1019. op1.sign, op2.sign = op2.sign, op1.sign
  1020. else:
  1021. result.sign = 0
  1022. # So we know the sign, and op1 > 0.
  1023. elif op1.sign == 1:
  1024. result.sign = 1
  1025. op1.sign, op2.sign = (0, 0)
  1026. else:
  1027. result.sign = 0
  1028. # Now, op1 > abs(op2) > 0
  1029. if op2.sign == 0:
  1030. result.int = op1.int + op2.int
  1031. else:
  1032. result.int = op1.int - op2.int
  1033. result.exp = op1.exp
  1034. ans = Decimal(result)
  1035. ans = ans._fix(context)
  1036. return ans
  1037. __radd__ = __add__
  1038. def __sub__(self, other, context=None):
  1039. """Return self - other"""
  1040. other = _convert_other(other)
  1041. if other is NotImplemented:
  1042. return other
  1043. if self._is_special or other._is_special:
  1044. ans = self._check_nans(other, context=context)
  1045. if ans:
  1046. return ans
  1047. # self - other is computed as self + other.copy_negate()
  1048. return self.__add__(other.copy_negate(), context=context)
  1049. def __rsub__(self, other, context=None):
  1050. """Return other - self"""
  1051. other = _convert_other(other)
  1052. if other is NotImplemented:
  1053. return other
  1054. return other.__sub__(self, context=context)
  1055. def __mul__(self, other, context=None):
  1056. """Return self * other.
  1057. (+-) INF * 0 (or its reverse) raise InvalidOperation.
  1058. """
  1059. other = _convert_other(other)
  1060. if other is NotImplemented:
  1061. return other
  1062. if context is None:
  1063. context = getcontext()
  1064. resultsign = self._sign ^ other._sign
  1065. if self._is_special or other._is_special:
  1066. ans = self._check_nans(other, context)
  1067. if ans:
  1068. return ans
  1069. if self._isinfinity():
  1070. if not other:
  1071. return context._raise_error(InvalidOperation, '(+-)INF * 0')
  1072. return _SignedInfinity[resultsign]
  1073. if other._isinfinity():
  1074. if not self:
  1075. return context._raise_error(InvalidOperation, '0 * (+-)INF')
  1076. return _SignedInfinity[resultsign]
  1077. resultexp = self._exp + other._exp
  1078. # Special case for multiplying by zero
  1079. if not self or not other:
  1080. ans = _dec_from_triple(resultsign, '0', resultexp)
  1081. # Fixing in case the exponent is out of bounds
  1082. ans = ans._fix(context)
  1083. return ans
  1084. # Special case for multiplying by power of 10
  1085. if self._int == '1':
  1086. ans = _dec_from_triple(resultsign, other._int, resultexp)
  1087. ans = ans._fix(context)
  1088. return ans
  1089. if other._int == '1':
  1090. ans = _dec_from_triple(resultsign, self._int, resultexp)
  1091. ans = ans._fix(context)
  1092. return ans
  1093. op1 = _WorkRep(self)
  1094. op2 = _WorkRep(other)
  1095. ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
  1096. ans = ans._fix(context)
  1097. return ans
  1098. __rmul__ = __mul__
  1099. def __truediv__(self, other, context=None):
  1100. """Return self / other."""
  1101. other = _convert_other(other)
  1102. if other is NotImplemented:
  1103. return NotImplemented
  1104. if context is None:
  1105. context = getcontext()
  1106. sign = self._sign ^ other._sign
  1107. if self._is_special or other._is_special:
  1108. ans = self._check_nans(other, context)
  1109. if ans:
  1110. return ans
  1111. if self._isinfinity() and other._isinfinity():
  1112. return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
  1113. if self._isinfinity():
  1114. return _SignedInfinity[sign]
  1115. if other._isinfinity():
  1116. context._raise_error(Clamped, 'Division by infinity')
  1117. return _dec_from_triple(sign, '0', context.Etiny())
  1118. # Special cases for zeroes
  1119. if not other:
  1120. if not self:
  1121. return context._raise_error(DivisionUndefined, '0 / 0')
  1122. return context._raise_error(DivisionByZero, 'x / 0', sign)
  1123. if not self:
  1124. exp = self._exp - other._exp
  1125. coeff = 0
  1126. else:
  1127. # OK, so neither = 0, INF or NaN
  1128. shift = len(other._int) - len(self._int) + context.prec + 1
  1129. exp = self._exp - other._exp - shift
  1130. op1 = _WorkRep(self)
  1131. op2 = _WorkRep(other)
  1132. if shift >= 0:
  1133. coeff, remainder = divmod(op1.int * 10**shift, op2.int)
  1134. else:
  1135. coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
  1136. if remainder:
  1137. # result is not exact; adjust to ensure correct rounding
  1138. if coeff % 5 == 0:
  1139. coeff += 1
  1140. else:
  1141. # result is exact; get as close to ideal exponent as possible
  1142. ideal_exp = self._exp - other._exp
  1143. while exp < ideal_exp and coeff % 10 == 0:
  1144. coeff //= 10
  1145. exp += 1
  1146. ans = _dec_from_triple(sign, str(coeff), exp)
  1147. return ans._fix(context)
  1148. def _divide(self, other, context):
  1149. """Return (self // other, self % other), to context.prec precision.
  1150. Assumes that neither self nor other is a NaN, that self is not
  1151. infinite and that other is nonzero.
  1152. """
  1153. sign = self._sign ^ other._sign
  1154. if other._isinfinity():
  1155. ideal_exp = self._exp
  1156. else:
  1157. ideal_exp = min(self._exp, other._exp)
  1158. expdiff = self.adjusted() - other.adjusted()
  1159. if not self or other._isinfinity() or expdiff <= -2:
  1160. return (_dec_from_triple(sign, '0', 0),
  1161. self._rescale(ideal_exp, context.rounding))
  1162. if expdiff <= context.prec:
  1163. op1 = _WorkRep(self)
  1164. op2 = _WorkRep(other)
  1165. if op1.exp >= op2.exp:
  1166. op1.int *= 10**(op1.exp - op2.exp)
  1167. else:
  1168. op2.int *= 10**(op2.exp - op1.exp)
  1169. q, r = divmod(op1.int, op2.int)
  1170. if q < 10**context.prec:
  1171. return (_dec_from_triple(sign, str(q), 0),
  1172. _dec_from_triple(self._sign, str(r), ideal_exp))
  1173. # Here the quotient is too large to be representable
  1174. ans = context._raise_error(DivisionImpossible,
  1175. 'quotient too large in //, % or divmod')
  1176. return ans, ans
  1177. def __rtruediv__(self, other, context=None):
  1178. """Swaps self/other and returns __truediv__."""
  1179. other = _convert_other(other)
  1180. if other is NotImplemented:
  1181. return other
  1182. return other.__truediv__(self, context=context)
  1183. def __divmod__(self, other, context=None):
  1184. """
  1185. Return (self // other, self % other)
  1186. """
  1187. other = _convert_other(other)
  1188. if other is NotImplemented:
  1189. return other
  1190. if context is None:
  1191. context = getcontext()
  1192. ans = self._check_nans(other, context)
  1193. if ans:
  1194. return (ans, ans)
  1195. sign = self._sign ^ other._sign
  1196. if self._isinfinity():
  1197. if other._isinfinity():
  1198. ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
  1199. return ans, ans
  1200. else:
  1201. return (_SignedInfinity[sign],
  1202. context._raise_error(InvalidOperation, 'INF % x'))
  1203. if not other:
  1204. if not self:
  1205. ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
  1206. return ans, ans
  1207. else:
  1208. return (context._raise_error(DivisionByZero, 'x // 0', sign),
  1209. context._raise_error(InvalidOperation, 'x % 0'))
  1210. quotient, remainder = self._divide(other, context)
  1211. remainder = remainder._fix(context)
  1212. return quotient, remainder
  1213. def __rdivmod__(self, other, context=None):
  1214. """Swaps self/other and returns __divmod__."""
  1215. other = _convert_other(other)
  1216. if other is NotImplemented:
  1217. return other
  1218. return other.__divmod__(self, context=context)
  1219. def __mod__(self, other, context=None):
  1220. """
  1221. self % other
  1222. """
  1223. other = _convert_other(other)
  1224. if other is NotImplemented:
  1225. return other
  1226. if context is None:
  1227. context = getcontext()
  1228. ans = self._check_nans(other, context)
  1229. if ans:
  1230. return ans
  1231. if self._isinfinity():
  1232. return context._raise_error(InvalidOperation, 'INF % x')
  1233. elif not other:
  1234. if self:
  1235. return context._raise_error(InvalidOperation, 'x % 0')
  1236. else:
  1237. return context._raise_error(DivisionUndefined, '0 % 0')
  1238. remainder = self._divide(other, context)[1]
  1239. remainder = remainder._fix(context)
  1240. return remainder
  1241. def __rmod__(self, other, context=None):
  1242. """Swaps self/other and returns __mod__."""
  1243. other = _convert_other(other)
  1244. if other is NotImplemented:
  1245. return other
  1246. return other.__mod__(self, context=context)
  1247. def remainder_near(self, other, context=None):
  1248. """
  1249. Remainder nearest to 0- abs(remainder-near) <= other/2
  1250. """
  1251. if context is None:
  1252. context = getcontext()
  1253. other = _convert_other(other, raiseit=True)
  1254. ans = self._check_nans(other, context)
  1255. if ans:
  1256. return ans
  1257. # self == +/-infinity -> InvalidOperation
  1258. if self._isinfinity():
  1259. return context._raise_error(InvalidOperation,
  1260. 'remainder_near(infinity, x)')
  1261. # other == 0 -> either InvalidOperation or DivisionUndefined
  1262. if not other:
  1263. if self:
  1264. return context._raise_error(InvalidOperation,
  1265. 'remainder_near(x, 0)')
  1266. else:
  1267. return context._raise_error(DivisionUndefined,
  1268. 'remainder_near(0, 0)')
  1269. # other = +/-infinity -> remainder = self
  1270. if other._isinfinity():
  1271. ans = Decimal(self)
  1272. return ans._fix(context)
  1273. # self = 0 -> remainder = self, with ideal exponent
  1274. ideal_exponent = min(self._exp, other._exp)
  1275. if not self:
  1276. ans = _dec_from_triple(self._sign, '0', ideal_exponent)
  1277. return ans._fix(context)
  1278. # catch most cases of large or small quotient
  1279. expdiff = self.adjusted() - other.adjusted()
  1280. if expdiff >= context.prec + 1:
  1281. # expdiff >= prec+1 => abs(self/other) > 10**prec
  1282. return context._raise_error(DivisionImpossible)
  1283. if expdiff <= -2:
  1284. # expdiff <= -2 => abs(self/other) < 0.1
  1285. ans = self._rescale(ideal_exponent, context.rounding)
  1286. return ans._fix(context)
  1287. # adjust both arguments to have the same exponent, then divide
  1288. op1 = _WorkRep(self)
  1289. op2 = _WorkRep(other)
  1290. if op1.exp >= op2.exp:
  1291. op1.int *= 10**(op1.exp - op2.exp)
  1292. else:
  1293. op2.int *= 10**(op2.exp - op1.exp)
  1294. q, r = divmod(op1.int, op2.int)
  1295. # remainder is r*10**ideal_exponent; other is +/-op2.int *
  1296. # 10**ideal_exponent. Apply correction to ensure that
  1297. # abs(remainder) <= abs(other)/2
  1298. if 2*r + (q&1) > op2.int:
  1299. r -= op2.int
  1300. q += 1
  1301. if q >= 10**context.prec:
  1302. return context._raise_error(DivisionImpossible)
  1303. # result has same sign as self unless r is negative
  1304. sign = self._sign
  1305. if r < 0:
  1306. sign = 1-sign
  1307. r = -r
  1308. ans = _dec_from_triple(sign, str(r), ideal_exponent)
  1309. return ans._fix(context)
  1310. def __floordiv__(self, other, context=None):
  1311. """self // other"""
  1312. other = _convert_other(other)
  1313. if other is NotImplemented:
  1314. return other
  1315. if context is None:
  1316. context = getcontext()
  1317. ans = self._check_nans(other, context)
  1318. if ans:
  1319. return ans
  1320. if self._isinfinity():
  1321. if other._isinfinity():
  1322. return context._raise_error(InvalidOperation, 'INF // INF')
  1323. else:
  1324. return _SignedInfinity[self._sign ^ other._sign]
  1325. if not other:
  1326. if self:
  1327. return context._raise_error(DivisionByZero, 'x // 0',
  1328. self._sign ^ other._sign)
  1329. else:
  1330. return context._raise_error(DivisionUndefined, '0 // 0')
  1331. return self._divide(other, context)[0]
  1332. def __rfloordiv__(self, other, context=None):
  1333. """Swaps self/other and returns __floordiv__."""
  1334. other = _convert_other(other)
  1335. if other is NotImplemented:
  1336. return other
  1337. return other.__floordiv__(self, context=context)
  1338. def __float__(self):
  1339. """Float representation."""
  1340. if self._isnan():
  1341. if self.is_snan():
  1342. raise ValueError("Cannot convert signaling NaN to float")
  1343. s = "-nan" if self._sign else "nan"
  1344. else:
  1345. s = str(self)
  1346. return float(s)
  1347. def __int__(self):
  1348. """Converts self to an int, truncating if necessary."""
  1349. if self._is_special:
  1350. if self._isnan():
  1351. raise ValueError("Cannot convert NaN to integer")
  1352. elif self._isinfinity():
  1353. raise OverflowError("Cannot convert infinity to integer")
  1354. s = (-1)**self._sign
  1355. if self._exp >= 0:
  1356. return s*int(self._int)*10**self._exp
  1357. else:
  1358. return s*int(self._int[:self._exp] or '0')
  1359. __trunc__ = __int__
  1360. def real(self):
  1361. return self
  1362. real = property(real)
  1363. def imag(self):
  1364. return Decimal(0)
  1365. imag = property(imag)
  1366. def conjugate(self):
  1367. return self
  1368. def __complex__(self):
  1369. return complex(float(self))
  1370. def _fix_nan(self, context):
  1371. """Decapitate the payload of a NaN to fit the context"""
  1372. payload = self._int
  1373. # maximum length of payload is precision if clamp=0,
  1374. # precision-1 if clamp=1.
  1375. max_payload_len = context.prec - context.clamp
  1376. if len(payload) > max_payload_len:
  1377. payload = payload[len(payload)-max_payload_len:].lstrip('0')
  1378. return _dec_from_triple(self._sign, payload, self._exp, True)
  1379. return Decimal(self)
  1380. def _fix(self, context):
  1381. """Round if it is necessary to keep self within prec precision.
  1382. Rounds and fixes the exponent. Does not raise on a sNaN.
  1383. Arguments:
  1384. self - Decimal instance
  1385. context - context used.
  1386. """
  1387. if self._is_special:
  1388. if self._isnan():
  1389. # decapitate payload if necessary
  1390. return self._fix_nan(context)
  1391. else:
  1392. # self is +/-Infinity; return unaltered
  1393. return Decimal(self)
  1394. # if self is zero then exponent should be between Etiny and
  1395. # Emax if clamp==0, and between Etiny and Etop if clamp==1.
  1396. Etiny = context.Etiny()
  1397. Etop = context.Etop()
  1398. if not self:
  1399. exp_max = [context.Emax, Etop][context.clamp]
  1400. new_exp = min(max(self._exp, Etiny), exp_max)
  1401. if new_exp != self._exp:
  1402. context._raise_error(Clamped)
  1403. return _dec_from_triple(self._sign, '0', new_exp)
  1404. else:
  1405. return Decimal(self)
  1406. # exp_min is the smallest allowable exponent of the result,
  1407. # equal to max(self.adjusted()-context.prec+1, Etiny)
  1408. exp_min = len(self._int) + self._exp - context.prec
  1409. if exp_min > Etop:
  1410. # overflow: exp_min > Etop iff self.adjusted() > Emax
  1411. ans = context._raise_error(Overflow, 'above Emax', self._sign)
  1412. context._raise_error(Inexact)
  1413. context._raise_error(Rounded)
  1414. return ans
  1415. self_is_subnormal = exp_min < Etiny
  1416. if self_is_subnormal:
  1417. exp_min = Etiny
  1418. # round if self has too many digits
  1419. if self._exp < exp_min:
  1420. digits = len(self._int) + self._exp - exp_min
  1421. if digits < 0:
  1422. self = _dec_from_triple(self._sign, '1', exp_min-1)
  1423. digits = 0
  1424. rounding_method = self._pick_rounding_function[context.rounding]
  1425. changed = rounding_method(self, digits)
  1426. coeff = self._int[:digits] or '0'
  1427. if changed > 0:
  1428. coeff = str(int(coeff)+1)
  1429. if len(coeff) > context.prec:
  1430. coeff = coeff[:-1]
  1431. exp_min += 1
  1432. # check whether the rounding pushed the exponent out of range
  1433. if exp_min > Etop:
  1434. ans = context._raise_error(Overflow, 'above Emax', self._sign)
  1435. else:
  1436. ans = _dec_from_triple(self._sign, coeff, exp_min)
  1437. # raise the appropriate signals, taking care to respect
  1438. # the precedence described in the specification
  1439. if changed and self_is_subnormal:
  1440. context._raise_error(Underflow)
  1441. if self_is_subnormal:
  1442. context._raise_error(Subnormal)
  1443. if changed:
  1444. context._raise_error(Inexact)
  1445. context._raise_error(Rounded)
  1446. if not ans:
  1447. # raise Clamped on underflow to 0
  1448. context._raise_error(Clamped)
  1449. return ans
  1450. if self_is_subnormal:
  1451. context._raise_error(Subnormal)
  1452. # fold down if clamp == 1 and self has too few digits
  1453. if context.clamp == 1 and self._exp > Etop:
  1454. context._raise_error(Clamped)
  1455. self_padded = self._int + '0'*(self._exp - Etop)
  1456. return _dec_from_triple(self._sign, self_padded, Etop)
  1457. # here self was representable to begin with; return unchanged
  1458. return Decimal(self)
  1459. # for each of the rounding functions below:
  1460. # self is a finite, nonzero Decimal
  1461. # prec is an integer satisfying 0 <= prec < len(self._int)
  1462. #
  1463. # each function returns either -1, 0, or 1, as follows:
  1464. # 1 indicates that self should be rounded up (away from zero)
  1465. # 0 indicates that self should be truncated, and that all the
  1466. # digits to be truncated are zeros (so the value is unchanged)
  1467. # -1 indicates that there are nonzero digits to be truncated
  1468. def _round_down(self, prec):
  1469. """Also known as round-towards-0, truncate."""
  1470. if _all_zeros(self._int, prec):
  1471. return 0
  1472. else:
  1473. return -1
  1474. def _round_up(self, prec):
  1475. """Rounds away from 0."""
  1476. return -self._round_down(prec)
  1477. def _round_half_up(self, prec):
  1478. """Rounds 5 up (away from 0)"""
  1479. if self._int[prec] in '56789':
  1480. return 1
  1481. elif _all_zeros(self._int, prec):
  1482. return 0
  1483. else:
  1484. return -1
  1485. def _round_half_down(self, prec):
  1486. """Round 5 down"""
  1487. if _exact_half(self._int, prec):
  1488. return -1
  1489. else:
  1490. return self._round_half_up(prec)
  1491. def _round_half_even(self, prec):
  1492. """Round 5 to even, rest to nearest."""
  1493. if _exact_half(self._int, prec) and \
  1494. (prec == 0 or self._int[prec-1] in '02468'):
  1495. return -1
  1496. else:
  1497. return self._round_half_up(prec)
  1498. def _round_ceiling(self, prec):
  1499. """Rounds up (not away from 0 if negative.)"""
  1500. if self._sign:
  1501. return self._round_down(prec)
  1502. else:
  1503. return -self._round_down(prec)
  1504. def _round_floor(self, prec):
  1505. """Rounds down (not towards 0 if negative)"""
  1506. if not self._sign:
  1507. return self._round_down(prec)
  1508. else:
  1509. return -self._round_down(prec)
  1510. def _round_05up(self, prec):
  1511. """Round down unless digit prec-1 is 0 or 5."""
  1512. if prec and self._int[prec-1] not in '05':
  1513. return self._round_down(prec)
  1514. else:
  1515. return -self._round_down(prec)
  1516. _pick_rounding_function = dict(
  1517. ROUND_DOWN = _round_down,
  1518. ROUND_UP = _round_up,
  1519. ROUND_HALF_UP = _round_half_up,
  1520. ROUND_HALF_DOWN = _round_half_down,
  1521. ROUND_HALF_EVEN = _round_half_even,
  1522. ROUND_CEILING = _round_ceiling,
  1523. ROUND_FLOOR = _round_floor,
  1524. ROUND_05UP = _round_05up,
  1525. )
  1526. def __round__(self, n=None):
  1527. """Round self to the nearest integer, or to a given precision.
  1528. If only one argument is supplied, round a finite Decimal
  1529. instance self to the nearest integer. If self is infinite or
  1530. a NaN then a Python exception is raised. If self is finite
  1531. and lies exactly halfway between two integers then it is
  1532. rounded to the integer with even last digit.
  1533. >>> round(Decimal('123.456'))
  1534. 123
  1535. >>> round(Decimal('-456.789'))
  1536. -457
  1537. >>> round(Decimal('-3.0'))
  1538. -3
  1539. >>> round(Decimal('2.5'))
  1540. 2
  1541. >>> round(Decimal('3.5'))
  1542. 4
  1543. >>> round(Decimal('Inf'))
  1544. Traceback (most recent call last):
  1545. ...
  1546. OverflowError: cannot round an infinity
  1547. >>> round(Decimal('NaN'))
  1548. Traceback (most recent call last):
  1549. ...
  1550. ValueError: cannot round a NaN
  1551. If a second argument n is supplied, self is rounded to n
  1552. decimal places using the rounding mode for the current
  1553. context.
  1554. For an integer n, round(self, -n) is exactly equivalent to
  1555. self.quantize(Decimal('1En')).
  1556. >>> round(Decimal('123.456'), 0)
  1557. Decimal('123')
  1558. >>> round(Decimal('123.456'), 2)
  1559. Decimal('123.46')
  1560. >>> round(Decimal('123.456'), -2)
  1561. Decimal('1E+2')
  1562. >>> round(Decimal('-Infinity'), 37)
  1563. Decimal('NaN')
  1564. >>> round(Decimal('sNaN123'), 0)
  1565. Decimal('NaN123')
  1566. """
  1567. if n is not None:
  1568. # two-argument form: use the equivalent quantize call
  1569. if not isinstance(n, int):
  1570. raise TypeError('Second argument to round should be integral')
  1571. exp = _dec_from_triple(0, '1', -n)
  1572. return self.quantize(exp)
  1573. # one-argument form
  1574. if self._is_special:
  1575. if self.is_nan():
  1576. raise ValueError("cannot round a NaN")
  1577. else:
  1578. raise OverflowError("cannot round an infinity")
  1579. return int(self._rescale(0, ROUND_HALF_EVEN))
  1580. def __floor__(self):
  1581. """Return the floor of self, as an integer.
  1582. For a finite Decimal instance self, return the greatest
  1583. integer n such that n <= self. If self is infinite or a NaN
  1584. then a Python exception is raised.
  1585. """
  1586. if self._is_special:
  1587. if self.is_nan():
  1588. raise ValueError("cannot round a NaN")
  1589. else:
  1590. raise OverflowError("cannot round an infinity")
  1591. return int(self._rescale(0, ROUND_FLOOR))
  1592. def __ceil__(self):
  1593. """Return the ceiling of self, as an integer.
  1594. For a finite Decimal instance self, return the least integer n
  1595. such that n >= self. If self is infinite or a NaN then a
  1596. Python exception is raised.
  1597. """
  1598. if self._is_special:
  1599. if self.is_nan():
  1600. raise ValueError("cannot round a NaN")
  1601. else:
  1602. raise OverflowError("cannot round an infinity")
  1603. return int(self._rescale(0, ROUND_CEILING))
  1604. def fma(self, other, third, context=None):
  1605. """Fused multiply-add.
  1606. Returns self*other+third with no rounding of the intermediate
  1607. product self*other.
  1608. self and other are multiplied together, with no rounding of
  1609. the result. The third operand is then added to the result,
  1610. and a single final rounding is performed.
  1611. """
  1612. other = _convert_other(other, raiseit=True)
  1613. third = _convert_other(third, raiseit=True)
  1614. # compute product; raise InvalidOperation if either operand is
  1615. # a signaling NaN or if the product is zero times infinity.
  1616. if self._is_special or other._is_special:
  1617. if context is None:
  1618. context = getcontext()
  1619. if self._exp == 'N':
  1620. return context._raise_error(InvalidOperation, 'sNaN', self)
  1621. if other._exp == 'N':
  1622. return context._raise_error(InvalidOperation, 'sNaN', other)
  1623. if self._exp == 'n':
  1624. product = self
  1625. elif other._exp == 'n':
  1626. product = other
  1627. elif self._exp == 'F':
  1628. if not other:
  1629. return context._raise_error(InvalidOperation,
  1630. 'INF * 0 in fma')
  1631. product = _SignedInfinity[self._sign ^ other._sign]
  1632. elif other._exp == 'F':
  1633. if not self:
  1634. return context._raise_error(InvalidOperation,
  1635. '0 * INF in fma')
  1636. product = _SignedInfinity[self._sign ^ other._sign]
  1637. else:
  1638. product = _dec_from_triple(self._sign ^ other._sign,
  1639. str(int(self._int) * int(other._int)),
  1640. self._exp + other._exp)
  1641. return product.__add__(third, context)
  1642. def _power_modulo(self, other, modulo, context=None):
  1643. """Three argument version of __pow__"""
  1644. other = _convert_other(other)
  1645. if other is NotImplemented:
  1646. return other
  1647. modulo = _convert_other(modulo)
  1648. if modulo is NotImplemented:
  1649. return modulo
  1650. if context is None:
  1651. context = getcontext()
  1652. # deal with NaNs: if there are any sNaNs then first one wins,
  1653. # (i.e. behaviour for NaNs is identical to that of fma)
  1654. self_is_nan = self._isnan()
  1655. other_is_nan = other._isnan()
  1656. modulo_is_nan = modulo._isnan()
  1657. if self_is_nan or other_is_nan or modulo_is_nan:
  1658. if self_is_nan == 2:
  1659. return context._raise_error(InvalidOperation, 'sNaN',
  1660. self)
  1661. if other_is_nan == 2:
  1662. return context._raise_error(InvalidOperation, 'sNaN',
  1663. other)
  1664. if modulo_is_nan == 2:
  1665. return context._raise_error(InvalidOperation, 'sNaN',
  1666. modulo)
  1667. if self_is_nan:
  1668. return self._fix_nan(context)
  1669. if other_is_nan:
  1670. return other._fix_nan(context)
  1671. return modulo._fix_nan(context)
  1672. # check inputs: we apply same restrictions as Python's pow()
  1673. if not (self._isinteger() and
  1674. other._isinteger() and
  1675. modulo._isinteger()):
  1676. return context._raise_error(InvalidOperation,
  1677. 'pow() 3rd argument not allowed '
  1678. 'unless all arguments are integers')
  1679. if other < 0:
  1680. return context._raise_error(InvalidOperation,
  1681. 'pow() 2nd argument cannot be '
  1682. 'negative when 3rd argument specified')
  1683. if not modulo:
  1684. return context._raise_error(InvalidOperation,
  1685. 'pow() 3rd argument cannot be 0')
  1686. # additional restriction for decimal: the modulus must be less
  1687. # than 10**prec in absolute value
  1688. if modulo.adjusted() >= context.prec:
  1689. return context._raise_error(InvalidOperation,
  1690. 'insufficient precision: pow() 3rd '
  1691. 'argument must not have more than '
  1692. 'precision digits')
  1693. # define 0**0 == NaN, for consistency with two-argument pow
  1694. # (even though it hurts!)
  1695. if not other and not self:
  1696. return context._raise_error(InvalidOperation,
  1697. 'at least one of pow() 1st argument '
  1698. 'and 2nd argument must be nonzero ;'
  1699. '0**0 is not defined')
  1700. # compute sign of result
  1701. if other._iseven():
  1702. sign = 0
  1703. else:
  1704. sign = self._sign
  1705. # convert modulo to a Python integer, and self and other to
  1706. # Decimal integers (i.e. force their exponents to be >= 0)
  1707. modulo = abs(int(modulo))
  1708. base = _WorkRep(self.to_integral_value())
  1709. exponent = _WorkRep(other.to_integral_value())
  1710. # compute result using integer pow()
  1711. base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
  1712. for i in range(exponent.exp):
  1713. base = pow(base, 10, modulo)
  1714. base = pow(base, exponent.int, modulo)
  1715. return _dec_from_triple(sign, str(base), 0)
  1716. def _power_exact(self, other, p):
  1717. """Attempt to compute self**other exactly.
  1718. Given Decimals self and other and an integer p, attempt to
  1719. compute an exact result for the power self**other, with p
  1720. digits of precision. Return None if self**other is not
  1721. exactly representable in p digits.
  1722. Assumes that elimination of special cases has already been
  1723. performed: self and other must both be nonspecial; self must
  1724. be positive and not numerically equal to 1; other must be
  1725. nonzero. For efficiency, other._exp should not be too large,
  1726. so that 10**abs(other._exp) is a feasible calculation."""
  1727. # In the comments below, we write x for the value of self and y for the
  1728. # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
  1729. # and yc positive integers not divisible by 10.
  1730. # The main purpose of this method is to identify the *failure*
  1731. # of x**y to be exactly representable with as little effort as
  1732. # possible. So we look for cheap and easy tests that
  1733. # eliminate the possibility of x**y being exact. Only if all
  1734. # these tests are passed do we go on to actually compute x**y.
  1735. # Here's the main idea. Express y as a rational number m/n, with m and
  1736. # n relatively prime and n>0. Then for x**y to be exactly
  1737. # representable (at *any* precision), xc must be the nth power of a
  1738. # positive integer and xe must be divisible by n. If y is negative
  1739. # then additionally xc must be a power of either 2 or 5, hence a power
  1740. # of 2**n or 5**n.
  1741. #
  1742. # There's a limit to how small |y| can be: if y=m/n as above
  1743. # then:
  1744. #
  1745. # (1) if xc != 1 then for the result to be representable we
  1746. # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
  1747. # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
  1748. # 2**(1/|y|), hence xc**|y| < 2 and the result is not
  1749. # representable.
  1750. #
  1751. # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
  1752. # |y| < 1/|xe| then the result is not representable.
  1753. #
  1754. # Note that since x is not equal to 1, at least one of (1) and
  1755. # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
  1756. # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
  1757. #
  1758. # There's also a limit to how large y can be, at least if it's
  1759. # positive: the normalized result will have coefficient xc**y,
  1760. # so if it's representable then xc**y < 10**p, and y <
  1761. # p/log10(xc). Hence if y*log10(xc) >= p then the result is
  1762. # not exactly representable.
  1763. # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
  1764. # so |y| < 1/xe and the result is not representable.
  1765. # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
  1766. # < 1/nbits(xc).
  1767. x = _WorkRep(self)
  1768. xc, xe = x.int, x.exp
  1769. while xc % 10 == 0:
  1770. xc //= 10
  1771. xe += 1
  1772. y = _WorkRep(other)
  1773. yc, ye = y.int, y.exp
  1774. while yc % 10 == 0:
  1775. yc //= 10
  1776. ye += 1
  1777. # case where xc == 1: result is 10**(xe*y), with xe*y
  1778. # required to be an integer
  1779. if xc == 1:
  1780. xe *= yc
  1781. # result is now 10**(xe * 10**ye); xe * 10**ye must be integral
  1782. while xe % 10 == 0:
  1783. xe //= 10
  1784. ye += 1
  1785. if ye < 0:
  1786. return None
  1787. exponent = xe * 10**ye
  1788. if y.sign == 1:
  1789. exponent = -exponent
  1790. # if other is a nonnegative integer, use ideal exponent
  1791. if other._isinteger() and other._sign == 0:
  1792. ideal_exponent = self._exp*int(other)
  1793. zeros = min(exponent-ideal_exponent, p-1)
  1794. else:
  1795. zeros = 0
  1796. return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
  1797. # case where y is negative: xc must be either a power
  1798. # of 2 or a power of 5.
  1799. if y.sign == 1:
  1800. last_digit = xc % 10
  1801. if last_digit in (2,4,6,8):
  1802. # quick test for power of 2
  1803. if xc & -xc != xc:
  1804. return None
  1805. # now xc is a power of 2; e is its exponent
  1806. e = _nbits(xc)-1
  1807. # We now have:
  1808. #
  1809. # x = 2**e * 10**xe, e > 0, and y < 0.
  1810. #
  1811. # The exact result is:
  1812. #
  1813. # x**y = 5**(-e*y) * 10**(e*y + xe*y)
  1814. #
  1815. # provided that both e*y and xe*y are integers. Note that if
  1816. # 5**(-e*y) >= 10**p, then the result can't be expressed
  1817. # exactly with p digits of precision.
  1818. #
  1819. # Using the above, we can guard against large values of ye.
  1820. # 93/65 is an upper bound for log(10)/log(5), so if
  1821. #
  1822. # ye >= len(str(93*p//65))
  1823. #
  1824. # then
  1825. #
  1826. # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
  1827. #
  1828. # so 5**(-e*y) >= 10**p, and the coefficient of the result
  1829. # can't be expressed in p digits.
  1830. # emax >= largest e such that 5**e < 10**p.
  1831. emax = p*93//65
  1832. if ye >= len(str(emax)):
  1833. return None
  1834. # Find -e*y and -xe*y; both must be integers
  1835. e = _decimal_lshift_exact(e * yc, ye)
  1836. xe = _decimal_lshift_exact(xe * yc, ye)
  1837. if e is None or xe is None:
  1838. return None
  1839. if e > emax:
  1840. return None
  1841. xc = 5**e
  1842. elif last_digit == 5:
  1843. # e >= log_5(xc) if xc is a power of 5; we have
  1844. # equality all the way up to xc=5**2658
  1845. e = _nbits(xc)*28//65
  1846. xc, remainder = divmod(5**e, xc)
  1847. if remainder:
  1848. return None
  1849. while xc % 5 == 0:
  1850. xc //= 5
  1851. e -= 1
  1852. # Guard against large values of ye, using the same logic as in
  1853. # the 'xc is a power of 2' branch. 10/3 is an upper bound for
  1854. # log(10)/log(2).
  1855. emax = p*10//3
  1856. if ye >= len(str(emax)):
  1857. return None
  1858. e = _decimal_lshift_exact(e * yc, ye)
  1859. xe = _decimal_lshift_exact(xe * yc, ye)
  1860. if e is None or xe is None:
  1861. return None
  1862. if e > emax:
  1863. return None
  1864. xc = 2**e
  1865. else:
  1866. return None
  1867. if xc >= 10**p:
  1868. return None
  1869. xe = -e-xe
  1870. return _dec_from_triple(0, str(xc), xe)
  1871. # now y is positive; find m and n such that y = m/n
  1872. if ye >= 0:
  1873. m, n = yc*10**ye, 1
  1874. else:
  1875. if xe != 0 and len(str(abs(yc*xe))) <= -ye:
  1876. return None
  1877. xc_bits = _nbits(xc)
  1878. if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
  1879. return None
  1880. m, n = yc, 10**(-ye)
  1881. while m % 2 == n % 2 == 0:
  1882. m //= 2
  1883. n //= 2
  1884. while m % 5 == n % 5 == 0:
  1885. m //= 5
  1886. n //= 5
  1887. # compute nth root of xc*10**xe
  1888. if n > 1:
  1889. # if 1 < xc < 2**n then xc isn't an nth power
  1890. if xc != 1 and xc_bits <= n:
  1891. return None
  1892. xe, rem = divmod(xe, n)
  1893. if rem != 0:
  1894. return None
  1895. # compute nth root of xc using Newton's method
  1896. a = 1 << -(-_nbits(xc)//n) # initial estimate
  1897. while True:
  1898. q, r = divmod(xc, a**(n-1))
  1899. if a <= q:
  1900. break
  1901. else:
  1902. a = (a*(n-1) + q)//n
  1903. if not (a == q and r == 0):
  1904. return None
  1905. xc = a
  1906. # now xc*10**xe is the nth root of the original xc*10**xe
  1907. # compute mth power of xc*10**xe
  1908. # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
  1909. # 10**p and the result is not representable.
  1910. if xc > 1 and m > p*100//_log10_lb(xc):
  1911. return None
  1912. xc = xc**m
  1913. xe *= m
  1914. if xc > 10**p:
  1915. return None
  1916. # by this point the result *is* exactly representable
  1917. # adjust the exponent to get as close as possible to the ideal
  1918. # exponent, if necessary
  1919. str_xc = str(xc)
  1920. if other._isinteger() and other._sign == 0:
  1921. ideal_exponent = self._exp*int(other)
  1922. zeros = min(xe-ideal_exponent, p-len(str_xc))
  1923. else:
  1924. zeros = 0
  1925. return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
  1926. def __pow__(self, other, modulo=None, context=None):
  1927. """Return self ** other [ % modulo].
  1928. With two arguments, compute self**other.
  1929. With three arguments, compute (self**other) % modulo. For the
  1930. three argument form, the following restrictions on the
  1931. arguments hold:
  1932. - all three arguments must be integral
  1933. - other must be nonnegative
  1934. - either self or other (or both) must be nonzero
  1935. - modulo must be nonzero and must have at most p digits,
  1936. where p is the context precision.
  1937. If any of these restrictions is violated the InvalidOperation
  1938. flag is raised.
  1939. The result of pow(self, other, modulo) is identical to the
  1940. result that would be obtained by computing (self**other) %
  1941. modulo with unbounded precision, but is computed more
  1942. efficiently. It is always exact.
  1943. """
  1944. if modulo is not None:
  1945. return self._power_modulo(other, modulo, context)
  1946. other = _convert_other(other)
  1947. if other is NotImplemented:
  1948. return other
  1949. if context is None:
  1950. context = getcontext()
  1951. # either argument is a NaN => result is NaN
  1952. ans = self._check_nans(other, context)
  1953. if ans:
  1954. return ans
  1955. # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
  1956. if not other:
  1957. if not self:
  1958. return context._raise_error(InvalidOperation, '0 ** 0')
  1959. else:
  1960. return _One
  1961. # result has sign 1 iff self._sign is 1 and other is an odd integer
  1962. result_sign = 0
  1963. if self._sign == 1:
  1964. if other._isinteger():
  1965. if not other._iseven():
  1966. result_sign = 1
  1967. else:
  1968. # -ve**noninteger = NaN
  1969. # (-0)**noninteger = 0**noninteger
  1970. if self:
  1971. return context._raise_error(InvalidOperation,
  1972. 'x ** y with x negative and y not an integer')
  1973. # negate self, without doing any unwanted rounding
  1974. self = self.copy_negate()
  1975. # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
  1976. if not self:
  1977. if other._sign == 0:
  1978. return _dec_from_triple(result_sign, '0', 0)
  1979. else:
  1980. return _SignedInfinity[result_sign]
  1981. # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
  1982. if self._isinfinity():
  1983. if other._sign == 0:
  1984. return _SignedInfinity[result_sign]
  1985. else:
  1986. return _dec_from_triple(result_sign, '0', 0)
  1987. # 1**other = 1, but the choice of exponent and the flags
  1988. # depend on the exponent of self, and on whether other is a
  1989. # positive integer, a negative integer, or neither
  1990. if self == _One:
  1991. if other._isinteger():
  1992. # exp = max(self._exp*max(int(other), 0),
  1993. # 1-context.prec) but evaluating int(other) directly
  1994. # is dangerous until we know other is small (other
  1995. # could be 1e999999999)
  1996. if other._sign == 1:
  1997. multiplier = 0
  1998. elif other > context.prec:
  1999. multiplier = context.prec
  2000. else:
  2001. multiplier = int(other)
  2002. exp = self._exp * multiplier
  2003. if exp < 1-context.prec:
  2004. exp = 1-context.prec
  2005. context._raise_error(Rounded)
  2006. else:
  2007. context._raise_error(Inexact)
  2008. context._raise_error(Rounded)
  2009. exp = 1-context.prec
  2010. return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
  2011. # compute adjusted exponent of self
  2012. self_adj = self.adjusted()
  2013. # self ** infinity is infinity if self > 1, 0 if self < 1
  2014. # self ** -infinity is infinity if self < 1, 0 if self > 1
  2015. if other._isinfinity():
  2016. if (other._sign == 0) == (self_adj < 0):
  2017. return _dec_from_triple(result_sign, '0', 0)
  2018. else:
  2019. return _SignedInfinity[result_sign]
  2020. # from here on, the result always goes through the call
  2021. # to _fix at the end of this function.
  2022. ans = None
  2023. exact = False
  2024. # crude test to catch cases of extreme overflow/underflow. If
  2025. # log10(self)*other >= 10**bound and bound >= len(str(Emax))
  2026. # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
  2027. # self**other >= 10**(Emax+1), so overflow occurs. The test
  2028. # for underflow is similar.
  2029. bound = self._log10_exp_bound() + other.adjusted()
  2030. if (self_adj >= 0) == (other._sign == 0):
  2031. # self > 1 and other +ve, or self < 1 and other -ve
  2032. # possibility of overflow
  2033. if bound >= len(str(context.Emax)):
  2034. ans = _dec_from_triple(result_sign, '1', context.Emax+1)
  2035. else:
  2036. # self > 1 and other -ve, or self < 1 and other +ve
  2037. # possibility of underflow to 0
  2038. Etiny = context.Etiny()
  2039. if bound >= len(str(-Etiny)):
  2040. ans = _dec_from_triple(result_sign, '1', Etiny-1)
  2041. # try for an exact result with precision +1
  2042. if ans is None:
  2043. ans = self._power_exact(other, context.prec + 1)
  2044. if ans is not None:
  2045. if result_sign == 1:
  2046. ans = _dec_from_triple(1, ans._int, ans._exp)
  2047. exact = True
  2048. # usual case: inexact result, x**y computed directly as exp(y*log(x))
  2049. if ans is None:
  2050. p = context.prec
  2051. x = _WorkRep(self)
  2052. xc, xe = x.int, x.exp
  2053. y = _WorkRep(other)
  2054. yc, ye = y.int, y.exp
  2055. if y.sign == 1:
  2056. yc = -yc
  2057. # compute correctly rounded result: start with precision +3,
  2058. # then increase precision until result is unambiguously roundable
  2059. extra = 3
  2060. while True:
  2061. coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
  2062. if coeff % (5*10**(len(str(coeff))-p-1)):
  2063. break
  2064. extra += 3
  2065. ans = _dec_from_triple(result_sign, str(coeff), exp)
  2066. # unlike exp, ln and log10, the power function respects the
  2067. # rounding mode; no need to switch to ROUND_HALF_EVEN here
  2068. # There's a difficulty here when 'other' is not an integer and
  2069. # the result is exact. In this case, the specification
  2070. # requires that the Inexact flag be raised (in spite of
  2071. # exactness), but since the result is exact _fix won't do this
  2072. # for us. (Correspondingly, the Underflow signal should also
  2073. # be raised for subnormal results.) We can't directly raise
  2074. # these signals either before or after calling _fix, since
  2075. # that would violate the precedence for signals. So we wrap
  2076. # the ._fix call in a temporary context, and reraise
  2077. # afterwards.
  2078. if exact and not other._isinteger():
  2079. # pad with zeros up to length context.prec+1 if necessary; this
  2080. # ensures that the Rounded signal will be raised.
  2081. if len(ans._int) <= context.prec:
  2082. expdiff = context.prec + 1 - len(ans._int)
  2083. ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
  2084. ans._exp-expdiff)
  2085. # create a copy of the current context, with cleared flags/traps
  2086. newcontext = context.copy()
  2087. newcontext.clear_flags()
  2088. for exception in _signals:
  2089. newcontext.traps[exception] = 0
  2090. # round in the new context
  2091. ans = ans._fix(newcontext)
  2092. # raise Inexact, and if necessary, Underflow
  2093. newcontext._raise_error(Inexact)
  2094. if newcontext.flags[Subnormal]:
  2095. newcontext._raise_error(Underflow)
  2096. # propagate signals to the original context; _fix could
  2097. # have raised any of Overflow, Underflow, Subnormal,
  2098. # Inexact, Rounded, Clamped. Overflow needs the correct
  2099. # arguments. Note that the order of the exceptions is
  2100. # important here.
  2101. if newcontext.flags[Overflow]:
  2102. context._raise_error(Overflow, 'above Emax', ans._sign)
  2103. for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
  2104. if newcontext.flags[exception]:
  2105. context._raise_error(exception)
  2106. else:
  2107. ans = ans._fix(context)
  2108. return ans
  2109. def __rpow__(self, other, context=None):
  2110. """Swaps self/other and returns __pow__."""
  2111. other = _convert_other(other)
  2112. if other is NotImplemented:
  2113. return other
  2114. return other.__pow__(self, context=context)
  2115. def normalize(self, context=None):
  2116. """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
  2117. if context is None:
  2118. context = getcontext()
  2119. if self._is_special:
  2120. ans = self._check_nans(context=context)
  2121. if ans:
  2122. return ans
  2123. dup = self._fix(context)
  2124. if dup._isinfinity():
  2125. return dup
  2126. if not dup:
  2127. return _dec_from_triple(dup._sign, '0', 0)
  2128. exp_max = [context.Emax, context.Etop()][context.clamp]
  2129. end = len(dup._int)
  2130. exp = dup._exp
  2131. while dup._int[end-1] == '0' and exp < exp_max:
  2132. exp += 1
  2133. end -= 1
  2134. return _dec_from_triple(dup._sign, dup._int[:end], exp)
  2135. def quantize(self, exp, rounding=None, context=None):
  2136. """Quantize self so its exponent is the same as that of exp.
  2137. Similar to self._rescale(exp._exp) but with error checking.
  2138. """
  2139. exp = _convert_other(exp, raiseit=True)
  2140. if context is None:
  2141. context = getcontext()
  2142. if rounding is None:
  2143. rounding = context.rounding
  2144. if self._is_special or exp._is_special:
  2145. ans = self._check_nans(exp, context)
  2146. if ans:
  2147. return ans
  2148. if exp._isinfinity() or self._isinfinity():
  2149. if exp._isinfinity() and self._isinfinity():
  2150. return Decimal(self) # if both are inf, it is OK
  2151. return context._raise_error(InvalidOperation,
  2152. 'quantize with one INF')
  2153. # exp._exp should be between Etiny and Emax
  2154. if not (context.Etiny() <= exp._exp <= context.Emax):
  2155. return context._raise_error(InvalidOperation,
  2156. 'target exponent out of bounds in quantize')
  2157. if not self:
  2158. ans = _dec_from_triple(self._sign, '0', exp._exp)
  2159. return ans._fix(context)
  2160. self_adjusted = self.adjusted()
  2161. if self_adjusted > context.Emax:
  2162. return context._raise_error(InvalidOperation,
  2163. 'exponent of quantize result too large for current context')
  2164. if self_adjusted - exp._exp + 1 > context.prec:
  2165. return context._raise_error(InvalidOperation,
  2166. 'quantize result has too many digits for current context')
  2167. ans = self._rescale(exp._exp, rounding)
  2168. if ans.adjusted() > context.Emax:
  2169. return context._raise_error(InvalidOperation,
  2170. 'exponent of quantize result too large for current context')
  2171. if len(ans._int) > context.prec:
  2172. return context._raise_error(InvalidOperation,
  2173. 'quantize result has too many digits for current context')
  2174. # raise appropriate flags
  2175. if ans and ans.adjusted() < context.Emin:
  2176. context._raise_error(Subnormal)
  2177. if ans._exp > self._exp:
  2178. if ans != self:
  2179. context._raise_error(Inexact)
  2180. context._raise_error(Rounded)
  2181. # call to fix takes care of any necessary folddown, and
  2182. # signals Clamped if necessary
  2183. ans = ans._fix(context)
  2184. return ans
  2185. def same_quantum(self, other, context=None):
  2186. """Return True if self and other have the same exponent; otherwise
  2187. return False.
  2188. If either operand is a special value, the following rules are used:
  2189. * return True if both operands are infinities
  2190. * return True if both operands are NaNs
  2191. * otherwise, return False.
  2192. """
  2193. other = _convert_other(other, raiseit=True)
  2194. if self._is_special or other._is_special:
  2195. return (self.is_nan() and other.is_nan() or
  2196. self.is_infinite() and other.is_infinite())
  2197. return self._exp == other._exp
  2198. def _rescale(self, exp, rounding):
  2199. """Rescale self so that the exponent is exp, either by padding with zeros
  2200. or by truncating digits, using the given rounding mode.
  2201. Specials are returned without change. This operation is
  2202. quiet: it raises no flags, and uses no information from the
  2203. context.
  2204. exp = exp to scale to (an integer)
  2205. rounding = rounding mode
  2206. """
  2207. if self._is_special:
  2208. return Decimal(self)
  2209. if not self:
  2210. return _dec_from_triple(self._sign, '0', exp)
  2211. if self._exp >= exp:
  2212. # pad answer with zeros if necessary
  2213. return _dec_from_triple(self._sign,
  2214. self._int + '0'*(self._exp - exp), exp)
  2215. # too many digits; round and lose data. If self.adjusted() <
  2216. # exp-1, replace self by 10**(exp-1) before rounding
  2217. digits = len(self._int) + self._exp - exp
  2218. if digits < 0:
  2219. self = _dec_from_triple(self._sign, '1', exp-1)
  2220. digits = 0
  2221. this_function = self._pick_rounding_function[rounding]
  2222. changed = this_function(self, digits)
  2223. coeff = self._int[:digits] or '0'
  2224. if changed == 1:
  2225. coeff = str(int(coeff)+1)
  2226. return _dec_from_triple(self._sign, coeff, exp)
  2227. def _round(self, places, rounding):
  2228. """Round a nonzero, nonspecial Decimal to a fixed number of
  2229. significant figures, using the given rounding mode.
  2230. Infinities, NaNs and zeros are returned unaltered.
  2231. This operation is quiet: it raises no flags, and uses no
  2232. information from the context.
  2233. """
  2234. if places <= 0:
  2235. raise ValueError("argument should be at least 1 in _round")
  2236. if self._is_special or not self:
  2237. return Decimal(self)
  2238. ans = self._rescale(self.adjusted()+1-places, rounding)
  2239. # it can happen that the rescale alters the adjusted exponent;
  2240. # for example when rounding 99.97 to 3 significant figures.
  2241. # When this happens we end up with an extra 0 at the end of
  2242. # the number; a second rescale fixes this.
  2243. if ans.adjusted() != self.adjusted():
  2244. ans = ans._rescale(ans.adjusted()+1-places, rounding)
  2245. return ans
  2246. def to_integral_exact(self, rounding=None, context=None):
  2247. """Rounds to a nearby integer.
  2248. If no rounding mode is specified, take the rounding mode from
  2249. the context. This method raises the Rounded and Inexact flags
  2250. when appropriate.
  2251. See also: to_integral_value, which does exactly the same as
  2252. this method except that it doesn't raise Inexact or Rounded.
  2253. """
  2254. if self._is_special:
  2255. ans = self._check_nans(context=context)
  2256. if ans:
  2257. return ans
  2258. return Decimal(self)
  2259. if self._exp >= 0:
  2260. return Decimal(self)
  2261. if not self:
  2262. return _dec_from_triple(self._sign, '0', 0)
  2263. if context is None:
  2264. context = getcontext()
  2265. if rounding is None:
  2266. rounding = context.rounding
  2267. ans = self._rescale(0, rounding)
  2268. if ans != self:
  2269. context._raise_error(Inexact)
  2270. context._raise_error(Rounded)
  2271. return ans
  2272. def to_integral_value(self, rounding=None, context=None):
  2273. """Rounds to the nearest integer, without raising inexact, rounded."""
  2274. if context is None:
  2275. context = getcontext()
  2276. if rounding is None:
  2277. rounding = context.rounding
  2278. if self._is_special:
  2279. ans = self._check_nans(context=context)
  2280. if ans:
  2281. return ans
  2282. return Decimal(self)
  2283. if self._exp >= 0:
  2284. return Decimal(self)
  2285. else:
  2286. return self._rescale(0, rounding)
  2287. # the method name changed, but we provide also the old one, for compatibility
  2288. to_integral = to_integral_value
  2289. def sqrt(self, context=None):
  2290. """Return the square root of self."""
  2291. if context is None:
  2292. context = getcontext()
  2293. if self._is_special:
  2294. ans = self._check_nans(context=context)
  2295. if ans:
  2296. return ans
  2297. if self._isinfinity() and self._sign == 0:
  2298. return Decimal(self)
  2299. if not self:
  2300. # exponent = self._exp // 2. sqrt(-0) = -0
  2301. ans = _dec_from_triple(self._sign, '0', self._exp // 2)
  2302. return ans._fix(context)
  2303. if self._sign == 1:
  2304. return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
  2305. # At this point self represents a positive number. Let p be
  2306. # the desired precision and express self in the form c*100**e
  2307. # with c a positive real number and e an integer, c and e
  2308. # being chosen so that 100**(p-1) <= c < 100**p. Then the
  2309. # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
  2310. # <= sqrt(c) < 10**p, so the closest representable Decimal at
  2311. # precision p is n*10**e where n = round_half_even(sqrt(c)),
  2312. # the closest integer to sqrt(c) with the even integer chosen
  2313. # in the case of a tie.
  2314. #
  2315. # To ensure correct rounding in all cases, we use the
  2316. # following trick: we compute the square root to an extra
  2317. # place (precision p+1 instead of precision p), rounding down.
  2318. # Then, if the result is inexact and its last digit is 0 or 5,
  2319. # we increase the last digit to 1 or 6 respectively; if it's
  2320. # exact we leave the last digit alone. Now the final round to
  2321. # p places (or fewer in the case of underflow) will round
  2322. # correctly and raise the appropriate flags.
  2323. # use an extra digit of precision
  2324. prec = context.prec+1
  2325. # write argument in the form c*100**e where e = self._exp//2
  2326. # is the 'ideal' exponent, to be used if the square root is
  2327. # exactly representable. l is the number of 'digits' of c in
  2328. # base 100, so that 100**(l-1) <= c < 100**l.
  2329. op = _WorkRep(self)
  2330. e = op.exp >> 1
  2331. if op.exp & 1:
  2332. c = op.int * 10
  2333. l = (len(self._int) >> 1) + 1
  2334. else:
  2335. c = op.int
  2336. l = len(self._int)+1 >> 1
  2337. # rescale so that c has exactly prec base 100 'digits'
  2338. shift = prec-l
  2339. if shift >= 0:
  2340. c *= 100**shift
  2341. exact = True
  2342. else:
  2343. c, remainder = divmod(c, 100**-shift)
  2344. exact = not remainder
  2345. e -= shift
  2346. # find n = floor(sqrt(c)) using Newton's method
  2347. n = 10**prec
  2348. while True:
  2349. q = c//n
  2350. if n <= q:
  2351. break
  2352. else:
  2353. n = n + q >> 1
  2354. exact = exact and n*n == c
  2355. if exact:
  2356. # result is exact; rescale to use ideal exponent e
  2357. if shift >= 0:
  2358. # assert n % 10**shift == 0
  2359. n //= 10**shift
  2360. else:
  2361. n *= 10**-shift
  2362. e += shift
  2363. else:
  2364. # result is not exact; fix last digit as described above
  2365. if n % 5 == 0:
  2366. n += 1
  2367. ans = _dec_from_triple(0, str(n), e)
  2368. # round, and fit to current context
  2369. context = context._shallow_copy()
  2370. rounding = context._set_rounding(ROUND_HALF_EVEN)
  2371. ans = ans._fix(context)
  2372. context.rounding = rounding
  2373. return ans
  2374. def max(self, other, context=None):
  2375. """Returns the larger value.
  2376. Like max(self, other) except if one is not a number, returns
  2377. NaN (and signals if one is sNaN). Also rounds.
  2378. """
  2379. other = _convert_other(other, raiseit=True)
  2380. if context is None:
  2381. context = getcontext()
  2382. if self._is_special or other._is_special:
  2383. # If one operand is a quiet NaN and the other is number, then the
  2384. # number is always returned
  2385. sn = self._isnan()
  2386. on = other._isnan()
  2387. if sn or on:
  2388. if on == 1 and sn == 0:
  2389. return self._fix(context)
  2390. if sn == 1 and on == 0:
  2391. return other._fix(context)
  2392. return self._check_nans(other, context)
  2393. c = self._cmp(other)
  2394. if c == 0:
  2395. # If both operands are finite and equal in numerical value
  2396. # then an ordering is applied:
  2397. #
  2398. # If the signs differ then max returns the operand with the
  2399. # positive sign and min returns the operand with the negative sign
  2400. #
  2401. # If the signs are the same then the exponent is used to select
  2402. # the result. This is exactly the ordering used in compare_total.
  2403. c = self.compare_total(other)
  2404. if c == -1:
  2405. ans = other
  2406. else:
  2407. ans = self
  2408. return ans._fix(context)
  2409. def min(self, other, context=None):
  2410. """Returns the smaller value.
  2411. Like min(self, other) except if one is not a number, returns
  2412. NaN (and signals if one is sNaN). Also rounds.
  2413. """
  2414. other = _convert_other(other, raiseit=True)
  2415. if context is None:
  2416. context = getcontext()
  2417. if self._is_special or other._is_special:
  2418. # If one operand is a quiet NaN and the other is number, then the
  2419. # number is always returned
  2420. sn = self._isnan()
  2421. on = other._isnan()
  2422. if sn or on:
  2423. if on == 1 and sn == 0:
  2424. return self._fix(context)
  2425. if sn == 1 and on == 0:
  2426. return other._fix(context)
  2427. return self._check_nans(other, context)
  2428. c = self._cmp(other)
  2429. if c == 0:
  2430. c = self.compare_total(other)
  2431. if c == -1:
  2432. ans = self
  2433. else:
  2434. ans = other
  2435. return ans._fix(context)
  2436. def _isinteger(self):
  2437. """Returns whether self is an integer"""
  2438. if self._is_special:
  2439. return False
  2440. if self._exp >= 0:
  2441. return True
  2442. rest = self._int[self._exp:]
  2443. return rest == '0'*len(rest)
  2444. def _iseven(self):
  2445. """Returns True if self is even. Assumes self is an integer."""
  2446. if not self or self._exp > 0:
  2447. return True
  2448. return self._int[-1+self._exp] in '02468'
  2449. def adjusted(self):
  2450. """Return the adjusted exponent of self"""
  2451. try:
  2452. return self._exp + len(self._int) - 1
  2453. # If NaN or Infinity, self._exp is string
  2454. except TypeError:
  2455. return 0
  2456. def canonical(self):
  2457. """Returns the same Decimal object.
  2458. As we do not have different encodings for the same number, the
  2459. received object already is in its canonical form.
  2460. """
  2461. return self
  2462. def compare_signal(self, other, context=None):
  2463. """Compares self to the other operand numerically.
  2464. It's pretty much like compare(), but all NaNs signal, with signaling
  2465. NaNs taking precedence over quiet NaNs.
  2466. """
  2467. other = _convert_other(other, raiseit = True)
  2468. ans = self._compare_check_nans(other, context)
  2469. if ans:
  2470. return ans
  2471. return self.compare(other, context=context)
  2472. def compare_total(self, other, context=None):
  2473. """Compares self to other using the abstract representations.
  2474. This is not like the standard compare, which use their numerical
  2475. value. Note that a total ordering is defined for all possible abstract
  2476. representations.
  2477. """
  2478. other = _convert_other(other, raiseit=True)
  2479. # if one is negative and the other is positive, it's easy
  2480. if self._sign and not other._sign:
  2481. return _NegativeOne
  2482. if not self._sign and other._sign:
  2483. return _One
  2484. sign = self._sign
  2485. # let's handle both NaN types
  2486. self_nan = self._isnan()
  2487. other_nan = other._isnan()
  2488. if self_nan or other_nan:
  2489. if self_nan == other_nan:
  2490. # compare payloads as though they're integers
  2491. self_key = len(self._int), self._int
  2492. other_key = len(other._int), other._int
  2493. if self_key < other_key:
  2494. if sign:
  2495. return _One
  2496. else:
  2497. return _NegativeOne
  2498. if self_key > other_key:
  2499. if sign:
  2500. return _NegativeOne
  2501. else:
  2502. return _One
  2503. return _Zero
  2504. if sign:
  2505. if self_nan == 1:
  2506. return _NegativeOne
  2507. if other_nan == 1:
  2508. return _One
  2509. if self_nan == 2:
  2510. return _NegativeOne
  2511. if other_nan == 2:
  2512. return _One
  2513. else:
  2514. if self_nan == 1:
  2515. return _One
  2516. if other_nan == 1:
  2517. return _NegativeOne
  2518. if self_nan == 2:
  2519. return _One
  2520. if other_nan == 2:
  2521. return _NegativeOne
  2522. if self < other:
  2523. return _NegativeOne
  2524. if self > other:
  2525. return _One
  2526. if self._exp < other._exp:
  2527. if sign:
  2528. return _One
  2529. else:
  2530. return _NegativeOne
  2531. if self._exp > other._exp:
  2532. if sign:
  2533. return _NegativeOne
  2534. else:
  2535. return _One
  2536. return _Zero
  2537. def compare_total_mag(self, other, context=None):
  2538. """Compares self to other using abstract repr., ignoring sign.
  2539. Like compare_total, but with operand's sign ignored and assumed to be 0.
  2540. """
  2541. other = _convert_other(other, raiseit=True)
  2542. s = self.copy_abs()
  2543. o = other.copy_abs()
  2544. return s.compare_total(o)
  2545. def copy_abs(self):
  2546. """Returns a copy with the sign set to 0. """
  2547. return _dec_from_triple(0, self._int, self._exp, self._is_special)
  2548. def copy_negate(self):
  2549. """Returns a copy with the sign inverted."""
  2550. if self._sign:
  2551. return _dec_from_triple(0, self._int, self._exp, self._is_special)
  2552. else:
  2553. return _dec_from_triple(1, self._int, self._exp, self._is_special)
  2554. def copy_sign(self, other, context=None):
  2555. """Returns self with the sign of other."""
  2556. other = _convert_other(other, raiseit=True)
  2557. return _dec_from_triple(other._sign, self._int,
  2558. self._exp, self._is_special)
  2559. def exp(self, context=None):
  2560. """Returns e ** self."""
  2561. if context is None:
  2562. context = getcontext()
  2563. # exp(NaN) = NaN
  2564. ans = self._check_nans(context=context)
  2565. if ans:
  2566. return ans
  2567. # exp(-Infinity) = 0
  2568. if self._isinfinity() == -1:
  2569. return _Zero
  2570. # exp(0) = 1
  2571. if not self:
  2572. return _One
  2573. # exp(Infinity) = Infinity
  2574. if self._isinfinity() == 1:
  2575. return Decimal(self)
  2576. # the result is now guaranteed to be inexact (the true
  2577. # mathematical result is transcendental). There's no need to
  2578. # raise Rounded and Inexact here---they'll always be raised as
  2579. # a result of the call to _fix.
  2580. p = context.prec
  2581. adj = self.adjusted()
  2582. # we only need to do any computation for quite a small range
  2583. # of adjusted exponents---for example, -29 <= adj <= 10 for
  2584. # the default context. For smaller exponent the result is
  2585. # indistinguishable from 1 at the given precision, while for
  2586. # larger exponent the result either overflows or underflows.
  2587. if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
  2588. # overflow
  2589. ans = _dec_from_triple(0, '1', context.Emax+1)
  2590. elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
  2591. # underflow to 0
  2592. ans = _dec_from_triple(0, '1', context.Etiny()-1)
  2593. elif self._sign == 0 and adj < -p:
  2594. # p+1 digits; final round will raise correct flags
  2595. ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
  2596. elif self._sign == 1 and adj < -p-1:
  2597. # p+1 digits; final round will raise correct flags
  2598. ans = _dec_from_triple(0, '9'*(p+1), -p-1)
  2599. # general case
  2600. else:
  2601. op = _WorkRep(self)
  2602. c, e = op.int, op.exp
  2603. if op.sign == 1:
  2604. c = -c
  2605. # compute correctly rounded result: increase precision by
  2606. # 3 digits at a time until we get an unambiguously
  2607. # roundable result
  2608. extra = 3
  2609. while True:
  2610. coeff, exp = _dexp(c, e, p+extra)
  2611. if coeff % (5*10**(len(str(coeff))-p-1)):
  2612. break
  2613. extra += 3
  2614. ans = _dec_from_triple(0, str(coeff), exp)
  2615. # at this stage, ans should round correctly with *any*
  2616. # rounding mode, not just with ROUND_HALF_EVEN
  2617. context = context._shallow_copy()
  2618. rounding = context._set_rounding(ROUND_HALF_EVEN)
  2619. ans = ans._fix(context)
  2620. context.rounding = rounding
  2621. return ans
  2622. def is_canonical(self):
  2623. """Return True if self is canonical; otherwise return False.
  2624. Currently, the encoding of a Decimal instance is always
  2625. canonical, so this method returns True for any Decimal.
  2626. """
  2627. return True
  2628. def is_finite(self):
  2629. """Return True if self is finite; otherwise return False.
  2630. A Decimal instance is considered finite if it is neither
  2631. infinite nor a NaN.
  2632. """
  2633. return not self._is_special
  2634. def is_infinite(self):
  2635. """Return True if self is infinite; otherwise return False."""
  2636. return self._exp == 'F'
  2637. def is_nan(self):
  2638. """Return True if self is a qNaN or sNaN; otherwise return False."""
  2639. return self._exp in ('n', 'N')
  2640. def is_normal(self, context=None):
  2641. """Return True if self is a normal number; otherwise return False."""
  2642. if self._is_special or not self:
  2643. return False
  2644. if context is None:
  2645. context = getcontext()
  2646. return context.Emin <= self.adjusted()
  2647. def is_qnan(self):
  2648. """Return True if self is a quiet NaN; otherwise return False."""
  2649. return self._exp == 'n'
  2650. def is_signed(self):
  2651. """Return True if self is negative; otherwise return False."""
  2652. return self._sign == 1
  2653. def is_snan(self):
  2654. """Return True if self is a signaling NaN; otherwise return False."""
  2655. return self._exp == 'N'
  2656. def is_subnormal(self, context=None):
  2657. """Return True if self is subnormal; otherwise return False."""
  2658. if self._is_special or not self:
  2659. return False
  2660. if context is None:
  2661. context = getcontext()
  2662. return self.adjusted() < context.Emin
  2663. def is_zero(self):
  2664. """Return True if self is a zero; otherwise return False."""
  2665. return not self._is_special and self._int == '0'
  2666. def _ln_exp_bound(self):
  2667. """Compute a lower bound for the adjusted exponent of self.ln().
  2668. In other words, compute r such that self.ln() >= 10**r. Assumes
  2669. that self is finite and positive and that self != 1.
  2670. """
  2671. # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
  2672. adj = self._exp + len(self._int) - 1
  2673. if adj >= 1:
  2674. # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
  2675. return len(str(adj*23//10)) - 1
  2676. if adj <= -2:
  2677. # argument <= 0.1
  2678. return len(str((-1-adj)*23//10)) - 1
  2679. op = _WorkRep(self)
  2680. c, e = op.int, op.exp
  2681. if adj == 0:
  2682. # 1 < self < 10
  2683. num = str(c-10**-e)
  2684. den = str(c)
  2685. return len(num) - len(den) - (num < den)
  2686. # adj == -1, 0.1 <= self < 1
  2687. return e + len(str(10**-e - c)) - 1
  2688. def ln(self, context=None):
  2689. """Returns the natural (base e) logarithm of self."""
  2690. if context is None:
  2691. context = getcontext()
  2692. # ln(NaN) = NaN
  2693. ans = self._check_nans(context=context)
  2694. if ans:
  2695. return ans
  2696. # ln(0.0) == -Infinity
  2697. if not self:
  2698. return _NegativeInfinity
  2699. # ln(Infinity) = Infinity
  2700. if self._isinfinity() == 1:
  2701. return _Infinity
  2702. # ln(1.0) == 0.0
  2703. if self == _One:
  2704. return _Zero
  2705. # ln(negative) raises InvalidOperation
  2706. if self._sign == 1:
  2707. return context._raise_error(InvalidOperation,
  2708. 'ln of a negative value')
  2709. # result is irrational, so necessarily inexact
  2710. op = _WorkRep(self)
  2711. c, e = op.int, op.exp
  2712. p = context.prec
  2713. # correctly rounded result: repeatedly increase precision by 3
  2714. # until we get an unambiguously roundable result
  2715. places = p - self._ln_exp_bound() + 2 # at least p+3 places
  2716. while True:
  2717. coeff = _dlog(c, e, places)
  2718. # assert len(str(abs(coeff)))-p >= 1
  2719. if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
  2720. break
  2721. places += 3
  2722. ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
  2723. context = context._shallow_copy()
  2724. rounding = context._set_rounding(ROUND_HALF_EVEN)
  2725. ans = ans._fix(context)
  2726. context.rounding = rounding
  2727. return ans
  2728. def _log10_exp_bound(self):
  2729. """Compute a lower bound for the adjusted exponent of self.log10().
  2730. In other words, find r such that self.log10() >= 10**r.
  2731. Assumes that self is finite and positive and that self != 1.
  2732. """
  2733. # For x >= 10 or x < 0.1 we only need a bound on the integer
  2734. # part of log10(self), and this comes directly from the
  2735. # exponent of x. For 0.1 <= x <= 10 we use the inequalities
  2736. # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
  2737. # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
  2738. adj = self._exp + len(self._int) - 1
  2739. if adj >= 1:
  2740. # self >= 10
  2741. return len(str(adj))-1
  2742. if adj <= -2:
  2743. # self < 0.1
  2744. return len(str(-1-adj))-1
  2745. op = _WorkRep(self)
  2746. c, e = op.int, op.exp
  2747. if adj == 0:
  2748. # 1 < self < 10
  2749. num = str(c-10**-e)
  2750. den = str(231*c)
  2751. return len(num) - len(den) - (num < den) + 2
  2752. # adj == -1, 0.1 <= self < 1
  2753. num = str(10**-e-c)
  2754. return len(num) + e - (num < "231") - 1
  2755. def log10(self, context=None):
  2756. """Returns the base 10 logarithm of self."""
  2757. if context is None:
  2758. context = getcontext()
  2759. # log10(NaN) = NaN
  2760. ans = self._check_nans(context=context)
  2761. if ans:
  2762. return ans
  2763. # log10(0.0) == -Infinity
  2764. if not self:
  2765. return _NegativeInfinity
  2766. # log10(Infinity) = Infinity
  2767. if self._isinfinity() == 1:
  2768. return _Infinity
  2769. # log10(negative or -Infinity) raises InvalidOperation
  2770. if self._sign == 1:
  2771. return context._raise_error(InvalidOperation,
  2772. 'log10 of a negative value')
  2773. # log10(10**n) = n
  2774. if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
  2775. # answer may need rounding
  2776. ans = Decimal(self._exp + len(self._int) - 1)
  2777. else:
  2778. # result is irrational, so necessarily inexact
  2779. op = _WorkRep(self)
  2780. c, e = op.int, op.exp
  2781. p = context.prec
  2782. # correctly rounded result: repeatedly increase precision
  2783. # until result is unambiguously roundable
  2784. places = p-self._log10_exp_bound()+2
  2785. while True:
  2786. coeff = _dlog10(c, e, places)
  2787. # assert len(str(abs(coeff)))-p >= 1
  2788. if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
  2789. break
  2790. places += 3
  2791. ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
  2792. context = context._shallow_copy()
  2793. rounding = context._set_rounding(ROUND_HALF_EVEN)
  2794. ans = ans._fix(context)
  2795. context.rounding = rounding
  2796. return ans
  2797. def logb(self, context=None):
  2798. """ Returns the exponent of the magnitude of self's MSD.
  2799. The result is the integer which is the exponent of the magnitude
  2800. of the most significant digit of self (as though it were truncated
  2801. to a single digit while maintaining the value of that digit and
  2802. without limiting the resulting exponent).
  2803. """
  2804. # logb(NaN) = NaN
  2805. ans = self._check_nans(context=context)
  2806. if ans:
  2807. return ans
  2808. if context is None:
  2809. context = getcontext()
  2810. # logb(+/-Inf) = +Inf
  2811. if self._isinfinity():
  2812. return _Infinity
  2813. # logb(0) = -Inf, DivisionByZero
  2814. if not self:
  2815. return context._raise_error(DivisionByZero, 'logb(0)', 1)
  2816. # otherwise, simply return the adjusted exponent of self, as a
  2817. # Decimal. Note that no attempt is made to fit the result
  2818. # into the current context.
  2819. ans = Decimal(self.adjusted())
  2820. return ans._fix(context)
  2821. def _islogical(self):
  2822. """Return True if self is a logical operand.
  2823. For being logical, it must be a finite number with a sign of 0,
  2824. an exponent of 0, and a coefficient whose digits must all be
  2825. either 0 or 1.
  2826. """
  2827. if self._sign != 0 or self._exp != 0:
  2828. return False
  2829. for dig in self._int:
  2830. if dig not in '01':
  2831. return False
  2832. return True
  2833. def _fill_logical(self, context, opa, opb):
  2834. dif = context.prec - len(opa)
  2835. if dif > 0:
  2836. opa = '0'*dif + opa
  2837. elif dif < 0:
  2838. opa = opa[-context.prec:]
  2839. dif = context.prec - len(opb)
  2840. if dif > 0:
  2841. opb = '0'*dif + opb
  2842. elif dif < 0:
  2843. opb = opb[-context.prec:]
  2844. return opa, opb
  2845. def logical_and(self, other, context=None):
  2846. """Applies an 'and' operation between self and other's digits."""
  2847. if context is None:
  2848. context = getcontext()
  2849. other = _convert_other(other, raiseit=True)
  2850. if not self._islogical() or not other._islogical():
  2851. return context._raise_error(InvalidOperation)
  2852. # fill to context.prec
  2853. (opa, opb) = self._fill_logical(context, self._int, other._int)
  2854. # make the operation, and clean starting zeroes
  2855. result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
  2856. return _dec_from_triple(0, result.lstrip('0') or '0', 0)
  2857. def logical_invert(self, context=None):
  2858. """Invert all its digits."""
  2859. if context is None:
  2860. context = getcontext()
  2861. return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
  2862. context)
  2863. def logical_or(self, other, context=None):
  2864. """Applies an 'or' operation between self and other's digits."""
  2865. if context is None:
  2866. context = getcontext()
  2867. other = _convert_other(other, raiseit=True)
  2868. if not self._islogical() or not other._islogical():
  2869. return context._raise_error(InvalidOperation)
  2870. # fill to context.prec
  2871. (opa, opb) = self._fill_logical(context, self._int, other._int)
  2872. # make the operation, and clean starting zeroes
  2873. result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
  2874. return _dec_from_triple(0, result.lstrip('0') or '0', 0)
  2875. def logical_xor(self, other, context=None):
  2876. """Applies an 'xor' operation between self and other's digits."""
  2877. if context is None:
  2878. context = getcontext()
  2879. other = _convert_other(other, raiseit=True)
  2880. if not self._islogical() or not other._islogical():
  2881. return context._raise_error(InvalidOperation)
  2882. # fill to context.prec
  2883. (opa, opb) = self._fill_logical(context, self._int, other._int)
  2884. # make the operation, and clean starting zeroes
  2885. result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
  2886. return _dec_from_triple(0, result.lstrip('0') or '0', 0)
  2887. def max_mag(self, other, context=None):
  2888. """Compares the values numerically with their sign ignored."""
  2889. other = _convert_other(other, raiseit=True)
  2890. if context is None:
  2891. context = getcontext()
  2892. if self._is_special or other._is_special:
  2893. # If one operand is a quiet NaN and the other is number, then the
  2894. # number is always returned
  2895. sn = self._isnan()
  2896. on = other._isnan()
  2897. if sn or on:
  2898. if on == 1 and sn == 0:
  2899. return self._fix(context)
  2900. if sn == 1 and on == 0:
  2901. return other._fix(context)
  2902. return self._check_nans(other, context)
  2903. c = self.copy_abs()._cmp(other.copy_abs())
  2904. if c == 0:
  2905. c = self.compare_total(other)
  2906. if c == -1:
  2907. ans = other
  2908. else:
  2909. ans = self
  2910. return ans._fix(context)
  2911. def min_mag(self, other, context=None):
  2912. """Compares the values numerically with their sign ignored."""
  2913. other = _convert_other(other, raiseit=True)
  2914. if context is None:
  2915. context = getcontext()
  2916. if self._is_special or other._is_special:
  2917. # If one operand is a quiet NaN and the other is number, then the
  2918. # number is always returned
  2919. sn = self._isnan()
  2920. on = other._isnan()
  2921. if sn or on:
  2922. if on == 1 and sn == 0:
  2923. return self._fix(context)
  2924. if sn == 1 and on == 0:
  2925. return other._fix(context)
  2926. return self._check_nans(other, context)
  2927. c = self.copy_abs()._cmp(other.copy_abs())
  2928. if c == 0:
  2929. c = self.compare_total(other)
  2930. if c == -1:
  2931. ans = self
  2932. else:
  2933. ans = other
  2934. return ans._fix(context)
  2935. def next_minus(self, context=None):
  2936. """Returns the largest representable number smaller than itself."""
  2937. if context is None:
  2938. context = getcontext()
  2939. ans = self._check_nans(context=context)
  2940. if ans:
  2941. return ans
  2942. if self._isinfinity() == -1:
  2943. return _NegativeInfinity
  2944. if self._isinfinity() == 1:
  2945. return _dec_from_triple(0, '9'*context.prec, context.Etop())
  2946. context = context.copy()
  2947. context._set_rounding(ROUND_FLOOR)
  2948. context._ignore_all_flags()
  2949. new_self = self._fix(context)
  2950. if new_self != self:
  2951. return new_self
  2952. return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
  2953. context)
  2954. def next_plus(self, context=None):
  2955. """Returns the smallest representable number larger than itself."""
  2956. if context is None:
  2957. context = getcontext()
  2958. ans = self._check_nans(context=context)
  2959. if ans:
  2960. return ans
  2961. if self._isinfinity() == 1:
  2962. return _Infinity
  2963. if self._isinfinity() == -1:
  2964. return _dec_from_triple(1, '9'*context.prec, context.Etop())
  2965. context = context.copy()
  2966. context._set_rounding(ROUND_CEILING)
  2967. context._ignore_all_flags()
  2968. new_self = self._fix(context)
  2969. if new_self != self:
  2970. return new_self
  2971. return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
  2972. context)
  2973. def next_toward(self, other, context=None):
  2974. """Returns the number closest to self, in the direction towards other.
  2975. The result is the closest representable number to self
  2976. (excluding self) that is in the direction towards other,
  2977. unless both have the same value. If the two operands are
  2978. numerically equal, then the result is a copy of self with the
  2979. sign set to be the same as the sign of other.
  2980. """
  2981. other = _convert_other(other, raiseit=True)
  2982. if context is None:
  2983. context = getcontext()
  2984. ans = self._check_nans(other, context)
  2985. if ans:
  2986. return ans
  2987. comparison = self._cmp(other)
  2988. if comparison == 0:
  2989. return self.copy_sign(other)
  2990. if comparison == -1:
  2991. ans = self.next_plus(context)
  2992. else: # comparison == 1
  2993. ans = self.next_minus(context)
  2994. # decide which flags to raise using value of ans
  2995. if ans._isinfinity():
  2996. context._raise_error(Overflow,
  2997. 'Infinite result from next_toward',
  2998. ans._sign)
  2999. context._raise_error(Inexact)
  3000. context._raise_error(Rounded)
  3001. elif ans.adjusted() < context.Emin:
  3002. context._raise_error(Underflow)
  3003. context._raise_error(Subnormal)
  3004. context._raise_error(Inexact)
  3005. context._raise_error(Rounded)
  3006. # if precision == 1 then we don't raise Clamped for a
  3007. # result 0E-Etiny.
  3008. if not ans:
  3009. context._raise_error(Clamped)
  3010. return ans
  3011. def number_class(self, context=None):
  3012. """Returns an indication of the class of self.
  3013. The class is one of the following strings:
  3014. sNaN
  3015. NaN
  3016. -Infinity
  3017. -Normal
  3018. -Subnormal
  3019. -Zero
  3020. +Zero
  3021. +Subnormal
  3022. +Normal
  3023. +Infinity
  3024. """
  3025. if self.is_snan():
  3026. return "sNaN"
  3027. if self.is_qnan():
  3028. return "NaN"
  3029. inf = self._isinfinity()
  3030. if inf == 1:
  3031. return "+Infinity"
  3032. if inf == -1:
  3033. return "-Infinity"
  3034. if self.is_zero():
  3035. if self._sign:
  3036. return "-Zero"
  3037. else:
  3038. return "+Zero"
  3039. if context is None:
  3040. context = getcontext()
  3041. if self.is_subnormal(context=context):
  3042. if self._sign:
  3043. return "-Subnormal"
  3044. else:
  3045. return "+Subnormal"
  3046. # just a normal, regular, boring number, :)
  3047. if self._sign:
  3048. return "-Normal"
  3049. else:
  3050. return "+Normal"
  3051. def radix(self):
  3052. """Just returns 10, as this is Decimal, :)"""
  3053. return Decimal(10)
  3054. def rotate(self, other, context=None):
  3055. """Returns a rotated copy of self, value-of-other times."""
  3056. if context is None:
  3057. context = getcontext()
  3058. other = _convert_other(other, raiseit=True)
  3059. ans = self._check_nans(other, context)
  3060. if ans:
  3061. return ans
  3062. if other._exp != 0:
  3063. return context._raise_error(InvalidOperation)
  3064. if not (-context.prec <= int(other) <= context.prec):
  3065. return context._raise_error(InvalidOperation)
  3066. if self._isinfinity():
  3067. return Decimal(self)
  3068. # get values, pad if necessary
  3069. torot = int(other)
  3070. rotdig = self._int
  3071. topad = context.prec - len(rotdig)
  3072. if topad > 0:
  3073. rotdig = '0'*topad + rotdig
  3074. elif topad < 0:
  3075. rotdig = rotdig[-topad:]
  3076. # let's rotate!
  3077. rotated = rotdig[torot:] + rotdig[:torot]
  3078. return _dec_from_triple(self._sign,
  3079. rotated.lstrip('0') or '0', self._exp)
  3080. def scaleb(self, other, context=None):
  3081. """Returns self operand after adding the second value to its exp."""
  3082. if context is None:
  3083. context = getcontext()
  3084. other = _convert_other(other, raiseit=True)
  3085. ans = self._check_nans(other, context)
  3086. if ans:
  3087. return ans
  3088. if other._exp != 0:
  3089. return context._raise_error(InvalidOperation)
  3090. liminf = -2 * (context.Emax + context.prec)
  3091. limsup = 2 * (context.Emax + context.prec)
  3092. if not (liminf <= int(other) <= limsup):
  3093. return context._raise_error(InvalidOperation)
  3094. if self._isinfinity():
  3095. return Decimal(self)
  3096. d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
  3097. d = d._fix(context)
  3098. return d
  3099. def shift(self, other, context=None):
  3100. """Returns a shifted copy of self, value-of-other times."""
  3101. if context is None:
  3102. context = getcontext()
  3103. other = _convert_other(other, raiseit=True)
  3104. ans = self._check_nans(other, context)
  3105. if ans:
  3106. return ans
  3107. if other._exp != 0:
  3108. return context._raise_error(InvalidOperation)
  3109. if not (-context.prec <= int(other) <= context.prec):
  3110. return context._raise_error(InvalidOperation)
  3111. if self._isinfinity():
  3112. return Decimal(self)
  3113. # get values, pad if necessary
  3114. torot = int(other)
  3115. rotdig = self._int
  3116. topad = context.prec - len(rotdig)
  3117. if topad > 0:
  3118. rotdig = '0'*topad + rotdig
  3119. elif topad < 0:
  3120. rotdig = rotdig[-topad:]
  3121. # let's shift!
  3122. if torot < 0:
  3123. shifted = rotdig[:torot]
  3124. else:
  3125. shifted = rotdig + '0'*torot
  3126. shifted = shifted[-context.prec:]
  3127. return _dec_from_triple(self._sign,
  3128. shifted.lstrip('0') or '0', self._exp)
  3129. # Support for pickling, copy, and deepcopy
  3130. def __reduce__(self):
  3131. return (self.__class__, (str(self),))
  3132. def __copy__(self):
  3133. if type(self) is Decimal:
  3134. return self # I'm immutable; therefore I am my own clone
  3135. return self.__class__(str(self))
  3136. def __deepcopy__(self, memo):
  3137. if type(self) is Decimal:
  3138. return self # My components are also immutable
  3139. return self.__class__(str(self))
  3140. # PEP 3101 support. the _localeconv keyword argument should be
  3141. # considered private: it's provided for ease of testing only.
  3142. def __format__(self, specifier, context=None, _localeconv=None):
  3143. """Format a Decimal instance according to the given specifier.
  3144. The specifier should be a standard format specifier, with the
  3145. form described in PEP 3101. Formatting types 'e', 'E', 'f',
  3146. 'F', 'g', 'G', 'n' and '%' are supported. If the formatting
  3147. type is omitted it defaults to 'g' or 'G', depending on the
  3148. value of context.capitals.
  3149. """
  3150. # Note: PEP 3101 says that if the type is not present then
  3151. # there should be at least one digit after the decimal point.
  3152. # We take the liberty of ignoring this requirement for
  3153. # Decimal---it's presumably there to make sure that
  3154. # format(float, '') behaves similarly to str(float).
  3155. if context is None:
  3156. context = getcontext()
  3157. spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
  3158. # special values don't care about the type or precision
  3159. if self._is_special:
  3160. sign = _format_sign(self._sign, spec)
  3161. body = str(self.copy_abs())
  3162. if spec['type'] == '%':
  3163. body += '%'
  3164. return _format_align(sign, body, spec)
  3165. # a type of None defaults to 'g' or 'G', depending on context
  3166. if spec['type'] is None:
  3167. spec['type'] = ['g', 'G'][context.capitals]
  3168. # if type is '%', adjust exponent of self accordingly
  3169. if spec['type'] == '%':
  3170. self = _dec_from_triple(self._sign, self._int, self._exp+2)
  3171. # round if necessary, taking rounding mode from the context
  3172. rounding = context.rounding
  3173. precision = spec['precision']
  3174. if precision is not None:
  3175. if spec['type'] in 'eE':
  3176. self = self._round(precision+1, rounding)
  3177. elif spec['type'] in 'fF%':
  3178. self = self._rescale(-precision, rounding)
  3179. elif spec['type'] in 'gG' and len(self._int) > precision:
  3180. self = self._round(precision, rounding)
  3181. # special case: zeros with a positive exponent can't be
  3182. # represented in fixed point; rescale them to 0e0.
  3183. if not self and self._exp > 0 and spec['type'] in 'fF%':
  3184. self = self._rescale(0, rounding)
  3185. # figure out placement of the decimal point
  3186. leftdigits = self._exp + len(self._int)
  3187. if spec['type'] in 'eE':
  3188. if not self and precision is not None:
  3189. dotplace = 1 - precision
  3190. else:
  3191. dotplace = 1
  3192. elif spec['type'] in 'fF%':
  3193. dotplace = leftdigits
  3194. elif spec['type'] in 'gG':
  3195. if self._exp <= 0 and leftdigits > -6:
  3196. dotplace = leftdigits
  3197. else:
  3198. dotplace = 1
  3199. # find digits before and after decimal point, and get exponent
  3200. if dotplace < 0:
  3201. intpart = '0'
  3202. fracpart = '0'*(-dotplace) + self._int
  3203. elif dotplace > len(self._int):
  3204. intpart = self._int + '0'*(dotplace-len(self._int))
  3205. fracpart = ''
  3206. else:
  3207. intpart = self._int[:dotplace] or '0'
  3208. fracpart = self._int[dotplace:]
  3209. exp = leftdigits-dotplace
  3210. # done with the decimal-specific stuff; hand over the rest
  3211. # of the formatting to the _format_number function
  3212. return _format_number(self._sign, intpart, fracpart, exp, spec)
  3213. def _dec_from_triple(sign, coefficient, exponent, special=False):
  3214. """Create a decimal instance directly, without any validation,
  3215. normalization (e.g. removal of leading zeros) or argument
  3216. conversion.
  3217. This function is for *internal use only*.
  3218. """
  3219. self = object.__new__(Decimal)
  3220. self._sign = sign
  3221. self._int = coefficient
  3222. self._exp = exponent
  3223. self._is_special = special
  3224. return self
  3225. # Register Decimal as a kind of Number (an abstract base class).
  3226. # However, do not register it as Real (because Decimals are not
  3227. # interoperable with floats).
  3228. _numbers.Number.register(Decimal)
  3229. ##### Context class #######################################################
  3230. class _ContextManager(object):
  3231. """Context manager class to support localcontext().
  3232. Sets a copy of the supplied context in __enter__() and restores
  3233. the previous decimal context in __exit__()
  3234. """
  3235. def __init__(self, new_context):
  3236. self.new_context = new_context.copy()
  3237. def __enter__(self):
  3238. self.saved_context = getcontext()
  3239. setcontext(self.new_context)
  3240. return self.new_context
  3241. def __exit__(self, t, v, tb):
  3242. setcontext(self.saved_context)
  3243. class Context(object):
  3244. """Contains the context for a Decimal instance.
  3245. Contains:
  3246. prec - precision (for use in rounding, division, square roots..)
  3247. rounding - rounding type (how you round)
  3248. traps - If traps[exception] = 1, then the exception is
  3249. raised when it is caused. Otherwise, a value is
  3250. substituted in.
  3251. flags - When an exception is caused, flags[exception] is set.
  3252. (Whether or not the trap_enabler is set)
  3253. Should be reset by user of Decimal instance.
  3254. Emin - Minimum exponent
  3255. Emax - Maximum exponent
  3256. capitals - If 1, 1*10^1 is printed as 1E+1.
  3257. If 0, printed as 1e1
  3258. clamp - If 1, change exponents if too high (Default 0)
  3259. """
  3260. def __init__(self, prec=None, rounding=None, Emin=None, Emax=None,
  3261. capitals=None, clamp=None, flags=None, traps=None,
  3262. _ignored_flags=None):
  3263. # Set defaults; for everything except flags and _ignored_flags,
  3264. # inherit from DefaultContext.
  3265. try:
  3266. dc = DefaultContext
  3267. except NameError:
  3268. pass
  3269. self.prec = prec if prec is not None else dc.prec
  3270. self.rounding = rounding if rounding is not None else dc.rounding
  3271. self.Emin = Emin if Emin is not None else dc.Emin
  3272. self.Emax = Emax if Emax is not None else dc.Emax
  3273. self.capitals = capitals if capitals is not None else dc.capitals
  3274. self.clamp = clamp if clamp is not None else dc.clamp
  3275. if _ignored_flags is None:
  3276. self._ignored_flags = []
  3277. else:
  3278. self._ignored_flags = _ignored_flags
  3279. if traps is None:
  3280. self.traps = dc.traps.copy()
  3281. elif not isinstance(traps, dict):
  3282. self.traps = dict((s, int(s in traps)) for s in _signals + traps)
  3283. else:
  3284. self.traps = traps
  3285. if flags is None:
  3286. self.flags = dict.fromkeys(_signals, 0)
  3287. elif not isinstance(flags, dict):
  3288. self.flags = dict((s, int(s in flags)) for s in _signals + flags)
  3289. else:
  3290. self.flags = flags
  3291. def _set_integer_check(self, name, value, vmin, vmax):
  3292. if not isinstance(value, int):
  3293. raise TypeError("%s must be an integer" % name)
  3294. if vmin == '-inf':
  3295. if value > vmax:
  3296. raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value))
  3297. elif vmax == 'inf':
  3298. if value < vmin:
  3299. raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value))
  3300. else:
  3301. if value < vmin or value > vmax:
  3302. raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value))
  3303. return object.__setattr__(self, name, value)
  3304. def _set_signal_dict(self, name, d):
  3305. if not isinstance(d, dict):
  3306. raise TypeError("%s must be a signal dict" % d)
  3307. for key in d:
  3308. if not key in _signals:
  3309. raise KeyError("%s is not a valid signal dict" % d)
  3310. for key in _signals:
  3311. if not key in d:
  3312. raise KeyError("%s is not a valid signal dict" % d)
  3313. return object.__setattr__(self, name, d)
  3314. def __setattr__(self, name, value):
  3315. if name == 'prec':
  3316. return self._set_integer_check(name, value, 1, 'inf')
  3317. elif name == 'Emin':
  3318. return self._set_integer_check(name, value, '-inf', 0)
  3319. elif name == 'Emax':
  3320. return self._set_integer_check(name, value, 0, 'inf')
  3321. elif name == 'capitals':
  3322. return self._set_integer_check(name, value, 0, 1)
  3323. elif name == 'clamp':
  3324. return self._set_integer_check(name, value, 0, 1)
  3325. elif name == 'rounding':
  3326. if not value in _rounding_modes:
  3327. # raise TypeError even for strings to have consistency
  3328. # among various implementations.
  3329. raise TypeError("%s: invalid rounding mode" % value)
  3330. return object.__setattr__(self, name, value)
  3331. elif name == 'flags' or name == 'traps':
  3332. return self._set_signal_dict(name, value)
  3333. elif name == '_ignored_flags':
  3334. return object.__setattr__(self, name, value)
  3335. else:
  3336. raise AttributeError(
  3337. "'decimal.Context' object has no attribute '%s'" % name)
  3338. def __delattr__(self, name):
  3339. raise AttributeError("%s cannot be deleted" % name)
  3340. # Support for pickling, copy, and deepcopy
  3341. def __reduce__(self):
  3342. flags = [sig for sig, v in self.flags.items() if v]
  3343. traps = [sig for sig, v in self.traps.items() if v]
  3344. return (self.__class__,
  3345. (self.prec, self.rounding, self.Emin, self.Emax,
  3346. self.capitals, self.clamp, flags, traps))
  3347. def __repr__(self):
  3348. """Show the current context."""
  3349. s = []
  3350. s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
  3351. 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, '
  3352. 'clamp=%(clamp)d'
  3353. % vars(self))
  3354. names = [f.__name__ for f, v in self.flags.items() if v]
  3355. s.append('flags=[' + ', '.join(names) + ']')
  3356. names = [t.__name__ for t, v in self.traps.items() if v]
  3357. s.append('traps=[' + ', '.join(names) + ']')
  3358. return ', '.join(s) + ')'
  3359. def clear_flags(self):
  3360. """Reset all flags to zero"""
  3361. for flag in self.flags:
  3362. self.flags[flag] = 0
  3363. def clear_traps(self):
  3364. """Reset all traps to zero"""
  3365. for flag in self.traps:
  3366. self.traps[flag] = 0
  3367. def _shallow_copy(self):
  3368. """Returns a shallow copy from self."""
  3369. nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
  3370. self.capitals, self.clamp, self.flags, self.traps,
  3371. self._ignored_flags)
  3372. return nc
  3373. def copy(self):
  3374. """Returns a deep copy from self."""
  3375. nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
  3376. self.capitals, self.clamp,
  3377. self.flags.copy(), self.traps.copy(),
  3378. self._ignored_flags)
  3379. return nc
  3380. __copy__ = copy
  3381. def _raise_error(self, condition, explanation = None, *args):
  3382. """Handles an error
  3383. If the flag is in _ignored_flags, returns the default response.
  3384. Otherwise, it sets the flag, then, if the corresponding
  3385. trap_enabler is set, it reraises the exception. Otherwise, it returns
  3386. the default value after setting the flag.
  3387. """
  3388. error = _condition_map.get(condition, condition)
  3389. if error in self._ignored_flags:
  3390. # Don't touch the flag
  3391. return error().handle(self, *args)
  3392. self.flags[error] = 1
  3393. if not self.traps[error]:
  3394. # The errors define how to handle themselves.
  3395. return condition().handle(self, *args)
  3396. # Errors should only be risked on copies of the context
  3397. # self._ignored_flags = []
  3398. raise error(explanation)
  3399. def _ignore_all_flags(self):
  3400. """Ignore all flags, if they are raised"""
  3401. return self._ignore_flags(*_signals)
  3402. def _ignore_flags(self, *flags):
  3403. """Ignore the flags, if they are raised"""
  3404. # Do not mutate-- This way, copies of a context leave the original
  3405. # alone.
  3406. self._ignored_flags = (self._ignored_flags + list(flags))
  3407. return list(flags)
  3408. def _regard_flags(self, *flags):
  3409. """Stop ignoring the flags, if they are raised"""
  3410. if flags and isinstance(flags[0], (tuple,list)):
  3411. flags = flags[0]
  3412. for flag in flags:
  3413. self._ignored_flags.remove(flag)
  3414. # We inherit object.__hash__, so we must deny this explicitly
  3415. __hash__ = None
  3416. def Etiny(self):
  3417. """Returns Etiny (= Emin - prec + 1)"""
  3418. return int(self.Emin - self.prec + 1)
  3419. def Etop(self):
  3420. """Returns maximum exponent (= Emax - prec + 1)"""
  3421. return int(self.Emax - self.prec + 1)
  3422. def _set_rounding(self, type):
  3423. """Sets the rounding type.
  3424. Sets the rounding type, and returns the current (previous)
  3425. rounding type. Often used like:
  3426. context = context.copy()
  3427. # so you don't change the calling context
  3428. # if an error occurs in the middle.
  3429. rounding = context._set_rounding(ROUND_UP)
  3430. val = self.__sub__(other, context=context)
  3431. context._set_rounding(rounding)
  3432. This will make it round up for that operation.
  3433. """
  3434. rounding = self.rounding
  3435. self.rounding= type
  3436. return rounding
  3437. def create_decimal(self, num='0'):
  3438. """Creates a new Decimal instance but using self as context.
  3439. This method implements the to-number operation of the
  3440. IBM Decimal specification."""
  3441. if isinstance(num, str) and num != num.strip():
  3442. return self._raise_error(ConversionSyntax,
  3443. "no trailing or leading whitespace is "
  3444. "permitted.")
  3445. d = Decimal(num, context=self)
  3446. if d._isnan() and len(d._int) > self.prec - self.clamp:
  3447. return self._raise_error(ConversionSyntax,
  3448. "diagnostic info too long in NaN")
  3449. return d._fix(self)
  3450. def create_decimal_from_float(self, f):
  3451. """Creates a new Decimal instance from a float but rounding using self
  3452. as the context.
  3453. >>> context = Context(prec=5, rounding=ROUND_DOWN)
  3454. >>> context.create_decimal_from_float(3.1415926535897932)
  3455. Decimal('3.1415')
  3456. >>> context = Context(prec=5, traps=[Inexact])
  3457. >>> context.create_decimal_from_float(3.1415926535897932)
  3458. Traceback (most recent call last):
  3459. ...
  3460. decimal.Inexact
  3461. """
  3462. d = Decimal.from_float(f) # An exact conversion
  3463. return d._fix(self) # Apply the context rounding
  3464. # Methods
  3465. def abs(self, a):
  3466. """Returns the absolute value of the operand.
  3467. If the operand is negative, the result is the same as using the minus
  3468. operation on the operand. Otherwise, the result is the same as using
  3469. the plus operation on the operand.
  3470. >>> ExtendedContext.abs(Decimal('2.1'))
  3471. Decimal('2.1')
  3472. >>> ExtendedContext.abs(Decimal('-100'))
  3473. Decimal('100')
  3474. >>> ExtendedContext.abs(Decimal('101.5'))
  3475. Decimal('101.5')
  3476. >>> ExtendedContext.abs(Decimal('-101.5'))
  3477. Decimal('101.5')
  3478. >>> ExtendedContext.abs(-1)
  3479. Decimal('1')
  3480. """
  3481. a = _convert_other(a, raiseit=True)
  3482. return a.__abs__(context=self)
  3483. def add(self, a, b):
  3484. """Return the sum of the two operands.
  3485. >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
  3486. Decimal('19.00')
  3487. >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
  3488. Decimal('1.02E+4')
  3489. >>> ExtendedContext.add(1, Decimal(2))
  3490. Decimal('3')
  3491. >>> ExtendedContext.add(Decimal(8), 5)
  3492. Decimal('13')
  3493. >>> ExtendedContext.add(5, 5)
  3494. Decimal('10')
  3495. """
  3496. a = _convert_other(a, raiseit=True)
  3497. r = a.__add__(b, context=self)
  3498. if r is NotImplemented:
  3499. raise TypeError("Unable to convert %s to Decimal" % b)
  3500. else:
  3501. return r
  3502. def _apply(self, a):
  3503. return str(a._fix(self))
  3504. def canonical(self, a):
  3505. """Returns the same Decimal object.
  3506. As we do not have different encodings for the same number, the
  3507. received object already is in its canonical form.
  3508. >>> ExtendedContext.canonical(Decimal('2.50'))
  3509. Decimal('2.50')
  3510. """
  3511. if not isinstance(a, Decimal):
  3512. raise TypeError("canonical requires a Decimal as an argument.")
  3513. return a.canonical()
  3514. def compare(self, a, b):
  3515. """Compares values numerically.
  3516. If the signs of the operands differ, a value representing each operand
  3517. ('-1' if the operand is less than zero, '0' if the operand is zero or
  3518. negative zero, or '1' if the operand is greater than zero) is used in
  3519. place of that operand for the comparison instead of the actual
  3520. operand.
  3521. The comparison is then effected by subtracting the second operand from
  3522. the first and then returning a value according to the result of the
  3523. subtraction: '-1' if the result is less than zero, '0' if the result is
  3524. zero or negative zero, or '1' if the result is greater than zero.
  3525. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
  3526. Decimal('-1')
  3527. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
  3528. Decimal('0')
  3529. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
  3530. Decimal('0')
  3531. >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
  3532. Decimal('1')
  3533. >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
  3534. Decimal('1')
  3535. >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
  3536. Decimal('-1')
  3537. >>> ExtendedContext.compare(1, 2)
  3538. Decimal('-1')
  3539. >>> ExtendedContext.compare(Decimal(1), 2)
  3540. Decimal('-1')
  3541. >>> ExtendedContext.compare(1, Decimal(2))
  3542. Decimal('-1')
  3543. """
  3544. a = _convert_other(a, raiseit=True)
  3545. return a.compare(b, context=self)
  3546. def compare_signal(self, a, b):
  3547. """Compares the values of the two operands numerically.
  3548. It's pretty much like compare(), but all NaNs signal, with signaling
  3549. NaNs taking precedence over quiet NaNs.
  3550. >>> c = ExtendedContext
  3551. >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
  3552. Decimal('-1')
  3553. >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
  3554. Decimal('0')
  3555. >>> c.flags[InvalidOperation] = 0
  3556. >>> print(c.flags[InvalidOperation])
  3557. 0
  3558. >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
  3559. Decimal('NaN')
  3560. >>> print(c.flags[InvalidOperation])
  3561. 1
  3562. >>> c.flags[InvalidOperation] = 0
  3563. >>> print(c.flags[InvalidOperation])
  3564. 0
  3565. >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
  3566. Decimal('NaN')
  3567. >>> print(c.flags[InvalidOperation])
  3568. 1
  3569. >>> c.compare_signal(-1, 2)
  3570. Decimal('-1')
  3571. >>> c.compare_signal(Decimal(-1), 2)
  3572. Decimal('-1')
  3573. >>> c.compare_signal(-1, Decimal(2))
  3574. Decimal('-1')
  3575. """
  3576. a = _convert_other(a, raiseit=True)
  3577. return a.compare_signal(b, context=self)
  3578. def compare_total(self, a, b):
  3579. """Compares two operands using their abstract representation.
  3580. This is not like the standard compare, which use their numerical
  3581. value. Note that a total ordering is defined for all possible abstract
  3582. representations.
  3583. >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
  3584. Decimal('-1')
  3585. >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
  3586. Decimal('-1')
  3587. >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
  3588. Decimal('-1')
  3589. >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
  3590. Decimal('0')
  3591. >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
  3592. Decimal('1')
  3593. >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
  3594. Decimal('-1')
  3595. >>> ExtendedContext.compare_total(1, 2)
  3596. Decimal('-1')
  3597. >>> ExtendedContext.compare_total(Decimal(1), 2)
  3598. Decimal('-1')
  3599. >>> ExtendedContext.compare_total(1, Decimal(2))
  3600. Decimal('-1')
  3601. """
  3602. a = _convert_other(a, raiseit=True)
  3603. return a.compare_total(b)
  3604. def compare_total_mag(self, a, b):
  3605. """Compares two operands using their abstract representation ignoring sign.
  3606. Like compare_total, but with operand's sign ignored and assumed to be 0.
  3607. """
  3608. a = _convert_other(a, raiseit=True)
  3609. return a.compare_total_mag(b)
  3610. def copy_abs(self, a):
  3611. """Returns a copy of the operand with the sign set to 0.
  3612. >>> ExtendedContext.copy_abs(Decimal('2.1'))
  3613. Decimal('2.1')
  3614. >>> ExtendedContext.copy_abs(Decimal('-100'))
  3615. Decimal('100')
  3616. >>> ExtendedContext.copy_abs(-1)
  3617. Decimal('1')
  3618. """
  3619. a = _convert_other(a, raiseit=True)
  3620. return a.copy_abs()
  3621. def copy_decimal(self, a):
  3622. """Returns a copy of the decimal object.
  3623. >>> ExtendedContext.copy_decimal(Decimal('2.1'))
  3624. Decimal('2.1')
  3625. >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
  3626. Decimal('-1.00')
  3627. >>> ExtendedContext.copy_decimal(1)
  3628. Decimal('1')
  3629. """
  3630. a = _convert_other(a, raiseit=True)
  3631. return Decimal(a)
  3632. def copy_negate(self, a):
  3633. """Returns a copy of the operand with the sign inverted.
  3634. >>> ExtendedContext.copy_negate(Decimal('101.5'))
  3635. Decimal('-101.5')
  3636. >>> ExtendedContext.copy_negate(Decimal('-101.5'))
  3637. Decimal('101.5')
  3638. >>> ExtendedContext.copy_negate(1)
  3639. Decimal('-1')
  3640. """
  3641. a = _convert_other(a, raiseit=True)
  3642. return a.copy_negate()
  3643. def copy_sign(self, a, b):
  3644. """Copies the second operand's sign to the first one.
  3645. In detail, it returns a copy of the first operand with the sign
  3646. equal to the sign of the second operand.
  3647. >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
  3648. Decimal('1.50')
  3649. >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
  3650. Decimal('1.50')
  3651. >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
  3652. Decimal('-1.50')
  3653. >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
  3654. Decimal('-1.50')
  3655. >>> ExtendedContext.copy_sign(1, -2)
  3656. Decimal('-1')
  3657. >>> ExtendedContext.copy_sign(Decimal(1), -2)
  3658. Decimal('-1')
  3659. >>> ExtendedContext.copy_sign(1, Decimal(-2))
  3660. Decimal('-1')
  3661. """
  3662. a = _convert_other(a, raiseit=True)
  3663. return a.copy_sign(b)
  3664. def divide(self, a, b):
  3665. """Decimal division in a specified context.
  3666. >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
  3667. Decimal('0.333333333')
  3668. >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
  3669. Decimal('0.666666667')
  3670. >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
  3671. Decimal('2.5')
  3672. >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
  3673. Decimal('0.1')
  3674. >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
  3675. Decimal('1')
  3676. >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
  3677. Decimal('4.00')
  3678. >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
  3679. Decimal('1.20')
  3680. >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
  3681. Decimal('10')
  3682. >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
  3683. Decimal('1000')
  3684. >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
  3685. Decimal('1.20E+6')
  3686. >>> ExtendedContext.divide(5, 5)
  3687. Decimal('1')
  3688. >>> ExtendedContext.divide(Decimal(5), 5)
  3689. Decimal('1')
  3690. >>> ExtendedContext.divide(5, Decimal(5))
  3691. Decimal('1')
  3692. """
  3693. a = _convert_other(a, raiseit=True)
  3694. r = a.__truediv__(b, context=self)
  3695. if r is NotImplemented:
  3696. raise TypeError("Unable to convert %s to Decimal" % b)
  3697. else:
  3698. return r
  3699. def divide_int(self, a, b):
  3700. """Divides two numbers and returns the integer part of the result.
  3701. >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
  3702. Decimal('0')
  3703. >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
  3704. Decimal('3')
  3705. >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
  3706. Decimal('3')
  3707. >>> ExtendedContext.divide_int(10, 3)
  3708. Decimal('3')
  3709. >>> ExtendedContext.divide_int(Decimal(10), 3)
  3710. Decimal('3')
  3711. >>> ExtendedContext.divide_int(10, Decimal(3))
  3712. Decimal('3')
  3713. """
  3714. a = _convert_other(a, raiseit=True)
  3715. r = a.__floordiv__(b, context=self)
  3716. if r is NotImplemented:
  3717. raise TypeError("Unable to convert %s to Decimal" % b)
  3718. else:
  3719. return r
  3720. def divmod(self, a, b):
  3721. """Return (a // b, a % b).
  3722. >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
  3723. (Decimal('2'), Decimal('2'))
  3724. >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
  3725. (Decimal('2'), Decimal('0'))
  3726. >>> ExtendedContext.divmod(8, 4)
  3727. (Decimal('2'), Decimal('0'))
  3728. >>> ExtendedContext.divmod(Decimal(8), 4)
  3729. (Decimal('2'), Decimal('0'))
  3730. >>> ExtendedContext.divmod(8, Decimal(4))
  3731. (Decimal('2'), Decimal('0'))
  3732. """
  3733. a = _convert_other(a, raiseit=True)
  3734. r = a.__divmod__(b, context=self)
  3735. if r is NotImplemented:
  3736. raise TypeError("Unable to convert %s to Decimal" % b)
  3737. else:
  3738. return r
  3739. def exp(self, a):
  3740. """Returns e ** a.
  3741. >>> c = ExtendedContext.copy()
  3742. >>> c.Emin = -999
  3743. >>> c.Emax = 999
  3744. >>> c.exp(Decimal('-Infinity'))
  3745. Decimal('0')
  3746. >>> c.exp(Decimal('-1'))
  3747. Decimal('0.367879441')
  3748. >>> c.exp(Decimal('0'))
  3749. Decimal('1')
  3750. >>> c.exp(Decimal('1'))
  3751. Decimal('2.71828183')
  3752. >>> c.exp(Decimal('0.693147181'))
  3753. Decimal('2.00000000')
  3754. >>> c.exp(Decimal('+Infinity'))
  3755. Decimal('Infinity')
  3756. >>> c.exp(10)
  3757. Decimal('22026.4658')
  3758. """
  3759. a =_convert_other(a, raiseit=True)
  3760. return a.exp(context=self)
  3761. def fma(self, a, b, c):
  3762. """Returns a multiplied by b, plus c.
  3763. The first two operands are multiplied together, using multiply,
  3764. the third operand is then added to the result of that
  3765. multiplication, using add, all with only one final rounding.
  3766. >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
  3767. Decimal('22')
  3768. >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
  3769. Decimal('-8')
  3770. >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
  3771. Decimal('1.38435736E+12')
  3772. >>> ExtendedContext.fma(1, 3, 4)
  3773. Decimal('7')
  3774. >>> ExtendedContext.fma(1, Decimal(3), 4)
  3775. Decimal('7')
  3776. >>> ExtendedContext.fma(1, 3, Decimal(4))
  3777. Decimal('7')
  3778. """
  3779. a = _convert_other(a, raiseit=True)
  3780. return a.fma(b, c, context=self)
  3781. def is_canonical(self, a):
  3782. """Return True if the operand is canonical; otherwise return False.
  3783. Currently, the encoding of a Decimal instance is always
  3784. canonical, so this method returns True for any Decimal.
  3785. >>> ExtendedContext.is_canonical(Decimal('2.50'))
  3786. True
  3787. """
  3788. if not isinstance(a, Decimal):
  3789. raise TypeError("is_canonical requires a Decimal as an argument.")
  3790. return a.is_canonical()
  3791. def is_finite(self, a):
  3792. """Return True if the operand is finite; otherwise return False.
  3793. A Decimal instance is considered finite if it is neither
  3794. infinite nor a NaN.
  3795. >>> ExtendedContext.is_finite(Decimal('2.50'))
  3796. True
  3797. >>> ExtendedContext.is_finite(Decimal('-0.3'))
  3798. True
  3799. >>> ExtendedContext.is_finite(Decimal('0'))
  3800. True
  3801. >>> ExtendedContext.is_finite(Decimal('Inf'))
  3802. False
  3803. >>> ExtendedContext.is_finite(Decimal('NaN'))
  3804. False
  3805. >>> ExtendedContext.is_finite(1)
  3806. True
  3807. """
  3808. a = _convert_other(a, raiseit=True)
  3809. return a.is_finite()
  3810. def is_infinite(self, a):
  3811. """Return True if the operand is infinite; otherwise return False.
  3812. >>> ExtendedContext.is_infinite(Decimal('2.50'))
  3813. False
  3814. >>> ExtendedContext.is_infinite(Decimal('-Inf'))
  3815. True
  3816. >>> ExtendedContext.is_infinite(Decimal('NaN'))
  3817. False
  3818. >>> ExtendedContext.is_infinite(1)
  3819. False
  3820. """
  3821. a = _convert_other(a, raiseit=True)
  3822. return a.is_infinite()
  3823. def is_nan(self, a):
  3824. """Return True if the operand is a qNaN or sNaN;
  3825. otherwise return False.
  3826. >>> ExtendedContext.is_nan(Decimal('2.50'))
  3827. False
  3828. >>> ExtendedContext.is_nan(Decimal('NaN'))
  3829. True
  3830. >>> ExtendedContext.is_nan(Decimal('-sNaN'))
  3831. True
  3832. >>> ExtendedContext.is_nan(1)
  3833. False
  3834. """
  3835. a = _convert_other(a, raiseit=True)
  3836. return a.is_nan()
  3837. def is_normal(self, a):
  3838. """Return True if the operand is a normal number;
  3839. otherwise return False.
  3840. >>> c = ExtendedContext.copy()
  3841. >>> c.Emin = -999
  3842. >>> c.Emax = 999
  3843. >>> c.is_normal(Decimal('2.50'))
  3844. True
  3845. >>> c.is_normal(Decimal('0.1E-999'))
  3846. False
  3847. >>> c.is_normal(Decimal('0.00'))
  3848. False
  3849. >>> c.is_normal(Decimal('-Inf'))
  3850. False
  3851. >>> c.is_normal(Decimal('NaN'))
  3852. False
  3853. >>> c.is_normal(1)
  3854. True
  3855. """
  3856. a = _convert_other(a, raiseit=True)
  3857. return a.is_normal(context=self)
  3858. def is_qnan(self, a):
  3859. """Return True if the operand is a quiet NaN; otherwise return False.
  3860. >>> ExtendedContext.is_qnan(Decimal('2.50'))
  3861. False
  3862. >>> ExtendedContext.is_qnan(Decimal('NaN'))
  3863. True
  3864. >>> ExtendedContext.is_qnan(Decimal('sNaN'))
  3865. False
  3866. >>> ExtendedContext.is_qnan(1)
  3867. False
  3868. """
  3869. a = _convert_other(a, raiseit=True)
  3870. return a.is_qnan()
  3871. def is_signed(self, a):
  3872. """Return True if the operand is negative; otherwise return False.
  3873. >>> ExtendedContext.is_signed(Decimal('2.50'))
  3874. False
  3875. >>> ExtendedContext.is_signed(Decimal('-12'))
  3876. True
  3877. >>> ExtendedContext.is_signed(Decimal('-0'))
  3878. True
  3879. >>> ExtendedContext.is_signed(8)
  3880. False
  3881. >>> ExtendedContext.is_signed(-8)
  3882. True
  3883. """
  3884. a = _convert_other(a, raiseit=True)
  3885. return a.is_signed()
  3886. def is_snan(self, a):
  3887. """Return True if the operand is a signaling NaN;
  3888. otherwise return False.
  3889. >>> ExtendedContext.is_snan(Decimal('2.50'))
  3890. False
  3891. >>> ExtendedContext.is_snan(Decimal('NaN'))
  3892. False
  3893. >>> ExtendedContext.is_snan(Decimal('sNaN'))
  3894. True
  3895. >>> ExtendedContext.is_snan(1)
  3896. False
  3897. """
  3898. a = _convert_other(a, raiseit=True)
  3899. return a.is_snan()
  3900. def is_subnormal(self, a):
  3901. """Return True if the operand is subnormal; otherwise return False.
  3902. >>> c = ExtendedContext.copy()
  3903. >>> c.Emin = -999
  3904. >>> c.Emax = 999
  3905. >>> c.is_subnormal(Decimal('2.50'))
  3906. False
  3907. >>> c.is_subnormal(Decimal('0.1E-999'))
  3908. True
  3909. >>> c.is_subnormal(Decimal('0.00'))
  3910. False
  3911. >>> c.is_subnormal(Decimal('-Inf'))
  3912. False
  3913. >>> c.is_subnormal(Decimal('NaN'))
  3914. False
  3915. >>> c.is_subnormal(1)
  3916. False
  3917. """
  3918. a = _convert_other(a, raiseit=True)
  3919. return a.is_subnormal(context=self)
  3920. def is_zero(self, a):
  3921. """Return True if the operand is a zero; otherwise return False.
  3922. >>> ExtendedContext.is_zero(Decimal('0'))
  3923. True
  3924. >>> ExtendedContext.is_zero(Decimal('2.50'))
  3925. False
  3926. >>> ExtendedContext.is_zero(Decimal('-0E+2'))
  3927. True
  3928. >>> ExtendedContext.is_zero(1)
  3929. False
  3930. >>> ExtendedContext.is_zero(0)
  3931. True
  3932. """
  3933. a = _convert_other(a, raiseit=True)
  3934. return a.is_zero()
  3935. def ln(self, a):
  3936. """Returns the natural (base e) logarithm of the operand.
  3937. >>> c = ExtendedContext.copy()
  3938. >>> c.Emin = -999
  3939. >>> c.Emax = 999
  3940. >>> c.ln(Decimal('0'))
  3941. Decimal('-Infinity')
  3942. >>> c.ln(Decimal('1.000'))
  3943. Decimal('0')
  3944. >>> c.ln(Decimal('2.71828183'))
  3945. Decimal('1.00000000')
  3946. >>> c.ln(Decimal('10'))
  3947. Decimal('2.30258509')
  3948. >>> c.ln(Decimal('+Infinity'))
  3949. Decimal('Infinity')
  3950. >>> c.ln(1)
  3951. Decimal('0')
  3952. """
  3953. a = _convert_other(a, raiseit=True)
  3954. return a.ln(context=self)
  3955. def log10(self, a):
  3956. """Returns the base 10 logarithm of the operand.
  3957. >>> c = ExtendedContext.copy()
  3958. >>> c.Emin = -999
  3959. >>> c.Emax = 999
  3960. >>> c.log10(Decimal('0'))
  3961. Decimal('-Infinity')
  3962. >>> c.log10(Decimal('0.001'))
  3963. Decimal('-3')
  3964. >>> c.log10(Decimal('1.000'))
  3965. Decimal('0')
  3966. >>> c.log10(Decimal('2'))
  3967. Decimal('0.301029996')
  3968. >>> c.log10(Decimal('10'))
  3969. Decimal('1')
  3970. >>> c.log10(Decimal('70'))
  3971. Decimal('1.84509804')
  3972. >>> c.log10(Decimal('+Infinity'))
  3973. Decimal('Infinity')
  3974. >>> c.log10(0)
  3975. Decimal('-Infinity')
  3976. >>> c.log10(1)
  3977. Decimal('0')
  3978. """
  3979. a = _convert_other(a, raiseit=True)
  3980. return a.log10(context=self)
  3981. def logb(self, a):
  3982. """ Returns the exponent of the magnitude of the operand's MSD.
  3983. The result is the integer which is the exponent of the magnitude
  3984. of the most significant digit of the operand (as though the
  3985. operand were truncated to a single digit while maintaining the
  3986. value of that digit and without limiting the resulting exponent).
  3987. >>> ExtendedContext.logb(Decimal('250'))
  3988. Decimal('2')
  3989. >>> ExtendedContext.logb(Decimal('2.50'))
  3990. Decimal('0')
  3991. >>> ExtendedContext.logb(Decimal('0.03'))
  3992. Decimal('-2')
  3993. >>> ExtendedContext.logb(Decimal('0'))
  3994. Decimal('-Infinity')
  3995. >>> ExtendedContext.logb(1)
  3996. Decimal('0')
  3997. >>> ExtendedContext.logb(10)
  3998. Decimal('1')
  3999. >>> ExtendedContext.logb(100)
  4000. Decimal('2')
  4001. """
  4002. a = _convert_other(a, raiseit=True)
  4003. return a.logb(context=self)
  4004. def logical_and(self, a, b):
  4005. """Applies the logical operation 'and' between each operand's digits.
  4006. The operands must be both logical numbers.
  4007. >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
  4008. Decimal('0')
  4009. >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
  4010. Decimal('0')
  4011. >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
  4012. Decimal('0')
  4013. >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
  4014. Decimal('1')
  4015. >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
  4016. Decimal('1000')
  4017. >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
  4018. Decimal('10')
  4019. >>> ExtendedContext.logical_and(110, 1101)
  4020. Decimal('100')
  4021. >>> ExtendedContext.logical_and(Decimal(110), 1101)
  4022. Decimal('100')
  4023. >>> ExtendedContext.logical_and(110, Decimal(1101))
  4024. Decimal('100')
  4025. """
  4026. a = _convert_other(a, raiseit=True)
  4027. return a.logical_and(b, context=self)
  4028. def logical_invert(self, a):
  4029. """Invert all the digits in the operand.
  4030. The operand must be a logical number.
  4031. >>> ExtendedContext.logical_invert(Decimal('0'))
  4032. Decimal('111111111')
  4033. >>> ExtendedContext.logical_invert(Decimal('1'))
  4034. Decimal('111111110')
  4035. >>> ExtendedContext.logical_invert(Decimal('111111111'))
  4036. Decimal('0')
  4037. >>> ExtendedContext.logical_invert(Decimal('101010101'))
  4038. Decimal('10101010')
  4039. >>> ExtendedContext.logical_invert(1101)
  4040. Decimal('111110010')
  4041. """
  4042. a = _convert_other(a, raiseit=True)
  4043. return a.logical_invert(context=self)
  4044. def logical_or(self, a, b):
  4045. """Applies the logical operation 'or' between each operand's digits.
  4046. The operands must be both logical numbers.
  4047. >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
  4048. Decimal('0')
  4049. >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
  4050. Decimal('1')
  4051. >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
  4052. Decimal('1')
  4053. >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
  4054. Decimal('1')
  4055. >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
  4056. Decimal('1110')
  4057. >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
  4058. Decimal('1110')
  4059. >>> ExtendedContext.logical_or(110, 1101)
  4060. Decimal('1111')
  4061. >>> ExtendedContext.logical_or(Decimal(110), 1101)
  4062. Decimal('1111')
  4063. >>> ExtendedContext.logical_or(110, Decimal(1101))
  4064. Decimal('1111')
  4065. """
  4066. a = _convert_other(a, raiseit=True)
  4067. return a.logical_or(b, context=self)
  4068. def logical_xor(self, a, b):
  4069. """Applies the logical operation 'xor' between each operand's digits.
  4070. The operands must be both logical numbers.
  4071. >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
  4072. Decimal('0')
  4073. >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
  4074. Decimal('1')
  4075. >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
  4076. Decimal('1')
  4077. >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
  4078. Decimal('0')
  4079. >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
  4080. Decimal('110')
  4081. >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
  4082. Decimal('1101')
  4083. >>> ExtendedContext.logical_xor(110, 1101)
  4084. Decimal('1011')
  4085. >>> ExtendedContext.logical_xor(Decimal(110), 1101)
  4086. Decimal('1011')
  4087. >>> ExtendedContext.logical_xor(110, Decimal(1101))
  4088. Decimal('1011')
  4089. """
  4090. a = _convert_other(a, raiseit=True)
  4091. return a.logical_xor(b, context=self)
  4092. def max(self, a, b):
  4093. """max compares two values numerically and returns the maximum.
  4094. If either operand is a NaN then the general rules apply.
  4095. Otherwise, the operands are compared as though by the compare
  4096. operation. If they are numerically equal then the left-hand operand
  4097. is chosen as the result. Otherwise the maximum (closer to positive
  4098. infinity) of the two operands is chosen as the result.
  4099. >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
  4100. Decimal('3')
  4101. >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
  4102. Decimal('3')
  4103. >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
  4104. Decimal('1')
  4105. >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
  4106. Decimal('7')
  4107. >>> ExtendedContext.max(1, 2)
  4108. Decimal('2')
  4109. >>> ExtendedContext.max(Decimal(1), 2)
  4110. Decimal('2')
  4111. >>> ExtendedContext.max(1, Decimal(2))
  4112. Decimal('2')
  4113. """
  4114. a = _convert_other(a, raiseit=True)
  4115. return a.max(b, context=self)
  4116. def max_mag(self, a, b):
  4117. """Compares the values numerically with their sign ignored.
  4118. >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
  4119. Decimal('7')
  4120. >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
  4121. Decimal('-10')
  4122. >>> ExtendedContext.max_mag(1, -2)
  4123. Decimal('-2')
  4124. >>> ExtendedContext.max_mag(Decimal(1), -2)
  4125. Decimal('-2')
  4126. >>> ExtendedContext.max_mag(1, Decimal(-2))
  4127. Decimal('-2')
  4128. """
  4129. a = _convert_other(a, raiseit=True)
  4130. return a.max_mag(b, context=self)
  4131. def min(self, a, b):
  4132. """min compares two values numerically and returns the minimum.
  4133. If either operand is a NaN then the general rules apply.
  4134. Otherwise, the operands are compared as though by the compare
  4135. operation. If they are numerically equal then the left-hand operand
  4136. is chosen as the result. Otherwise the minimum (closer to negative
  4137. infinity) of the two operands is chosen as the result.
  4138. >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
  4139. Decimal('2')
  4140. >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
  4141. Decimal('-10')
  4142. >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
  4143. Decimal('1.0')
  4144. >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
  4145. Decimal('7')
  4146. >>> ExtendedContext.min(1, 2)
  4147. Decimal('1')
  4148. >>> ExtendedContext.min(Decimal(1), 2)
  4149. Decimal('1')
  4150. >>> ExtendedContext.min(1, Decimal(29))
  4151. Decimal('1')
  4152. """
  4153. a = _convert_other(a, raiseit=True)
  4154. return a.min(b, context=self)
  4155. def min_mag(self, a, b):
  4156. """Compares the values numerically with their sign ignored.
  4157. >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
  4158. Decimal('-2')
  4159. >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
  4160. Decimal('-3')
  4161. >>> ExtendedContext.min_mag(1, -2)
  4162. Decimal('1')
  4163. >>> ExtendedContext.min_mag(Decimal(1), -2)
  4164. Decimal('1')
  4165. >>> ExtendedContext.min_mag(1, Decimal(-2))
  4166. Decimal('1')
  4167. """
  4168. a = _convert_other(a, raiseit=True)
  4169. return a.min_mag(b, context=self)
  4170. def minus(self, a):
  4171. """Minus corresponds to unary prefix minus in Python.
  4172. The operation is evaluated using the same rules as subtract; the
  4173. operation minus(a) is calculated as subtract('0', a) where the '0'
  4174. has the same exponent as the operand.
  4175. >>> ExtendedContext.minus(Decimal('1.3'))
  4176. Decimal('-1.3')
  4177. >>> ExtendedContext.minus(Decimal('-1.3'))
  4178. Decimal('1.3')
  4179. >>> ExtendedContext.minus(1)
  4180. Decimal('-1')
  4181. """
  4182. a = _convert_other(a, raiseit=True)
  4183. return a.__neg__(context=self)
  4184. def multiply(self, a, b):
  4185. """multiply multiplies two operands.
  4186. If either operand is a special value then the general rules apply.
  4187. Otherwise, the operands are multiplied together
  4188. ('long multiplication'), resulting in a number which may be as long as
  4189. the sum of the lengths of the two operands.
  4190. >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
  4191. Decimal('3.60')
  4192. >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
  4193. Decimal('21')
  4194. >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
  4195. Decimal('0.72')
  4196. >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
  4197. Decimal('-0.0')
  4198. >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
  4199. Decimal('4.28135971E+11')
  4200. >>> ExtendedContext.multiply(7, 7)
  4201. Decimal('49')
  4202. >>> ExtendedContext.multiply(Decimal(7), 7)
  4203. Decimal('49')
  4204. >>> ExtendedContext.multiply(7, Decimal(7))
  4205. Decimal('49')
  4206. """
  4207. a = _convert_other(a, raiseit=True)
  4208. r = a.__mul__(b, context=self)
  4209. if r is NotImplemented:
  4210. raise TypeError("Unable to convert %s to Decimal" % b)
  4211. else:
  4212. return r
  4213. def next_minus(self, a):
  4214. """Returns the largest representable number smaller than a.
  4215. >>> c = ExtendedContext.copy()
  4216. >>> c.Emin = -999
  4217. >>> c.Emax = 999
  4218. >>> ExtendedContext.next_minus(Decimal('1'))
  4219. Decimal('0.999999999')
  4220. >>> c.next_minus(Decimal('1E-1007'))
  4221. Decimal('0E-1007')
  4222. >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
  4223. Decimal('-1.00000004')
  4224. >>> c.next_minus(Decimal('Infinity'))
  4225. Decimal('9.99999999E+999')
  4226. >>> c.next_minus(1)
  4227. Decimal('0.999999999')
  4228. """
  4229. a = _convert_other(a, raiseit=True)
  4230. return a.next_minus(context=self)
  4231. def next_plus(self, a):
  4232. """Returns the smallest representable number larger than a.
  4233. >>> c = ExtendedContext.copy()
  4234. >>> c.Emin = -999
  4235. >>> c.Emax = 999
  4236. >>> ExtendedContext.next_plus(Decimal('1'))
  4237. Decimal('1.00000001')
  4238. >>> c.next_plus(Decimal('-1E-1007'))
  4239. Decimal('-0E-1007')
  4240. >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
  4241. Decimal('-1.00000002')
  4242. >>> c.next_plus(Decimal('-Infinity'))
  4243. Decimal('-9.99999999E+999')
  4244. >>> c.next_plus(1)
  4245. Decimal('1.00000001')
  4246. """
  4247. a = _convert_other(a, raiseit=True)
  4248. return a.next_plus(context=self)
  4249. def next_toward(self, a, b):
  4250. """Returns the number closest to a, in direction towards b.
  4251. The result is the closest representable number from the first
  4252. operand (but not the first operand) that is in the direction
  4253. towards the second operand, unless the operands have the same
  4254. value.
  4255. >>> c = ExtendedContext.copy()
  4256. >>> c.Emin = -999
  4257. >>> c.Emax = 999
  4258. >>> c.next_toward(Decimal('1'), Decimal('2'))
  4259. Decimal('1.00000001')
  4260. >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
  4261. Decimal('-0E-1007')
  4262. >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
  4263. Decimal('-1.00000002')
  4264. >>> c.next_toward(Decimal('1'), Decimal('0'))
  4265. Decimal('0.999999999')
  4266. >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
  4267. Decimal('0E-1007')
  4268. >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
  4269. Decimal('-1.00000004')
  4270. >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
  4271. Decimal('-0.00')
  4272. >>> c.next_toward(0, 1)
  4273. Decimal('1E-1007')
  4274. >>> c.next_toward(Decimal(0), 1)
  4275. Decimal('1E-1007')
  4276. >>> c.next_toward(0, Decimal(1))
  4277. Decimal('1E-1007')
  4278. """
  4279. a = _convert_other(a, raiseit=True)
  4280. return a.next_toward(b, context=self)
  4281. def normalize(self, a):
  4282. """normalize reduces an operand to its simplest form.
  4283. Essentially a plus operation with all trailing zeros removed from the
  4284. result.
  4285. >>> ExtendedContext.normalize(Decimal('2.1'))
  4286. Decimal('2.1')
  4287. >>> ExtendedContext.normalize(Decimal('-2.0'))
  4288. Decimal('-2')
  4289. >>> ExtendedContext.normalize(Decimal('1.200'))
  4290. Decimal('1.2')
  4291. >>> ExtendedContext.normalize(Decimal('-120'))
  4292. Decimal('-1.2E+2')
  4293. >>> ExtendedContext.normalize(Decimal('120.00'))
  4294. Decimal('1.2E+2')
  4295. >>> ExtendedContext.normalize(Decimal('0.00'))
  4296. Decimal('0')
  4297. >>> ExtendedContext.normalize(6)
  4298. Decimal('6')
  4299. """
  4300. a = _convert_other(a, raiseit=True)
  4301. return a.normalize(context=self)
  4302. def number_class(self, a):
  4303. """Returns an indication of the class of the operand.
  4304. The class is one of the following strings:
  4305. -sNaN
  4306. -NaN
  4307. -Infinity
  4308. -Normal
  4309. -Subnormal
  4310. -Zero
  4311. +Zero
  4312. +Subnormal
  4313. +Normal
  4314. +Infinity
  4315. >>> c = ExtendedContext.copy()
  4316. >>> c.Emin = -999
  4317. >>> c.Emax = 999
  4318. >>> c.number_class(Decimal('Infinity'))
  4319. '+Infinity'
  4320. >>> c.number_class(Decimal('1E-10'))
  4321. '+Normal'
  4322. >>> c.number_class(Decimal('2.50'))
  4323. '+Normal'
  4324. >>> c.number_class(Decimal('0.1E-999'))
  4325. '+Subnormal'
  4326. >>> c.number_class(Decimal('0'))
  4327. '+Zero'
  4328. >>> c.number_class(Decimal('-0'))
  4329. '-Zero'
  4330. >>> c.number_class(Decimal('-0.1E-999'))
  4331. '-Subnormal'
  4332. >>> c.number_class(Decimal('-1E-10'))
  4333. '-Normal'
  4334. >>> c.number_class(Decimal('-2.50'))
  4335. '-Normal'
  4336. >>> c.number_class(Decimal('-Infinity'))
  4337. '-Infinity'
  4338. >>> c.number_class(Decimal('NaN'))
  4339. 'NaN'
  4340. >>> c.number_class(Decimal('-NaN'))
  4341. 'NaN'
  4342. >>> c.number_class(Decimal('sNaN'))
  4343. 'sNaN'
  4344. >>> c.number_class(123)
  4345. '+Normal'
  4346. """
  4347. a = _convert_other(a, raiseit=True)
  4348. return a.number_class(context=self)
  4349. def plus(self, a):
  4350. """Plus corresponds to unary prefix plus in Python.
  4351. The operation is evaluated using the same rules as add; the
  4352. operation plus(a) is calculated as add('0', a) where the '0'
  4353. has the same exponent as the operand.
  4354. >>> ExtendedContext.plus(Decimal('1.3'))
  4355. Decimal('1.3')
  4356. >>> ExtendedContext.plus(Decimal('-1.3'))
  4357. Decimal('-1.3')
  4358. >>> ExtendedContext.plus(-1)
  4359. Decimal('-1')
  4360. """
  4361. a = _convert_other(a, raiseit=True)
  4362. return a.__pos__(context=self)
  4363. def power(self, a, b, modulo=None):
  4364. """Raises a to the power of b, to modulo if given.
  4365. With two arguments, compute a**b. If a is negative then b
  4366. must be integral. The result will be inexact unless b is
  4367. integral and the result is finite and can be expressed exactly
  4368. in 'precision' digits.
  4369. With three arguments, compute (a**b) % modulo. For the
  4370. three argument form, the following restrictions on the
  4371. arguments hold:
  4372. - all three arguments must be integral
  4373. - b must be nonnegative
  4374. - at least one of a or b must be nonzero
  4375. - modulo must be nonzero and have at most 'precision' digits
  4376. The result of pow(a, b, modulo) is identical to the result
  4377. that would be obtained by computing (a**b) % modulo with
  4378. unbounded precision, but is computed more efficiently. It is
  4379. always exact.
  4380. >>> c = ExtendedContext.copy()
  4381. >>> c.Emin = -999
  4382. >>> c.Emax = 999
  4383. >>> c.power(Decimal('2'), Decimal('3'))
  4384. Decimal('8')
  4385. >>> c.power(Decimal('-2'), Decimal('3'))
  4386. Decimal('-8')
  4387. >>> c.power(Decimal('2'), Decimal('-3'))
  4388. Decimal('0.125')
  4389. >>> c.power(Decimal('1.7'), Decimal('8'))
  4390. Decimal('69.7575744')
  4391. >>> c.power(Decimal('10'), Decimal('0.301029996'))
  4392. Decimal('2.00000000')
  4393. >>> c.power(Decimal('Infinity'), Decimal('-1'))
  4394. Decimal('0')
  4395. >>> c.power(Decimal('Infinity'), Decimal('0'))
  4396. Decimal('1')
  4397. >>> c.power(Decimal('Infinity'), Decimal('1'))
  4398. Decimal('Infinity')
  4399. >>> c.power(Decimal('-Infinity'), Decimal('-1'))
  4400. Decimal('-0')
  4401. >>> c.power(Decimal('-Infinity'), Decimal('0'))
  4402. Decimal('1')
  4403. >>> c.power(Decimal('-Infinity'), Decimal('1'))
  4404. Decimal('-Infinity')
  4405. >>> c.power(Decimal('-Infinity'), Decimal('2'))
  4406. Decimal('Infinity')
  4407. >>> c.power(Decimal('0'), Decimal('0'))
  4408. Decimal('NaN')
  4409. >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
  4410. Decimal('11')
  4411. >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
  4412. Decimal('-11')
  4413. >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
  4414. Decimal('1')
  4415. >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
  4416. Decimal('11')
  4417. >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
  4418. Decimal('11729830')
  4419. >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
  4420. Decimal('-0')
  4421. >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
  4422. Decimal('1')
  4423. >>> ExtendedContext.power(7, 7)
  4424. Decimal('823543')
  4425. >>> ExtendedContext.power(Decimal(7), 7)
  4426. Decimal('823543')
  4427. >>> ExtendedContext.power(7, Decimal(7), 2)
  4428. Decimal('1')
  4429. """
  4430. a = _convert_other(a, raiseit=True)
  4431. r = a.__pow__(b, modulo, context=self)
  4432. if r is NotImplemented:
  4433. raise TypeError("Unable to convert %s to Decimal" % b)
  4434. else:
  4435. return r
  4436. def quantize(self, a, b):
  4437. """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
  4438. The coefficient of the result is derived from that of the left-hand
  4439. operand. It may be rounded using the current rounding setting (if the
  4440. exponent is being increased), multiplied by a positive power of ten (if
  4441. the exponent is being decreased), or is unchanged (if the exponent is
  4442. already equal to that of the right-hand operand).
  4443. Unlike other operations, if the length of the coefficient after the
  4444. quantize operation would be greater than precision then an Invalid
  4445. operation condition is raised. This guarantees that, unless there is
  4446. an error condition, the exponent of the result of a quantize is always
  4447. equal to that of the right-hand operand.
  4448. Also unlike other operations, quantize will never raise Underflow, even
  4449. if the result is subnormal and inexact.
  4450. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
  4451. Decimal('2.170')
  4452. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
  4453. Decimal('2.17')
  4454. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
  4455. Decimal('2.2')
  4456. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
  4457. Decimal('2')
  4458. >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
  4459. Decimal('0E+1')
  4460. >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
  4461. Decimal('-Infinity')
  4462. >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
  4463. Decimal('NaN')
  4464. >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
  4465. Decimal('-0')
  4466. >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
  4467. Decimal('-0E+5')
  4468. >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
  4469. Decimal('NaN')
  4470. >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
  4471. Decimal('NaN')
  4472. >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
  4473. Decimal('217.0')
  4474. >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
  4475. Decimal('217')
  4476. >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
  4477. Decimal('2.2E+2')
  4478. >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
  4479. Decimal('2E+2')
  4480. >>> ExtendedContext.quantize(1, 2)
  4481. Decimal('1')
  4482. >>> ExtendedContext.quantize(Decimal(1), 2)
  4483. Decimal('1')
  4484. >>> ExtendedContext.quantize(1, Decimal(2))
  4485. Decimal('1')
  4486. """
  4487. a = _convert_other(a, raiseit=True)
  4488. return a.quantize(b, context=self)
  4489. def radix(self):
  4490. """Just returns 10, as this is Decimal, :)
  4491. >>> ExtendedContext.radix()
  4492. Decimal('10')
  4493. """
  4494. return Decimal(10)
  4495. def remainder(self, a, b):
  4496. """Returns the remainder from integer division.
  4497. The result is the residue of the dividend after the operation of
  4498. calculating integer division as described for divide-integer, rounded
  4499. to precision digits if necessary. The sign of the result, if
  4500. non-zero, is the same as that of the original dividend.
  4501. This operation will fail under the same conditions as integer division
  4502. (that is, if integer division on the same two operands would fail, the
  4503. remainder cannot be calculated).
  4504. >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
  4505. Decimal('2.1')
  4506. >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
  4507. Decimal('1')
  4508. >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
  4509. Decimal('-1')
  4510. >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
  4511. Decimal('0.2')
  4512. >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
  4513. Decimal('0.1')
  4514. >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
  4515. Decimal('1.0')
  4516. >>> ExtendedContext.remainder(22, 6)
  4517. Decimal('4')
  4518. >>> ExtendedContext.remainder(Decimal(22), 6)
  4519. Decimal('4')
  4520. >>> ExtendedContext.remainder(22, Decimal(6))
  4521. Decimal('4')
  4522. """
  4523. a = _convert_other(a, raiseit=True)
  4524. r = a.__mod__(b, context=self)
  4525. if r is NotImplemented:
  4526. raise TypeError("Unable to convert %s to Decimal" % b)
  4527. else:
  4528. return r
  4529. def remainder_near(self, a, b):
  4530. """Returns to be "a - b * n", where n is the integer nearest the exact
  4531. value of "x / b" (if two integers are equally near then the even one
  4532. is chosen). If the result is equal to 0 then its sign will be the
  4533. sign of a.
  4534. This operation will fail under the same conditions as integer division
  4535. (that is, if integer division on the same two operands would fail, the
  4536. remainder cannot be calculated).
  4537. >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
  4538. Decimal('-0.9')
  4539. >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
  4540. Decimal('-2')
  4541. >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
  4542. Decimal('1')
  4543. >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
  4544. Decimal('-1')
  4545. >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
  4546. Decimal('0.2')
  4547. >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
  4548. Decimal('0.1')
  4549. >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
  4550. Decimal('-0.3')
  4551. >>> ExtendedContext.remainder_near(3, 11)
  4552. Decimal('3')
  4553. >>> ExtendedContext.remainder_near(Decimal(3), 11)
  4554. Decimal('3')
  4555. >>> ExtendedContext.remainder_near(3, Decimal(11))
  4556. Decimal('3')
  4557. """
  4558. a = _convert_other(a, raiseit=True)
  4559. return a.remainder_near(b, context=self)
  4560. def rotate(self, a, b):
  4561. """Returns a rotated copy of a, b times.
  4562. The coefficient of the result is a rotated copy of the digits in
  4563. the coefficient of the first operand. The number of places of
  4564. rotation is taken from the absolute value of the second operand,
  4565. with the rotation being to the left if the second operand is
  4566. positive or to the right otherwise.
  4567. >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
  4568. Decimal('400000003')
  4569. >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
  4570. Decimal('12')
  4571. >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
  4572. Decimal('891234567')
  4573. >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
  4574. Decimal('123456789')
  4575. >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
  4576. Decimal('345678912')
  4577. >>> ExtendedContext.rotate(1333333, 1)
  4578. Decimal('13333330')
  4579. >>> ExtendedContext.rotate(Decimal(1333333), 1)
  4580. Decimal('13333330')
  4581. >>> ExtendedContext.rotate(1333333, Decimal(1))
  4582. Decimal('13333330')
  4583. """
  4584. a = _convert_other(a, raiseit=True)
  4585. return a.rotate(b, context=self)
  4586. def same_quantum(self, a, b):
  4587. """Returns True if the two operands have the same exponent.
  4588. The result is never affected by either the sign or the coefficient of
  4589. either operand.
  4590. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
  4591. False
  4592. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
  4593. True
  4594. >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
  4595. False
  4596. >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
  4597. True
  4598. >>> ExtendedContext.same_quantum(10000, -1)
  4599. True
  4600. >>> ExtendedContext.same_quantum(Decimal(10000), -1)
  4601. True
  4602. >>> ExtendedContext.same_quantum(10000, Decimal(-1))
  4603. True
  4604. """
  4605. a = _convert_other(a, raiseit=True)
  4606. return a.same_quantum(b)
  4607. def scaleb (self, a, b):
  4608. """Returns the first operand after adding the second value its exp.
  4609. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
  4610. Decimal('0.0750')
  4611. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
  4612. Decimal('7.50')
  4613. >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
  4614. Decimal('7.50E+3')
  4615. >>> ExtendedContext.scaleb(1, 4)
  4616. Decimal('1E+4')
  4617. >>> ExtendedContext.scaleb(Decimal(1), 4)
  4618. Decimal('1E+4')
  4619. >>> ExtendedContext.scaleb(1, Decimal(4))
  4620. Decimal('1E+4')
  4621. """
  4622. a = _convert_other(a, raiseit=True)
  4623. return a.scaleb(b, context=self)
  4624. def shift(self, a, b):
  4625. """Returns a shifted copy of a, b times.
  4626. The coefficient of the result is a shifted copy of the digits
  4627. in the coefficient of the first operand. The number of places
  4628. to shift is taken from the absolute value of the second operand,
  4629. with the shift being to the left if the second operand is
  4630. positive or to the right otherwise. Digits shifted into the
  4631. coefficient are zeros.
  4632. >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
  4633. Decimal('400000000')
  4634. >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
  4635. Decimal('0')
  4636. >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
  4637. Decimal('1234567')
  4638. >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
  4639. Decimal('123456789')
  4640. >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
  4641. Decimal('345678900')
  4642. >>> ExtendedContext.shift(88888888, 2)
  4643. Decimal('888888800')
  4644. >>> ExtendedContext.shift(Decimal(88888888), 2)
  4645. Decimal('888888800')
  4646. >>> ExtendedContext.shift(88888888, Decimal(2))
  4647. Decimal('888888800')
  4648. """
  4649. a = _convert_other(a, raiseit=True)
  4650. return a.shift(b, context=self)
  4651. def sqrt(self, a):
  4652. """Square root of a non-negative number to context precision.
  4653. If the result must be inexact, it is rounded using the round-half-even
  4654. algorithm.
  4655. >>> ExtendedContext.sqrt(Decimal('0'))
  4656. Decimal('0')
  4657. >>> ExtendedContext.sqrt(Decimal('-0'))
  4658. Decimal('-0')
  4659. >>> ExtendedContext.sqrt(Decimal('0.39'))
  4660. Decimal('0.624499800')
  4661. >>> ExtendedContext.sqrt(Decimal('100'))
  4662. Decimal('10')
  4663. >>> ExtendedContext.sqrt(Decimal('1'))
  4664. Decimal('1')
  4665. >>> ExtendedContext.sqrt(Decimal('1.0'))
  4666. Decimal('1.0')
  4667. >>> ExtendedContext.sqrt(Decimal('1.00'))
  4668. Decimal('1.0')
  4669. >>> ExtendedContext.sqrt(Decimal('7'))
  4670. Decimal('2.64575131')
  4671. >>> ExtendedContext.sqrt(Decimal('10'))
  4672. Decimal('3.16227766')
  4673. >>> ExtendedContext.sqrt(2)
  4674. Decimal('1.41421356')
  4675. >>> ExtendedContext.prec
  4676. 9
  4677. """
  4678. a = _convert_other(a, raiseit=True)
  4679. return a.sqrt(context=self)
  4680. def subtract(self, a, b):
  4681. """Return the difference between the two operands.
  4682. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
  4683. Decimal('0.23')
  4684. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
  4685. Decimal('0.00')
  4686. >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
  4687. Decimal('-0.77')
  4688. >>> ExtendedContext.subtract(8, 5)
  4689. Decimal('3')
  4690. >>> ExtendedContext.subtract(Decimal(8), 5)
  4691. Decimal('3')
  4692. >>> ExtendedContext.subtract(8, Decimal(5))
  4693. Decimal('3')
  4694. """
  4695. a = _convert_other(a, raiseit=True)
  4696. r = a.__sub__(b, context=self)
  4697. if r is NotImplemented:
  4698. raise TypeError("Unable to convert %s to Decimal" % b)
  4699. else:
  4700. return r
  4701. def to_eng_string(self, a):
  4702. """Converts a number to a string, using scientific notation.
  4703. The operation is not affected by the context.
  4704. """
  4705. a = _convert_other(a, raiseit=True)
  4706. return a.to_eng_string(context=self)
  4707. def to_sci_string(self, a):
  4708. """Converts a number to a string, using scientific notation.
  4709. The operation is not affected by the context.
  4710. """
  4711. a = _convert_other(a, raiseit=True)
  4712. return a.__str__(context=self)
  4713. def to_integral_exact(self, a):
  4714. """Rounds to an integer.
  4715. When the operand has a negative exponent, the result is the same
  4716. as using the quantize() operation using the given operand as the
  4717. left-hand-operand, 1E+0 as the right-hand-operand, and the precision
  4718. of the operand as the precision setting; Inexact and Rounded flags
  4719. are allowed in this operation. The rounding mode is taken from the
  4720. context.
  4721. >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
  4722. Decimal('2')
  4723. >>> ExtendedContext.to_integral_exact(Decimal('100'))
  4724. Decimal('100')
  4725. >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
  4726. Decimal('100')
  4727. >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
  4728. Decimal('102')
  4729. >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
  4730. Decimal('-102')
  4731. >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
  4732. Decimal('1.0E+6')
  4733. >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
  4734. Decimal('7.89E+77')
  4735. >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
  4736. Decimal('-Infinity')
  4737. """
  4738. a = _convert_other(a, raiseit=True)
  4739. return a.to_integral_exact(context=self)
  4740. def to_integral_value(self, a):
  4741. """Rounds to an integer.
  4742. When the operand has a negative exponent, the result is the same
  4743. as using the quantize() operation using the given operand as the
  4744. left-hand-operand, 1E+0 as the right-hand-operand, and the precision
  4745. of the operand as the precision setting, except that no flags will
  4746. be set. The rounding mode is taken from the context.
  4747. >>> ExtendedContext.to_integral_value(Decimal('2.1'))
  4748. Decimal('2')
  4749. >>> ExtendedContext.to_integral_value(Decimal('100'))
  4750. Decimal('100')
  4751. >>> ExtendedContext.to_integral_value(Decimal('100.0'))
  4752. Decimal('100')
  4753. >>> ExtendedContext.to_integral_value(Decimal('101.5'))
  4754. Decimal('102')
  4755. >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
  4756. Decimal('-102')
  4757. >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
  4758. Decimal('1.0E+6')
  4759. >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
  4760. Decimal('7.89E+77')
  4761. >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
  4762. Decimal('-Infinity')
  4763. """
  4764. a = _convert_other(a, raiseit=True)
  4765. return a.to_integral_value(context=self)
  4766. # the method name changed, but we provide also the old one, for compatibility
  4767. to_integral = to_integral_value
  4768. class _WorkRep(object):
  4769. __slots__ = ('sign','int','exp')
  4770. # sign: 0 or 1
  4771. # int: int
  4772. # exp: None, int, or string
  4773. def __init__(self, value=None):
  4774. if value is None:
  4775. self.sign = None
  4776. self.int = 0
  4777. self.exp = None
  4778. elif isinstance(value, Decimal):
  4779. self.sign = value._sign
  4780. self.int = int(value._int)
  4781. self.exp = value._exp
  4782. else:
  4783. # assert isinstance(value, tuple)
  4784. self.sign = value[0]
  4785. self.int = value[1]
  4786. self.exp = value[2]
  4787. def __repr__(self):
  4788. return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
  4789. __str__ = __repr__
  4790. def _normalize(op1, op2, prec = 0):
  4791. """Normalizes op1, op2 to have the same exp and length of coefficient.
  4792. Done during addition.
  4793. """
  4794. if op1.exp < op2.exp:
  4795. tmp = op2
  4796. other = op1
  4797. else:
  4798. tmp = op1
  4799. other = op2
  4800. # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
  4801. # Then adding 10**exp to tmp has the same effect (after rounding)
  4802. # as adding any positive quantity smaller than 10**exp; similarly
  4803. # for subtraction. So if other is smaller than 10**exp we replace
  4804. # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
  4805. tmp_len = len(str(tmp.int))
  4806. other_len = len(str(other.int))
  4807. exp = tmp.exp + min(-1, tmp_len - prec - 2)
  4808. if other_len + other.exp - 1 < exp:
  4809. other.int = 1
  4810. other.exp = exp
  4811. tmp.int *= 10 ** (tmp.exp - other.exp)
  4812. tmp.exp = other.exp
  4813. return op1, op2
  4814. ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
  4815. _nbits = int.bit_length
  4816. def _decimal_lshift_exact(n, e):
  4817. """ Given integers n and e, return n * 10**e if it's an integer, else None.
  4818. The computation is designed to avoid computing large powers of 10
  4819. unnecessarily.
  4820. >>> _decimal_lshift_exact(3, 4)
  4821. 30000
  4822. >>> _decimal_lshift_exact(300, -999999999) # returns None
  4823. """
  4824. if n == 0:
  4825. return 0
  4826. elif e >= 0:
  4827. return n * 10**e
  4828. else:
  4829. # val_n = largest power of 10 dividing n.
  4830. str_n = str(abs(n))
  4831. val_n = len(str_n) - len(str_n.rstrip('0'))
  4832. return None if val_n < -e else n // 10**-e
  4833. def _sqrt_nearest(n, a):
  4834. """Closest integer to the square root of the positive integer n. a is
  4835. an initial approximation to the square root. Any positive integer
  4836. will do for a, but the closer a is to the square root of n the
  4837. faster convergence will be.
  4838. """
  4839. if n <= 0 or a <= 0:
  4840. raise ValueError("Both arguments to _sqrt_nearest should be positive.")
  4841. b=0
  4842. while a != b:
  4843. b, a = a, a--n//a>>1
  4844. return a
  4845. def _rshift_nearest(x, shift):
  4846. """Given an integer x and a nonnegative integer shift, return closest
  4847. integer to x / 2**shift; use round-to-even in case of a tie.
  4848. """
  4849. b, q = 1 << shift, x >> shift
  4850. return q + (2*(x & (b-1)) + (q&1) > b)
  4851. def _div_nearest(a, b):
  4852. """Closest integer to a/b, a and b positive integers; rounds to even
  4853. in the case of a tie.
  4854. """
  4855. q, r = divmod(a, b)
  4856. return q + (2*r + (q&1) > b)
  4857. def _ilog(x, M, L = 8):
  4858. """Integer approximation to M*log(x/M), with absolute error boundable
  4859. in terms only of x/M.
  4860. Given positive integers x and M, return an integer approximation to
  4861. M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
  4862. between the approximation and the exact result is at most 22. For
  4863. L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
  4864. both cases these are upper bounds on the error; it will usually be
  4865. much smaller."""
  4866. # The basic algorithm is the following: let log1p be the function
  4867. # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
  4868. # the reduction
  4869. #
  4870. # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
  4871. #
  4872. # repeatedly until the argument to log1p is small (< 2**-L in
  4873. # absolute value). For small y we can use the Taylor series
  4874. # expansion
  4875. #
  4876. # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
  4877. #
  4878. # truncating at T such that y**T is small enough. The whole
  4879. # computation is carried out in a form of fixed-point arithmetic,
  4880. # with a real number z being represented by an integer
  4881. # approximation to z*M. To avoid loss of precision, the y below
  4882. # is actually an integer approximation to 2**R*y*M, where R is the
  4883. # number of reductions performed so far.
  4884. y = x-M
  4885. # argument reduction; R = number of reductions performed
  4886. R = 0
  4887. while (R <= L and abs(y) << L-R >= M or
  4888. R > L and abs(y) >> R-L >= M):
  4889. y = _div_nearest((M*y) << 1,
  4890. M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
  4891. R += 1
  4892. # Taylor series with T terms
  4893. T = -int(-10*len(str(M))//(3*L))
  4894. yshift = _rshift_nearest(y, R)
  4895. w = _div_nearest(M, T)
  4896. for k in range(T-1, 0, -1):
  4897. w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
  4898. return _div_nearest(w*y, M)
  4899. def _dlog10(c, e, p):
  4900. """Given integers c, e and p with c > 0, p >= 0, compute an integer
  4901. approximation to 10**p * log10(c*10**e), with an absolute error of
  4902. at most 1. Assumes that c*10**e is not exactly 1."""
  4903. # increase precision by 2; compensate for this by dividing
  4904. # final result by 100
  4905. p += 2
  4906. # write c*10**e as d*10**f with either:
  4907. # f >= 0 and 1 <= d <= 10, or
  4908. # f <= 0 and 0.1 <= d <= 1.
  4909. # Thus for c*10**e close to 1, f = 0
  4910. l = len(str(c))
  4911. f = e+l - (e+l >= 1)
  4912. if p > 0:
  4913. M = 10**p
  4914. k = e+p-f
  4915. if k >= 0:
  4916. c *= 10**k
  4917. else:
  4918. c = _div_nearest(c, 10**-k)
  4919. log_d = _ilog(c, M) # error < 5 + 22 = 27
  4920. log_10 = _log10_digits(p) # error < 1
  4921. log_d = _div_nearest(log_d*M, log_10)
  4922. log_tenpower = f*M # exact
  4923. else:
  4924. log_d = 0 # error < 2.31
  4925. log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
  4926. return _div_nearest(log_tenpower+log_d, 100)
  4927. def _dlog(c, e, p):
  4928. """Given integers c, e and p with c > 0, compute an integer
  4929. approximation to 10**p * log(c*10**e), with an absolute error of
  4930. at most 1. Assumes that c*10**e is not exactly 1."""
  4931. # Increase precision by 2. The precision increase is compensated
  4932. # for at the end with a division by 100.
  4933. p += 2
  4934. # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
  4935. # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
  4936. # as 10**p * log(d) + 10**p*f * log(10).
  4937. l = len(str(c))
  4938. f = e+l - (e+l >= 1)
  4939. # compute approximation to 10**p*log(d), with error < 27
  4940. if p > 0:
  4941. k = e+p-f
  4942. if k >= 0:
  4943. c *= 10**k
  4944. else:
  4945. c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
  4946. # _ilog magnifies existing error in c by a factor of at most 10
  4947. log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
  4948. else:
  4949. # p <= 0: just approximate the whole thing by 0; error < 2.31
  4950. log_d = 0
  4951. # compute approximation to f*10**p*log(10), with error < 11.
  4952. if f:
  4953. extra = len(str(abs(f)))-1
  4954. if p + extra >= 0:
  4955. # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
  4956. # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
  4957. f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
  4958. else:
  4959. f_log_ten = 0
  4960. else:
  4961. f_log_ten = 0
  4962. # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
  4963. return _div_nearest(f_log_ten + log_d, 100)
  4964. class _Log10Memoize(object):
  4965. """Class to compute, store, and allow retrieval of, digits of the
  4966. constant log(10) = 2.302585.... This constant is needed by
  4967. Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
  4968. def __init__(self):
  4969. self.digits = "23025850929940456840179914546843642076011014886"
  4970. def getdigits(self, p):
  4971. """Given an integer p >= 0, return floor(10**p)*log(10).
  4972. For example, self.getdigits(3) returns 2302.
  4973. """
  4974. # digits are stored as a string, for quick conversion to
  4975. # integer in the case that we've already computed enough
  4976. # digits; the stored digits should always be correct
  4977. # (truncated, not rounded to nearest).
  4978. if p < 0:
  4979. raise ValueError("p should be nonnegative")
  4980. if p >= len(self.digits):
  4981. # compute p+3, p+6, p+9, ... digits; continue until at
  4982. # least one of the extra digits is nonzero
  4983. extra = 3
  4984. while True:
  4985. # compute p+extra digits, correct to within 1ulp
  4986. M = 10**(p+extra+2)
  4987. digits = str(_div_nearest(_ilog(10*M, M), 100))
  4988. if digits[-extra:] != '0'*extra:
  4989. break
  4990. extra += 3
  4991. # keep all reliable digits so far; remove trailing zeros
  4992. # and next nonzero digit
  4993. self.digits = digits.rstrip('0')[:-1]
  4994. return int(self.digits[:p+1])
  4995. _log10_digits = _Log10Memoize().getdigits
  4996. def _iexp(x, M, L=8):
  4997. """Given integers x and M, M > 0, such that x/M is small in absolute
  4998. value, compute an integer approximation to M*exp(x/M). For 0 <=
  4999. x/M <= 2.4, the absolute error in the result is bounded by 60 (and
  5000. is usually much smaller)."""
  5001. # Algorithm: to compute exp(z) for a real number z, first divide z
  5002. # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
  5003. # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
  5004. # series
  5005. #
  5006. # expm1(x) = x + x**2/2! + x**3/3! + ...
  5007. #
  5008. # Now use the identity
  5009. #
  5010. # expm1(2x) = expm1(x)*(expm1(x)+2)
  5011. #
  5012. # R times to compute the sequence expm1(z/2**R),
  5013. # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
  5014. # Find R such that x/2**R/M <= 2**-L
  5015. R = _nbits((x<<L)//M)
  5016. # Taylor series. (2**L)**T > M
  5017. T = -int(-10*len(str(M))//(3*L))
  5018. y = _div_nearest(x, T)
  5019. Mshift = M<<R
  5020. for i in range(T-1, 0, -1):
  5021. y = _div_nearest(x*(Mshift + y), Mshift * i)
  5022. # Expansion
  5023. for k in range(R-1, -1, -1):
  5024. Mshift = M<<(k+2)
  5025. y = _div_nearest(y*(y+Mshift), Mshift)
  5026. return M+y
  5027. def _dexp(c, e, p):
  5028. """Compute an approximation to exp(c*10**e), with p decimal places of
  5029. precision.
  5030. Returns integers d, f such that:
  5031. 10**(p-1) <= d <= 10**p, and
  5032. (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
  5033. In other words, d*10**f is an approximation to exp(c*10**e) with p
  5034. digits of precision, and with an error in d of at most 1. This is
  5035. almost, but not quite, the same as the error being < 1ulp: when d
  5036. = 10**(p-1) the error could be up to 10 ulp."""
  5037. # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
  5038. p += 2
  5039. # compute log(10) with extra precision = adjusted exponent of c*10**e
  5040. extra = max(0, e + len(str(c)) - 1)
  5041. q = p + extra
  5042. # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
  5043. # rounding down
  5044. shift = e+q
  5045. if shift >= 0:
  5046. cshift = c*10**shift
  5047. else:
  5048. cshift = c//10**-shift
  5049. quot, rem = divmod(cshift, _log10_digits(q))
  5050. # reduce remainder back to original precision
  5051. rem = _div_nearest(rem, 10**extra)
  5052. # error in result of _iexp < 120; error after division < 0.62
  5053. return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
  5054. def _dpower(xc, xe, yc, ye, p):
  5055. """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
  5056. y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
  5057. 10**(p-1) <= c <= 10**p, and
  5058. (c-1)*10**e < x**y < (c+1)*10**e
  5059. in other words, c*10**e is an approximation to x**y with p digits
  5060. of precision, and with an error in c of at most 1. (This is
  5061. almost, but not quite, the same as the error being < 1ulp: when c
  5062. == 10**(p-1) we can only guarantee error < 10ulp.)
  5063. We assume that: x is positive and not equal to 1, and y is nonzero.
  5064. """
  5065. # Find b such that 10**(b-1) <= |y| <= 10**b
  5066. b = len(str(abs(yc))) + ye
  5067. # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
  5068. lxc = _dlog(xc, xe, p+b+1)
  5069. # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
  5070. shift = ye-b
  5071. if shift >= 0:
  5072. pc = lxc*yc*10**shift
  5073. else:
  5074. pc = _div_nearest(lxc*yc, 10**-shift)
  5075. if pc == 0:
  5076. # we prefer a result that isn't exactly 1; this makes it
  5077. # easier to compute a correctly rounded result in __pow__
  5078. if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
  5079. coeff, exp = 10**(p-1)+1, 1-p
  5080. else:
  5081. coeff, exp = 10**p-1, -p
  5082. else:
  5083. coeff, exp = _dexp(pc, -(p+1), p+1)
  5084. coeff = _div_nearest(coeff, 10)
  5085. exp += 1
  5086. return coeff, exp
  5087. def _log10_lb(c, correction = {
  5088. '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
  5089. '6': 23, '7': 16, '8': 10, '9': 5}):
  5090. """Compute a lower bound for 100*log10(c) for a positive integer c."""
  5091. if c <= 0:
  5092. raise ValueError("The argument to _log10_lb should be nonnegative.")
  5093. str_c = str(c)
  5094. return 100*len(str_c) - correction[str_c[0]]
  5095. ##### Helper Functions ####################################################
  5096. def _convert_other(other, raiseit=False, allow_float=False):
  5097. """Convert other to Decimal.
  5098. Verifies that it's ok to use in an implicit construction.
  5099. If allow_float is true, allow conversion from float; this
  5100. is used in the comparison methods (__eq__ and friends).
  5101. """
  5102. if isinstance(other, Decimal):
  5103. return other
  5104. if isinstance(other, int):
  5105. return Decimal(other)
  5106. if allow_float and isinstance(other, float):
  5107. return Decimal.from_float(other)
  5108. if raiseit:
  5109. raise TypeError("Unable to convert %s to Decimal" % other)
  5110. return NotImplemented
  5111. def _convert_for_comparison(self, other, equality_op=False):
  5112. """Given a Decimal instance self and a Python object other, return
  5113. a pair (s, o) of Decimal instances such that "s op o" is
  5114. equivalent to "self op other" for any of the 6 comparison
  5115. operators "op".
  5116. """
  5117. if isinstance(other, Decimal):
  5118. return self, other
  5119. # Comparison with a Rational instance (also includes integers):
  5120. # self op n/d <=> self*d op n (for n and d integers, d positive).
  5121. # A NaN or infinity can be left unchanged without affecting the
  5122. # comparison result.
  5123. if isinstance(other, _numbers.Rational):
  5124. if not self._is_special:
  5125. self = _dec_from_triple(self._sign,
  5126. str(int(self._int) * other.denominator),
  5127. self._exp)
  5128. return self, Decimal(other.numerator)
  5129. # Comparisons with float and complex types. == and != comparisons
  5130. # with complex numbers should succeed, returning either True or False
  5131. # as appropriate. Other comparisons return NotImplemented.
  5132. if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0:
  5133. other = other.real
  5134. if isinstance(other, float):
  5135. context = getcontext()
  5136. if equality_op:
  5137. context.flags[FloatOperation] = 1
  5138. else:
  5139. context._raise_error(FloatOperation,
  5140. "strict semantics for mixing floats and Decimals are enabled")
  5141. return self, Decimal.from_float(other)
  5142. return NotImplemented, NotImplemented
  5143. ##### Setup Specific Contexts ############################################
  5144. # The default context prototype used by Context()
  5145. # Is mutable, so that new contexts can have different default values
  5146. DefaultContext = Context(
  5147. prec=28, rounding=ROUND_HALF_EVEN,
  5148. traps=[DivisionByZero, Overflow, InvalidOperation],
  5149. flags=[],
  5150. Emax=999999,
  5151. Emin=-999999,
  5152. capitals=1,
  5153. clamp=0
  5154. )
  5155. # Pre-made alternate contexts offered by the specification
  5156. # Don't change these; the user should be able to select these
  5157. # contexts and be able to reproduce results from other implementations
  5158. # of the spec.
  5159. BasicContext = Context(
  5160. prec=9, rounding=ROUND_HALF_UP,
  5161. traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
  5162. flags=[],
  5163. )
  5164. ExtendedContext = Context(
  5165. prec=9, rounding=ROUND_HALF_EVEN,
  5166. traps=[],
  5167. flags=[],
  5168. )
  5169. ##### crud for parsing strings #############################################
  5170. #
  5171. # Regular expression used for parsing numeric strings. Additional
  5172. # comments:
  5173. #
  5174. # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
  5175. # whitespace. But note that the specification disallows whitespace in
  5176. # a numeric string.
  5177. #
  5178. # 2. For finite numbers (not infinities and NaNs) the body of the
  5179. # number between the optional sign and the optional exponent must have
  5180. # at least one decimal digit, possibly after the decimal point. The
  5181. # lookahead expression '(?=\d|\.\d)' checks this.
  5182. import re
  5183. _parser = re.compile(r""" # A numeric string consists of:
  5184. # \s*
  5185. (?P<sign>[-+])? # an optional sign, followed by either...
  5186. (
  5187. (?=\d|\.\d) # ...a number (with at least one digit)
  5188. (?P<int>\d*) # having a (possibly empty) integer part
  5189. (\.(?P<frac>\d*))? # followed by an optional fractional part
  5190. (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
  5191. |
  5192. Inf(inity)? # ...an infinity, or...
  5193. |
  5194. (?P<signal>s)? # ...an (optionally signaling)
  5195. NaN # NaN
  5196. (?P<diag>\d*) # with (possibly empty) diagnostic info.
  5197. )
  5198. # \s*
  5199. \Z
  5200. """, re.VERBOSE | re.IGNORECASE).match
  5201. _all_zeros = re.compile('0*$').match
  5202. _exact_half = re.compile('50*$').match
  5203. ##### PEP3101 support functions ##############################################
  5204. # The functions in this section have little to do with the Decimal
  5205. # class, and could potentially be reused or adapted for other pure
  5206. # Python numeric classes that want to implement __format__
  5207. #
  5208. # A format specifier for Decimal looks like:
  5209. #
  5210. # [[fill]align][sign][#][0][minimumwidth][,][.precision][type]
  5211. _parse_format_specifier_regex = re.compile(r"""\A
  5212. (?:
  5213. (?P<fill>.)?
  5214. (?P<align>[<>=^])
  5215. )?
  5216. (?P<sign>[-+ ])?
  5217. (?P<alt>\#)?
  5218. (?P<zeropad>0)?
  5219. (?P<minimumwidth>(?!0)\d+)?
  5220. (?P<thousands_sep>,)?
  5221. (?:\.(?P<precision>0|(?!0)\d+))?
  5222. (?P<type>[eEfFgGn%])?
  5223. \Z
  5224. """, re.VERBOSE|re.DOTALL)
  5225. del re
  5226. # The locale module is only needed for the 'n' format specifier. The
  5227. # rest of the PEP 3101 code functions quite happily without it, so we
  5228. # don't care too much if locale isn't present.
  5229. try:
  5230. import locale as _locale
  5231. except ImportError:
  5232. pass
  5233. def _parse_format_specifier(format_spec, _localeconv=None):
  5234. """Parse and validate a format specifier.
  5235. Turns a standard numeric format specifier into a dict, with the
  5236. following entries:
  5237. fill: fill character to pad field to minimum width
  5238. align: alignment type, either '<', '>', '=' or '^'
  5239. sign: either '+', '-' or ' '
  5240. minimumwidth: nonnegative integer giving minimum width
  5241. zeropad: boolean, indicating whether to pad with zeros
  5242. thousands_sep: string to use as thousands separator, or ''
  5243. grouping: grouping for thousands separators, in format
  5244. used by localeconv
  5245. decimal_point: string to use for decimal point
  5246. precision: nonnegative integer giving precision, or None
  5247. type: one of the characters 'eEfFgG%', or None
  5248. """
  5249. m = _parse_format_specifier_regex.match(format_spec)
  5250. if m is None:
  5251. raise ValueError("Invalid format specifier: " + format_spec)
  5252. # get the dictionary
  5253. format_dict = m.groupdict()
  5254. # zeropad; defaults for fill and alignment. If zero padding
  5255. # is requested, the fill and align fields should be absent.
  5256. fill = format_dict['fill']
  5257. align = format_dict['align']
  5258. format_dict['zeropad'] = (format_dict['zeropad'] is not None)
  5259. if format_dict['zeropad']:
  5260. if fill is not None:
  5261. raise ValueError("Fill character conflicts with '0'"
  5262. " in format specifier: " + format_spec)
  5263. if align is not None:
  5264. raise ValueError("Alignment conflicts with '0' in "
  5265. "format specifier: " + format_spec)
  5266. format_dict['fill'] = fill or ' '
  5267. # PEP 3101 originally specified that the default alignment should
  5268. # be left; it was later agreed that right-aligned makes more sense
  5269. # for numeric types. See http://bugs.python.org/issue6857.
  5270. format_dict['align'] = align or '>'
  5271. # default sign handling: '-' for negative, '' for positive
  5272. if format_dict['sign'] is None:
  5273. format_dict['sign'] = '-'
  5274. # minimumwidth defaults to 0; precision remains None if not given
  5275. format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
  5276. if format_dict['precision'] is not None:
  5277. format_dict['precision'] = int(format_dict['precision'])
  5278. # if format type is 'g' or 'G' then a precision of 0 makes little
  5279. # sense; convert it to 1. Same if format type is unspecified.
  5280. if format_dict['precision'] == 0:
  5281. if format_dict['type'] is None or format_dict['type'] in 'gGn':
  5282. format_dict['precision'] = 1
  5283. # determine thousands separator, grouping, and decimal separator, and
  5284. # add appropriate entries to format_dict
  5285. if format_dict['type'] == 'n':
  5286. # apart from separators, 'n' behaves just like 'g'
  5287. format_dict['type'] = 'g'
  5288. if _localeconv is None:
  5289. _localeconv = _locale.localeconv()
  5290. if format_dict['thousands_sep'] is not None:
  5291. raise ValueError("Explicit thousands separator conflicts with "
  5292. "'n' type in format specifier: " + format_spec)
  5293. format_dict['thousands_sep'] = _localeconv['thousands_sep']
  5294. format_dict['grouping'] = _localeconv['grouping']
  5295. format_dict['decimal_point'] = _localeconv['decimal_point']
  5296. else:
  5297. if format_dict['thousands_sep'] is None:
  5298. format_dict['thousands_sep'] = ''
  5299. format_dict['grouping'] = [3, 0]
  5300. format_dict['decimal_point'] = '.'
  5301. return format_dict
  5302. def _format_align(sign, body, spec):
  5303. """Given an unpadded, non-aligned numeric string 'body' and sign
  5304. string 'sign', add padding and alignment conforming to the given
  5305. format specifier dictionary 'spec' (as produced by
  5306. parse_format_specifier).
  5307. """
  5308. # how much extra space do we have to play with?
  5309. minimumwidth = spec['minimumwidth']
  5310. fill = spec['fill']
  5311. padding = fill*(minimumwidth - len(sign) - len(body))
  5312. align = spec['align']
  5313. if align == '<':
  5314. result = sign + body + padding
  5315. elif align == '>':
  5316. result = padding + sign + body
  5317. elif align == '=':
  5318. result = sign + padding + body
  5319. elif align == '^':
  5320. half = len(padding)//2
  5321. result = padding[:half] + sign + body + padding[half:]
  5322. else:
  5323. raise ValueError('Unrecognised alignment field')
  5324. return result
  5325. def _group_lengths(grouping):
  5326. """Convert a localeconv-style grouping into a (possibly infinite)
  5327. iterable of integers representing group lengths.
  5328. """
  5329. # The result from localeconv()['grouping'], and the input to this
  5330. # function, should be a list of integers in one of the
  5331. # following three forms:
  5332. #
  5333. # (1) an empty list, or
  5334. # (2) nonempty list of positive integers + [0]
  5335. # (3) list of positive integers + [locale.CHAR_MAX], or
  5336. from itertools import chain, repeat
  5337. if not grouping:
  5338. return []
  5339. elif grouping[-1] == 0 and len(grouping) >= 2:
  5340. return chain(grouping[:-1], repeat(grouping[-2]))
  5341. elif grouping[-1] == _locale.CHAR_MAX:
  5342. return grouping[:-1]
  5343. else:
  5344. raise ValueError('unrecognised format for grouping')
  5345. def _insert_thousands_sep(digits, spec, min_width=1):
  5346. """Insert thousands separators into a digit string.
  5347. spec is a dictionary whose keys should include 'thousands_sep' and
  5348. 'grouping'; typically it's the result of parsing the format
  5349. specifier using _parse_format_specifier.
  5350. The min_width keyword argument gives the minimum length of the
  5351. result, which will be padded on the left with zeros if necessary.
  5352. If necessary, the zero padding adds an extra '0' on the left to
  5353. avoid a leading thousands separator. For example, inserting
  5354. commas every three digits in '123456', with min_width=8, gives
  5355. '0,123,456', even though that has length 9.
  5356. """
  5357. sep = spec['thousands_sep']
  5358. grouping = spec['grouping']
  5359. groups = []
  5360. for l in _group_lengths(grouping):
  5361. if l <= 0:
  5362. raise ValueError("group length should be positive")
  5363. # max(..., 1) forces at least 1 digit to the left of a separator
  5364. l = min(max(len(digits), min_width, 1), l)
  5365. groups.append('0'*(l - len(digits)) + digits[-l:])
  5366. digits = digits[:-l]
  5367. min_width -= l
  5368. if not digits and min_width <= 0:
  5369. break
  5370. min_width -= len(sep)
  5371. else:
  5372. l = max(len(digits), min_width, 1)
  5373. groups.append('0'*(l - len(digits)) + digits[-l:])
  5374. return sep.join(reversed(groups))
  5375. def _format_sign(is_negative, spec):
  5376. """Determine sign character."""
  5377. if is_negative:
  5378. return '-'
  5379. elif spec['sign'] in ' +':
  5380. return spec['sign']
  5381. else:
  5382. return ''
  5383. def _format_number(is_negative, intpart, fracpart, exp, spec):
  5384. """Format a number, given the following data:
  5385. is_negative: true if the number is negative, else false
  5386. intpart: string of digits that must appear before the decimal point
  5387. fracpart: string of digits that must come after the point
  5388. exp: exponent, as an integer
  5389. spec: dictionary resulting from parsing the format specifier
  5390. This function uses the information in spec to:
  5391. insert separators (decimal separator and thousands separators)
  5392. format the sign
  5393. format the exponent
  5394. add trailing '%' for the '%' type
  5395. zero-pad if necessary
  5396. fill and align if necessary
  5397. """
  5398. sign = _format_sign(is_negative, spec)
  5399. if fracpart or spec['alt']:
  5400. fracpart = spec['decimal_point'] + fracpart
  5401. if exp != 0 or spec['type'] in 'eE':
  5402. echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
  5403. fracpart += "{0}{1:+}".format(echar, exp)
  5404. if spec['type'] == '%':
  5405. fracpart += '%'
  5406. if spec['zeropad']:
  5407. min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
  5408. else:
  5409. min_width = 0
  5410. intpart = _insert_thousands_sep(intpart, spec, min_width)
  5411. return _format_align(sign, intpart+fracpart, spec)
  5412. ##### Useful Constants (internal use only) ################################
  5413. # Reusable defaults
  5414. _Infinity = Decimal('Inf')
  5415. _NegativeInfinity = Decimal('-Inf')
  5416. _NaN = Decimal('NaN')
  5417. _Zero = Decimal(0)
  5418. _One = Decimal(1)
  5419. _NegativeOne = Decimal(-1)
  5420. # _SignedInfinity[sign] is infinity w/ that sign
  5421. _SignedInfinity = (_Infinity, _NegativeInfinity)
  5422. # Constants related to the hash implementation; hash(x) is based
  5423. # on the reduction of x modulo _PyHASH_MODULUS
  5424. _PyHASH_MODULUS = sys.hash_info.modulus
  5425. # hash values to use for positive and negative infinities, and nans
  5426. _PyHASH_INF = sys.hash_info.inf
  5427. _PyHASH_NAN = sys.hash_info.nan
  5428. # _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
  5429. _PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
  5430. del sys