concurrent_vector.h 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. /*
  2. Copyright 2005-2013 Intel Corporation. All Rights Reserved.
  3. This file is part of Threading Building Blocks.
  4. Threading Building Blocks is free software; you can redistribute it
  5. and/or modify it under the terms of the GNU General Public License
  6. version 2 as published by the Free Software Foundation.
  7. Threading Building Blocks is distributed in the hope that it will be
  8. useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  9. of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with Threading Building Blocks; if not, write to the Free Software
  13. Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  14. As a special exception, you may use this file as part of a free software
  15. library without restriction. Specifically, if other files instantiate
  16. templates or use macros or inline functions from this file, or you compile
  17. this file and link it with other files to produce an executable, this
  18. file does not by itself cause the resulting executable to be covered by
  19. the GNU General Public License. This exception does not however
  20. invalidate any other reasons why the executable file might be covered by
  21. the GNU General Public License.
  22. */
  23. #ifndef __TBB_concurrent_vector_H
  24. #define __TBB_concurrent_vector_H
  25. #include "tbb_stddef.h"
  26. #include "tbb_exception.h"
  27. #include "atomic.h"
  28. #include "cache_aligned_allocator.h"
  29. #include "blocked_range.h"
  30. #include "tbb_machine.h"
  31. #include "tbb_profiling.h"
  32. #include <new>
  33. #include <cstring> // for memset()
  34. #if !TBB_USE_EXCEPTIONS && _MSC_VER
  35. // Suppress "C++ exception handler used, but unwind semantics are not enabled" warning in STL headers
  36. #pragma warning (push)
  37. #pragma warning (disable: 4530)
  38. #endif
  39. #include <algorithm>
  40. #include <iterator>
  41. #if !TBB_USE_EXCEPTIONS && _MSC_VER
  42. #pragma warning (pop)
  43. #endif
  44. #if _MSC_VER==1500 && !__INTEL_COMPILER
  45. // VS2008/VC9 seems to have an issue; limits pull in math.h
  46. #pragma warning( push )
  47. #pragma warning( disable: 4985 )
  48. #endif
  49. #include <limits> /* std::numeric_limits */
  50. #if _MSC_VER==1500 && !__INTEL_COMPILER
  51. #pragma warning( pop )
  52. #endif
  53. #if __TBB_INITIALIZER_LISTS_PRESENT
  54. #include <initializer_list>
  55. #endif
  56. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && defined(_Wp64)
  57. // Workaround for overzealous compiler warnings in /Wp64 mode
  58. #pragma warning (push)
  59. #pragma warning (disable: 4267)
  60. #endif
  61. namespace tbb {
  62. template<typename T, class A = cache_aligned_allocator<T> >
  63. class concurrent_vector;
  64. template<typename Container, typename Value>
  65. class vector_iterator;
  66. //! @cond INTERNAL
  67. namespace internal {
  68. //! Bad allocation marker
  69. static void *const vector_allocation_error_flag = reinterpret_cast<void*>(size_t(63));
  70. //! Base class of concurrent vector implementation.
  71. /** @ingroup containers */
  72. class concurrent_vector_base_v3 {
  73. protected:
  74. // Basic types declarations
  75. typedef size_t segment_index_t;
  76. typedef size_t size_type;
  77. // Using enumerations due to Mac linking problems of static const variables
  78. enum {
  79. // Size constants
  80. default_initial_segments = 1, // 2 initial items
  81. //! Number of slots for segment's pointers inside the class
  82. pointers_per_short_table = 3, // to fit into 8 words of entire structure
  83. pointers_per_long_table = sizeof(segment_index_t) * 8 // one segment per bit
  84. };
  85. // Segment pointer. Can be zero-initialized
  86. struct segment_t {
  87. void* array;
  88. #if TBB_USE_ASSERT
  89. ~segment_t() {
  90. __TBB_ASSERT( array <= internal::vector_allocation_error_flag, "should have been freed by clear" );
  91. }
  92. #endif /* TBB_USE_ASSERT */
  93. };
  94. // Data fields
  95. //! allocator function pointer
  96. void* (*vector_allocator_ptr)(concurrent_vector_base_v3 &, size_t);
  97. //! count of segments in the first block
  98. atomic<size_type> my_first_block;
  99. //! Requested size of vector
  100. atomic<size_type> my_early_size;
  101. //! Pointer to the segments table
  102. atomic<segment_t*> my_segment;
  103. //! embedded storage of segment pointers
  104. segment_t my_storage[pointers_per_short_table];
  105. // Methods
  106. concurrent_vector_base_v3() {
  107. my_early_size = 0;
  108. my_first_block = 0; // here is not default_initial_segments
  109. for( segment_index_t i = 0; i < pointers_per_short_table; i++)
  110. my_storage[i].array = NULL;
  111. my_segment = my_storage;
  112. }
  113. __TBB_EXPORTED_METHOD ~concurrent_vector_base_v3();
  114. //these helpers methods use the fact that segments are allocated so
  115. //that every segment size is a (increasing) power of 2.
  116. //with one exception 0 segment has size of 2 as well segment 1;
  117. //e.g. size of segment with index of 3 is 2^3=8;
  118. static segment_index_t segment_index_of( size_type index ) {
  119. return segment_index_t( __TBB_Log2( index|1 ) );
  120. }
  121. static segment_index_t segment_base( segment_index_t k ) {
  122. return (segment_index_t(1)<<k & ~segment_index_t(1));
  123. }
  124. static inline segment_index_t segment_base_index_of( segment_index_t &index ) {
  125. segment_index_t k = segment_index_of( index );
  126. index -= segment_base(k);
  127. return k;
  128. }
  129. static size_type segment_size( segment_index_t k ) {
  130. return segment_index_t(1)<<k; // fake value for k==0
  131. }
  132. static bool is_first_element_in_segment(size_type element_index){
  133. //check if element_index is a power of 2 that is at least 2.
  134. //The idea is to detect if the iterator crosses a segment boundary,
  135. //and 2 is the minimal index for which it's true
  136. __TBB_ASSERT(element_index, "there should be no need to call "
  137. "is_first_element_in_segment for 0th element" );
  138. return is_power_of_two_factor( element_index, 2 );
  139. }
  140. //! An operation on an n-element array starting at begin.
  141. typedef void (__TBB_EXPORTED_FUNC *internal_array_op1)(void* begin, size_type n );
  142. //! An operation on n-element destination array and n-element source array.
  143. typedef void (__TBB_EXPORTED_FUNC *internal_array_op2)(void* dst, const void* src, size_type n );
  144. //! Internal structure for compact()
  145. struct internal_segments_table {
  146. segment_index_t first_block;
  147. void* table[pointers_per_long_table];
  148. };
  149. void __TBB_EXPORTED_METHOD internal_reserve( size_type n, size_type element_size, size_type max_size );
  150. size_type __TBB_EXPORTED_METHOD internal_capacity() const;
  151. void internal_grow( size_type start, size_type finish, size_type element_size, internal_array_op2 init, const void *src );
  152. size_type __TBB_EXPORTED_METHOD internal_grow_by( size_type delta, size_type element_size, internal_array_op2 init, const void *src );
  153. void* __TBB_EXPORTED_METHOD internal_push_back( size_type element_size, size_type& index );
  154. segment_index_t __TBB_EXPORTED_METHOD internal_clear( internal_array_op1 destroy );
  155. void* __TBB_EXPORTED_METHOD internal_compact( size_type element_size, void *table, internal_array_op1 destroy, internal_array_op2 copy );
  156. void __TBB_EXPORTED_METHOD internal_copy( const concurrent_vector_base_v3& src, size_type element_size, internal_array_op2 copy );
  157. void __TBB_EXPORTED_METHOD internal_assign( const concurrent_vector_base_v3& src, size_type element_size,
  158. internal_array_op1 destroy, internal_array_op2 assign, internal_array_op2 copy );
  159. //! Obsolete
  160. void __TBB_EXPORTED_METHOD internal_throw_exception(size_type) const;
  161. void __TBB_EXPORTED_METHOD internal_swap(concurrent_vector_base_v3& v);
  162. void __TBB_EXPORTED_METHOD internal_resize( size_type n, size_type element_size, size_type max_size, const void *src,
  163. internal_array_op1 destroy, internal_array_op2 init );
  164. size_type __TBB_EXPORTED_METHOD internal_grow_to_at_least_with_result( size_type new_size, size_type element_size, internal_array_op2 init, const void *src );
  165. //! Deprecated entry point for backwards compatibility to TBB 2.1.
  166. void __TBB_EXPORTED_METHOD internal_grow_to_at_least( size_type new_size, size_type element_size, internal_array_op2 init, const void *src );
  167. private:
  168. //! Private functionality
  169. class helper;
  170. friend class helper;
  171. template<typename Container, typename Value>
  172. friend class vector_iterator;
  173. };
  174. typedef concurrent_vector_base_v3 concurrent_vector_base;
  175. //! Meets requirements of a forward iterator for STL and a Value for a blocked_range.*/
  176. /** Value is either the T or const T type of the container.
  177. @ingroup containers */
  178. template<typename Container, typename Value>
  179. class vector_iterator
  180. {
  181. //! concurrent_vector over which we are iterating.
  182. Container* my_vector;
  183. //! Index into the vector
  184. size_t my_index;
  185. //! Caches my_vector-&gt;internal_subscript(my_index)
  186. /** NULL if cached value is not available */
  187. mutable Value* my_item;
  188. template<typename C, typename T>
  189. friend vector_iterator<C,T> operator+( ptrdiff_t offset, const vector_iterator<C,T>& v );
  190. template<typename C, typename T, typename U>
  191. friend bool operator==( const vector_iterator<C,T>& i, const vector_iterator<C,U>& j );
  192. template<typename C, typename T, typename U>
  193. friend bool operator<( const vector_iterator<C,T>& i, const vector_iterator<C,U>& j );
  194. template<typename C, typename T, typename U>
  195. friend ptrdiff_t operator-( const vector_iterator<C,T>& i, const vector_iterator<C,U>& j );
  196. template<typename C, typename U>
  197. friend class internal::vector_iterator;
  198. #if !defined(_MSC_VER) || defined(__INTEL_COMPILER)
  199. template<typename T, class A>
  200. friend class tbb::concurrent_vector;
  201. #else
  202. public: // workaround for MSVC
  203. #endif
  204. vector_iterator( const Container& vector, size_t index, void *ptr = 0 ) :
  205. my_vector(const_cast<Container*>(&vector)),
  206. my_index(index),
  207. my_item(static_cast<Value*>(ptr))
  208. {}
  209. public:
  210. //! Default constructor
  211. vector_iterator() : my_vector(NULL), my_index(~size_t(0)), my_item(NULL) {}
  212. vector_iterator( const vector_iterator<Container,typename Container::value_type>& other ) :
  213. my_vector(other.my_vector),
  214. my_index(other.my_index),
  215. my_item(other.my_item)
  216. {}
  217. vector_iterator operator+( ptrdiff_t offset ) const {
  218. return vector_iterator( *my_vector, my_index+offset );
  219. }
  220. vector_iterator &operator+=( ptrdiff_t offset ) {
  221. my_index+=offset;
  222. my_item = NULL;
  223. return *this;
  224. }
  225. vector_iterator operator-( ptrdiff_t offset ) const {
  226. return vector_iterator( *my_vector, my_index-offset );
  227. }
  228. vector_iterator &operator-=( ptrdiff_t offset ) {
  229. my_index-=offset;
  230. my_item = NULL;
  231. return *this;
  232. }
  233. Value& operator*() const {
  234. Value* item = my_item;
  235. if( !item ) {
  236. item = my_item = &my_vector->internal_subscript(my_index);
  237. }
  238. __TBB_ASSERT( item==&my_vector->internal_subscript(my_index), "corrupt cache" );
  239. return *item;
  240. }
  241. Value& operator[]( ptrdiff_t k ) const {
  242. return my_vector->internal_subscript(my_index+k);
  243. }
  244. Value* operator->() const {return &operator*();}
  245. //! Pre increment
  246. vector_iterator& operator++() {
  247. size_t element_index = ++my_index;
  248. if( my_item ) {
  249. //TODO: consider using of knowledge about "first_block optimization" here as well?
  250. if( concurrent_vector_base::is_first_element_in_segment(element_index)) {
  251. //if the iterator crosses a segment boundary, the pointer become invalid
  252. //as possibly next segment is in another memory location
  253. my_item= NULL;
  254. } else {
  255. ++my_item;
  256. }
  257. }
  258. return *this;
  259. }
  260. //! Pre decrement
  261. vector_iterator& operator--() {
  262. __TBB_ASSERT( my_index>0, "operator--() applied to iterator already at beginning of concurrent_vector" );
  263. size_t element_index = my_index--;
  264. if( my_item ) {
  265. if(concurrent_vector_base::is_first_element_in_segment(element_index)) {
  266. //if the iterator crosses a segment boundary, the pointer become invalid
  267. //as possibly next segment is in another memory location
  268. my_item= NULL;
  269. } else {
  270. --my_item;
  271. }
  272. }
  273. return *this;
  274. }
  275. //! Post increment
  276. vector_iterator operator++(int) {
  277. vector_iterator result = *this;
  278. operator++();
  279. return result;
  280. }
  281. //! Post decrement
  282. vector_iterator operator--(int) {
  283. vector_iterator result = *this;
  284. operator--();
  285. return result;
  286. }
  287. // STL support
  288. typedef ptrdiff_t difference_type;
  289. typedef Value value_type;
  290. typedef Value* pointer;
  291. typedef Value& reference;
  292. typedef std::random_access_iterator_tag iterator_category;
  293. };
  294. template<typename Container, typename T>
  295. vector_iterator<Container,T> operator+( ptrdiff_t offset, const vector_iterator<Container,T>& v ) {
  296. return vector_iterator<Container,T>( *v.my_vector, v.my_index+offset );
  297. }
  298. template<typename Container, typename T, typename U>
  299. bool operator==( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  300. return i.my_index==j.my_index && i.my_vector == j.my_vector;
  301. }
  302. template<typename Container, typename T, typename U>
  303. bool operator!=( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  304. return !(i==j);
  305. }
  306. template<typename Container, typename T, typename U>
  307. bool operator<( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  308. return i.my_index<j.my_index;
  309. }
  310. template<typename Container, typename T, typename U>
  311. bool operator>( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  312. return j<i;
  313. }
  314. template<typename Container, typename T, typename U>
  315. bool operator>=( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  316. return !(i<j);
  317. }
  318. template<typename Container, typename T, typename U>
  319. bool operator<=( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  320. return !(j<i);
  321. }
  322. template<typename Container, typename T, typename U>
  323. ptrdiff_t operator-( const vector_iterator<Container,T>& i, const vector_iterator<Container,U>& j ) {
  324. return ptrdiff_t(i.my_index)-ptrdiff_t(j.my_index);
  325. }
  326. template<typename T, class A>
  327. class allocator_base {
  328. public:
  329. typedef typename A::template
  330. rebind<T>::other allocator_type;
  331. allocator_type my_allocator;
  332. allocator_base(const allocator_type &a = allocator_type() ) : my_allocator(a) {}
  333. };
  334. } // namespace internal
  335. //! @endcond
  336. //! Concurrent vector container
  337. /** concurrent_vector is a container having the following main properties:
  338. - It provides random indexed access to its elements. The index of the first element is 0.
  339. - It ensures safe concurrent growing its size (different threads can safely append new elements).
  340. - Adding new elements does not invalidate existing iterators and does not change indices of existing items.
  341. @par Compatibility
  342. The class meets all Container Requirements and Reversible Container Requirements from
  343. C++ Standard (See ISO/IEC 14882:2003(E), clause 23.1). But it doesn't meet
  344. Sequence Requirements due to absence of insert() and erase() methods.
  345. @par Exception Safety
  346. Methods working with memory allocation and/or new elements construction can throw an
  347. exception if allocator fails to allocate memory or element's default constructor throws one.
  348. Concurrent vector's element of type T must conform to the following requirements:
  349. - Throwing an exception is forbidden for destructor of T.
  350. - Default constructor of T must not throw an exception OR its non-virtual destructor must safely work when its object memory is zero-initialized.
  351. .
  352. Otherwise, the program's behavior is undefined.
  353. @par
  354. If an exception happens inside growth or assignment operation, an instance of the vector becomes invalid unless it is stated otherwise in the method documentation.
  355. Invalid state means:
  356. - There are no guarantees that all items were initialized by a constructor. The rest of items is zero-filled, including item where exception happens.
  357. - An invalid vector instance cannot be repaired; it is unable to grow anymore.
  358. - Size and capacity reported by the vector are incorrect, and calculated as if the failed operation were successful.
  359. - Attempt to access not allocated elements using operator[] or iterators results in access violation or segmentation fault exception, and in case of using at() method a C++ exception is thrown.
  360. .
  361. If a concurrent grow operation successfully completes, all the elements it has added to the vector will remain valid and accessible even if one of subsequent grow operations fails.
  362. @par Fragmentation
  363. Unlike an STL vector, a concurrent_vector does not move existing elements if it needs
  364. to allocate more memory. The container is divided into a series of contiguous arrays of
  365. elements. The first reservation, growth, or assignment operation determines the size of
  366. the first array. Using small number of elements as initial size incurs fragmentation that
  367. may increase element access time. Internal layout can be optimized by method compact() that
  368. merges several smaller arrays into one solid.
  369. @par Changes since TBB 2.1
  370. - Fixed guarantees of concurrent_vector::size() and grow_to_at_least() methods to assure elements are allocated.
  371. - Methods end()/rbegin()/back() are partly thread-safe since they use size() to get the end of vector
  372. - Added resize() methods (not thread-safe)
  373. - Added cbegin/cend/crbegin/crend methods
  374. - Changed return type of methods grow* and push_back to iterator
  375. @par Changes since TBB 2.0
  376. - Implemented exception-safety guarantees
  377. - Added template argument for allocator
  378. - Added allocator argument in constructors
  379. - Faster index calculation
  380. - First growth call specifies a number of segments to be merged in the first allocation.
  381. - Fixed memory blow up for swarm of vector's instances of small size
  382. - Added grow_by(size_type n, const_reference t) growth using copying constructor to init new items.
  383. - Added STL-like constructors.
  384. - Added operators ==, < and derivatives
  385. - Added at() method, approved for using after an exception was thrown inside the vector
  386. - Added get_allocator() method.
  387. - Added assign() methods
  388. - Added compact() method to defragment first segments
  389. - Added swap() method
  390. - range() defaults on grainsize = 1 supporting auto grainsize algorithms.
  391. @ingroup containers */
  392. template<typename T, class A>
  393. class concurrent_vector: protected internal::allocator_base<T, A>,
  394. private internal::concurrent_vector_base {
  395. private:
  396. template<typename I>
  397. class generic_range_type: public blocked_range<I> {
  398. public:
  399. typedef T value_type;
  400. typedef T& reference;
  401. typedef const T& const_reference;
  402. typedef I iterator;
  403. typedef ptrdiff_t difference_type;
  404. generic_range_type( I begin_, I end_, size_t grainsize_ = 1) : blocked_range<I>(begin_,end_,grainsize_) {}
  405. template<typename U>
  406. generic_range_type( const generic_range_type<U>& r) : blocked_range<I>(r.begin(),r.end(),r.grainsize()) {}
  407. generic_range_type( generic_range_type& r, split ) : blocked_range<I>(r,split()) {}
  408. };
  409. template<typename C, typename U>
  410. friend class internal::vector_iterator;
  411. public:
  412. //------------------------------------------------------------------------
  413. // STL compatible types
  414. //------------------------------------------------------------------------
  415. typedef internal::concurrent_vector_base_v3::size_type size_type;
  416. typedef typename internal::allocator_base<T, A>::allocator_type allocator_type;
  417. typedef T value_type;
  418. typedef ptrdiff_t difference_type;
  419. typedef T& reference;
  420. typedef const T& const_reference;
  421. typedef T *pointer;
  422. typedef const T *const_pointer;
  423. typedef internal::vector_iterator<concurrent_vector,T> iterator;
  424. typedef internal::vector_iterator<concurrent_vector,const T> const_iterator;
  425. #if !defined(_MSC_VER) || _CPPLIB_VER>=300
  426. // Assume ISO standard definition of std::reverse_iterator
  427. typedef std::reverse_iterator<iterator> reverse_iterator;
  428. typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  429. #else
  430. // Use non-standard std::reverse_iterator
  431. typedef std::reverse_iterator<iterator,T,T&,T*> reverse_iterator;
  432. typedef std::reverse_iterator<const_iterator,T,const T&,const T*> const_reverse_iterator;
  433. #endif /* defined(_MSC_VER) && (_MSC_VER<1300) */
  434. //------------------------------------------------------------------------
  435. // Parallel algorithm support
  436. //------------------------------------------------------------------------
  437. typedef generic_range_type<iterator> range_type;
  438. typedef generic_range_type<const_iterator> const_range_type;
  439. //------------------------------------------------------------------------
  440. // STL compatible constructors & destructors
  441. //------------------------------------------------------------------------
  442. //! Construct empty vector.
  443. explicit concurrent_vector(const allocator_type &a = allocator_type())
  444. : internal::allocator_base<T, A>(a), internal::concurrent_vector_base()
  445. {
  446. vector_allocator_ptr = &internal_allocator;
  447. }
  448. #if __TBB_INITIALIZER_LISTS_PRESENT
  449. //! Constructor from initializer_list
  450. concurrent_vector(std::initializer_list<T> init_list, const allocator_type &a = allocator_type())
  451. : internal::allocator_base<T, A>(a), internal::concurrent_vector_base()
  452. {
  453. vector_allocator_ptr = &internal_allocator;
  454. __TBB_TRY {
  455. internal_assign_iterators(init_list.begin(), init_list.end());
  456. } __TBB_CATCH(...) {
  457. segment_t *table = my_segment;
  458. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  459. __TBB_RETHROW();
  460. }
  461. }
  462. #endif //# __TBB_INITIALIZER_LISTS_PRESENT
  463. //! Copying constructor
  464. concurrent_vector( const concurrent_vector& vector, const allocator_type& a = allocator_type() )
  465. : internal::allocator_base<T, A>(a), internal::concurrent_vector_base()
  466. {
  467. vector_allocator_ptr = &internal_allocator;
  468. __TBB_TRY {
  469. internal_copy(vector, sizeof(T), &copy_array);
  470. } __TBB_CATCH(...) {
  471. segment_t *table = my_segment;
  472. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  473. __TBB_RETHROW();
  474. }
  475. }
  476. //! Copying constructor for vector with different allocator type
  477. template<class M>
  478. concurrent_vector( const concurrent_vector<T, M>& vector, const allocator_type& a = allocator_type() )
  479. : internal::allocator_base<T, A>(a), internal::concurrent_vector_base()
  480. {
  481. vector_allocator_ptr = &internal_allocator;
  482. __TBB_TRY {
  483. internal_copy(vector.internal_vector_base(), sizeof(T), &copy_array);
  484. } __TBB_CATCH(...) {
  485. segment_t *table = my_segment;
  486. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  487. __TBB_RETHROW();
  488. }
  489. }
  490. //! Construction with initial size specified by argument n
  491. explicit concurrent_vector(size_type n)
  492. {
  493. vector_allocator_ptr = &internal_allocator;
  494. __TBB_TRY {
  495. internal_resize( n, sizeof(T), max_size(), NULL, &destroy_array, &initialize_array );
  496. } __TBB_CATCH(...) {
  497. segment_t *table = my_segment;
  498. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  499. __TBB_RETHROW();
  500. }
  501. }
  502. //! Construction with initial size specified by argument n, initialization by copying of t, and given allocator instance
  503. concurrent_vector(size_type n, const_reference t, const allocator_type& a = allocator_type())
  504. : internal::allocator_base<T, A>(a)
  505. {
  506. vector_allocator_ptr = &internal_allocator;
  507. __TBB_TRY {
  508. internal_resize( n, sizeof(T), max_size(), static_cast<const void*>(&t), &destroy_array, &initialize_array_by );
  509. } __TBB_CATCH(...) {
  510. segment_t *table = my_segment;
  511. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  512. __TBB_RETHROW();
  513. }
  514. }
  515. //! Construction with copying iteration range and given allocator instance
  516. template<class I>
  517. concurrent_vector(I first, I last, const allocator_type &a = allocator_type())
  518. : internal::allocator_base<T, A>(a)
  519. {
  520. vector_allocator_ptr = &internal_allocator;
  521. __TBB_TRY {
  522. internal_assign_range(first, last, static_cast<is_integer_tag<std::numeric_limits<I>::is_integer> *>(0) );
  523. } __TBB_CATCH(...) {
  524. segment_t *table = my_segment;
  525. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  526. __TBB_RETHROW();
  527. }
  528. }
  529. //! Assignment
  530. concurrent_vector& operator=( const concurrent_vector& vector ) {
  531. if( this != &vector )
  532. internal_assign(vector, sizeof(T), &destroy_array, &assign_array, &copy_array);
  533. return *this;
  534. }
  535. //TODO: add an template assignment operator? (i.e. with different element type)
  536. //! Assignment for vector with different allocator type
  537. template<class M>
  538. concurrent_vector& operator=( const concurrent_vector<T, M>& vector ) {
  539. if( static_cast<void*>( this ) != static_cast<const void*>( &vector ) )
  540. internal_assign(vector.internal_vector_base(),
  541. sizeof(T), &destroy_array, &assign_array, &copy_array);
  542. return *this;
  543. }
  544. #if __TBB_INITIALIZER_LISTS_PRESENT
  545. //! Assignment for initializer_list
  546. concurrent_vector& operator=( const std::initializer_list<T> & init_list) {
  547. internal_clear(&destroy_array);
  548. internal_assign_iterators(init_list.begin(), init_list.end());
  549. return *this;
  550. }
  551. #endif //#if __TBB_INITIALIZER_LISTS_PRESENT
  552. //------------------------------------------------------------------------
  553. // Concurrent operations
  554. //------------------------------------------------------------------------
  555. //TODO: consider adding overload of grow_by accepting range of iterators: grow_by(iterator,iterator)
  556. //TODO: consider adding overload of grow_by accepting initializer_list: grow_by(std::initializer_list<T>), as a analogy to std::vector::insert(initializer_list)
  557. //! Grow by "delta" elements.
  558. #if TBB_DEPRECATED
  559. /** Returns old size. */
  560. size_type grow_by( size_type delta ) {
  561. return delta ? internal_grow_by( delta, sizeof(T), &initialize_array, NULL ) : my_early_size;
  562. }
  563. #else
  564. /** Returns iterator pointing to the first new element. */
  565. iterator grow_by( size_type delta ) {
  566. return iterator(*this, delta ? internal_grow_by( delta, sizeof(T), &initialize_array, NULL ) : my_early_size);
  567. }
  568. #endif
  569. //! Grow by "delta" elements using copying constructor.
  570. #if TBB_DEPRECATED
  571. /** Returns old size. */
  572. size_type grow_by( size_type delta, const_reference t ) {
  573. return delta ? internal_grow_by( delta, sizeof(T), &initialize_array_by, static_cast<const void*>(&t) ) : my_early_size;
  574. }
  575. #else
  576. /** Returns iterator pointing to the first new element. */
  577. iterator grow_by( size_type delta, const_reference t ) {
  578. return iterator(*this, delta ? internal_grow_by( delta, sizeof(T), &initialize_array_by, static_cast<const void*>(&t) ) : my_early_size);
  579. }
  580. #endif
  581. //! Append minimal sequence of elements such that size()>=n.
  582. #if TBB_DEPRECATED
  583. /** The new elements are default constructed. Blocks until all elements in range [0..n) are allocated.
  584. May return while other elements are being constructed by other threads. */
  585. void grow_to_at_least( size_type n ) {
  586. if( n ) internal_grow_to_at_least_with_result( n, sizeof(T), &initialize_array, NULL );
  587. };
  588. #else
  589. /** The new elements are default constructed. Blocks until all elements in range [0..n) are allocated.
  590. May return while other elements are being constructed by other threads.
  591. Returns iterator that points to beginning of appended sequence.
  592. If no elements were appended, returns iterator pointing to nth element. */
  593. iterator grow_to_at_least( size_type n ) {
  594. size_type m=0;
  595. if( n ) {
  596. m = internal_grow_to_at_least_with_result( n, sizeof(T), &initialize_array, NULL );
  597. if( m>n ) m=n;
  598. }
  599. return iterator(*this, m);
  600. };
  601. #endif
  602. //! Push item
  603. #if TBB_DEPRECATED
  604. size_type push_back( const_reference item )
  605. #else
  606. /** Returns iterator pointing to the new element. */
  607. iterator push_back( const_reference item )
  608. #endif
  609. {
  610. size_type k;
  611. void *ptr = internal_push_back(sizeof(T),k);
  612. internal_loop_guide loop(1, ptr);
  613. loop.init(&item);
  614. #if TBB_DEPRECATED
  615. return k;
  616. #else
  617. return iterator(*this, k, ptr);
  618. #endif
  619. }
  620. //! Get reference to element at given index.
  621. /** This method is thread-safe for concurrent reads, and also while growing the vector,
  622. as long as the calling thread has checked that index&lt;size(). */
  623. reference operator[]( size_type index ) {
  624. return internal_subscript(index);
  625. }
  626. //! Get const reference to element at given index.
  627. const_reference operator[]( size_type index ) const {
  628. return internal_subscript(index);
  629. }
  630. //! Get reference to element at given index. Throws exceptions on errors.
  631. reference at( size_type index ) {
  632. return internal_subscript_with_exceptions(index);
  633. }
  634. //! Get const reference to element at given index. Throws exceptions on errors.
  635. const_reference at( size_type index ) const {
  636. return internal_subscript_with_exceptions(index);
  637. }
  638. //! Get range for iterating with parallel algorithms
  639. range_type range( size_t grainsize = 1 ) {
  640. return range_type( begin(), end(), grainsize );
  641. }
  642. //! Get const range for iterating with parallel algorithms
  643. const_range_type range( size_t grainsize = 1 ) const {
  644. return const_range_type( begin(), end(), grainsize );
  645. }
  646. //------------------------------------------------------------------------
  647. // Capacity
  648. //------------------------------------------------------------------------
  649. //! Return size of vector. It may include elements under construction
  650. size_type size() const {
  651. size_type sz = my_early_size, cp = internal_capacity();
  652. return cp < sz ? cp : sz;
  653. }
  654. //! Return false if vector is not empty or has elements under construction at least.
  655. bool empty() const {return !my_early_size;}
  656. //! Maximum size to which array can grow without allocating more memory. Concurrent allocations are not included in the value.
  657. size_type capacity() const {return internal_capacity();}
  658. //! Allocate enough space to grow to size n without having to allocate more memory later.
  659. /** Like most of the methods provided for STL compatibility, this method is *not* thread safe.
  660. The capacity afterwards may be bigger than the requested reservation. */
  661. void reserve( size_type n ) {
  662. if( n )
  663. internal_reserve(n, sizeof(T), max_size());
  664. }
  665. //! Resize the vector. Not thread-safe.
  666. void resize( size_type n ) {
  667. internal_resize( n, sizeof(T), max_size(), NULL, &destroy_array, &initialize_array );
  668. }
  669. //! Resize the vector, copy t for new elements. Not thread-safe.
  670. void resize( size_type n, const_reference t ) {
  671. internal_resize( n, sizeof(T), max_size(), static_cast<const void*>(&t), &destroy_array, &initialize_array_by );
  672. }
  673. #if TBB_DEPRECATED
  674. //! An alias for shrink_to_fit()
  675. void compact() {shrink_to_fit();}
  676. #endif /* TBB_DEPRECATED */
  677. //! Optimize memory usage and fragmentation.
  678. void shrink_to_fit();
  679. //! Upper bound on argument to reserve.
  680. size_type max_size() const {return (~size_type(0))/sizeof(T);}
  681. //------------------------------------------------------------------------
  682. // STL support
  683. //------------------------------------------------------------------------
  684. //! start iterator
  685. iterator begin() {return iterator(*this,0);}
  686. //! end iterator
  687. iterator end() {return iterator(*this,size());}
  688. //! start const iterator
  689. const_iterator begin() const {return const_iterator(*this,0);}
  690. //! end const iterator
  691. const_iterator end() const {return const_iterator(*this,size());}
  692. //! start const iterator
  693. const_iterator cbegin() const {return const_iterator(*this,0);}
  694. //! end const iterator
  695. const_iterator cend() const {return const_iterator(*this,size());}
  696. //! reverse start iterator
  697. reverse_iterator rbegin() {return reverse_iterator(end());}
  698. //! reverse end iterator
  699. reverse_iterator rend() {return reverse_iterator(begin());}
  700. //! reverse start const iterator
  701. const_reverse_iterator rbegin() const {return const_reverse_iterator(end());}
  702. //! reverse end const iterator
  703. const_reverse_iterator rend() const {return const_reverse_iterator(begin());}
  704. //! reverse start const iterator
  705. const_reverse_iterator crbegin() const {return const_reverse_iterator(end());}
  706. //! reverse end const iterator
  707. const_reverse_iterator crend() const {return const_reverse_iterator(begin());}
  708. //! the first item
  709. reference front() {
  710. __TBB_ASSERT( size()>0, NULL);
  711. return static_cast<T*>(my_segment[0].array)[0];
  712. }
  713. //! the first item const
  714. const_reference front() const {
  715. __TBB_ASSERT( size()>0, NULL);
  716. return static_cast<const T*>(my_segment[0].array)[0];
  717. }
  718. //! the last item
  719. reference back() {
  720. __TBB_ASSERT( size()>0, NULL);
  721. return internal_subscript( size()-1 );
  722. }
  723. //! the last item const
  724. const_reference back() const {
  725. __TBB_ASSERT( size()>0, NULL);
  726. return internal_subscript( size()-1 );
  727. }
  728. //! return allocator object
  729. allocator_type get_allocator() const { return this->my_allocator; }
  730. //! assign n items by copying t item
  731. void assign(size_type n, const_reference t) {
  732. clear();
  733. internal_resize( n, sizeof(T), max_size(), static_cast<const void*>(&t), &destroy_array, &initialize_array_by );
  734. }
  735. //! assign range [first, last)
  736. template<class I>
  737. void assign(I first, I last) {
  738. clear(); internal_assign_range( first, last, static_cast<is_integer_tag<std::numeric_limits<I>::is_integer> *>(0) );
  739. }
  740. #if __TBB_INITIALIZER_LISTS_PRESENT
  741. //! assigns an initializer list
  742. void assign(std::initializer_list<T> init_list) {
  743. clear(); internal_assign_iterators( init_list.begin(), init_list.end());
  744. }
  745. #endif //# __TBB_INITIALIZER_LISTS_PRESENT
  746. //! swap two instances
  747. void swap(concurrent_vector &vector) {
  748. if( this != &vector ) {
  749. concurrent_vector_base_v3::internal_swap(static_cast<concurrent_vector_base_v3&>(vector));
  750. std::swap(this->my_allocator, vector.my_allocator);
  751. }
  752. }
  753. //! Clear container while keeping memory allocated.
  754. /** To free up the memory, use in conjunction with method compact(). Not thread safe **/
  755. void clear() {
  756. internal_clear(&destroy_array);
  757. }
  758. //! Clear and destroy vector.
  759. ~concurrent_vector() {
  760. segment_t *table = my_segment;
  761. internal_free_segments( reinterpret_cast<void**>(table), internal_clear(&destroy_array), my_first_block );
  762. // base class destructor call should be then
  763. }
  764. const internal::concurrent_vector_base_v3 &internal_vector_base() const { return *this; }
  765. private:
  766. //! Allocate k items
  767. static void *internal_allocator(internal::concurrent_vector_base_v3 &vb, size_t k) {
  768. return static_cast<concurrent_vector<T, A>&>(vb).my_allocator.allocate(k);
  769. }
  770. //! Free k segments from table
  771. void internal_free_segments(void *table[], segment_index_t k, segment_index_t first_block);
  772. //! Get reference to element at given index.
  773. T& internal_subscript( size_type index ) const;
  774. //! Get reference to element at given index with errors checks
  775. T& internal_subscript_with_exceptions( size_type index ) const;
  776. //! assign n items by copying t
  777. void internal_assign_n(size_type n, const_pointer p) {
  778. internal_resize( n, sizeof(T), max_size(), static_cast<const void*>(p), &destroy_array, p? &initialize_array_by : &initialize_array );
  779. }
  780. //! helper class
  781. template<bool B> class is_integer_tag;
  782. //! assign integer items by copying when arguments are treated as iterators. See C++ Standard 2003 23.1.1p9
  783. template<class I>
  784. void internal_assign_range(I first, I last, is_integer_tag<true> *) {
  785. internal_assign_n(static_cast<size_type>(first), &static_cast<T&>(last));
  786. }
  787. //! inline proxy assign by iterators
  788. template<class I>
  789. void internal_assign_range(I first, I last, is_integer_tag<false> *) {
  790. internal_assign_iterators(first, last);
  791. }
  792. //! assign by iterators
  793. template<class I>
  794. void internal_assign_iterators(I first, I last);
  795. //! Construct n instances of T, starting at "begin".
  796. static void __TBB_EXPORTED_FUNC initialize_array( void* begin, const void*, size_type n );
  797. //! Construct n instances of T, starting at "begin".
  798. static void __TBB_EXPORTED_FUNC initialize_array_by( void* begin, const void* src, size_type n );
  799. //! Construct n instances of T, starting at "begin".
  800. static void __TBB_EXPORTED_FUNC copy_array( void* dst, const void* src, size_type n );
  801. //! Assign n instances of T, starting at "begin".
  802. static void __TBB_EXPORTED_FUNC assign_array( void* dst, const void* src, size_type n );
  803. //! Destroy n instances of T, starting at "begin".
  804. static void __TBB_EXPORTED_FUNC destroy_array( void* begin, size_type n );
  805. //! Exception-aware helper class for filling a segment by exception-danger operators of user class
  806. class internal_loop_guide : internal::no_copy {
  807. public:
  808. const pointer array;
  809. const size_type n;
  810. size_type i;
  811. internal_loop_guide(size_type ntrials, void *ptr)
  812. : array(static_cast<pointer>(ptr)), n(ntrials), i(0) {}
  813. void init() { for(; i < n; ++i) new( &array[i] ) T(); }
  814. void init(const void *src) { for(; i < n; ++i) new( &array[i] ) T(*static_cast<const T*>(src)); }
  815. void copy(const void *src) { for(; i < n; ++i) new( &array[i] ) T(static_cast<const T*>(src)[i]); }
  816. void assign(const void *src) { for(; i < n; ++i) array[i] = static_cast<const T*>(src)[i]; }
  817. //TODO: rename to construct_range
  818. template<class I> void iterate(I &src) { for(; i < n; ++i, ++src) new( &array[i] ) T( *src ); }
  819. ~internal_loop_guide() {
  820. if(i < n) // if exception raised, do zeroing on the rest of items
  821. std::memset(array+i, 0, (n-i)*sizeof(value_type));
  822. }
  823. };
  824. };
  825. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
  826. #pragma warning (push)
  827. #pragma warning (disable: 4701) // potentially uninitialized local variable "old"
  828. #endif
  829. template<typename T, class A>
  830. void concurrent_vector<T, A>::shrink_to_fit() {
  831. internal_segments_table old;
  832. __TBB_TRY {
  833. if( internal_compact( sizeof(T), &old, &destroy_array, &copy_array ) )
  834. internal_free_segments( old.table, pointers_per_long_table, old.first_block ); // free joined and unnecessary segments
  835. } __TBB_CATCH(...) {
  836. if( old.first_block ) // free segment allocated for compacting. Only for support of exceptions in ctor of user T[ype]
  837. internal_free_segments( old.table, 1, old.first_block );
  838. __TBB_RETHROW();
  839. }
  840. }
  841. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
  842. #pragma warning (pop)
  843. #endif // warning 4701 is back
  844. template<typename T, class A>
  845. void concurrent_vector<T, A>::internal_free_segments(void *table[], segment_index_t k, segment_index_t first_block) {
  846. // Free the arrays
  847. while( k > first_block ) {
  848. --k;
  849. T* array = static_cast<T*>(table[k]);
  850. table[k] = NULL;
  851. if( array > internal::vector_allocation_error_flag ) // check for correct segment pointer
  852. this->my_allocator.deallocate( array, segment_size(k) );
  853. }
  854. T* array = static_cast<T*>(table[0]);
  855. if( array > internal::vector_allocation_error_flag ) {
  856. __TBB_ASSERT( first_block > 0, NULL );
  857. while(k > 0) table[--k] = NULL;
  858. this->my_allocator.deallocate( array, segment_size(first_block) );
  859. }
  860. }
  861. template<typename T, class A>
  862. T& concurrent_vector<T, A>::internal_subscript( size_type index ) const {
  863. __TBB_ASSERT( index < my_early_size, "index out of bounds" );
  864. size_type j = index;
  865. segment_index_t k = segment_base_index_of( j );
  866. __TBB_ASSERT( (segment_t*)my_segment != my_storage || k < pointers_per_short_table, "index is being allocated" );
  867. // no need in __TBB_load_with_acquire since thread works in own space or gets
  868. T* array = static_cast<T*>( tbb::internal::itt_hide_load_word(my_segment[k].array));
  869. __TBB_ASSERT( array != internal::vector_allocation_error_flag, "the instance is broken by bad allocation. Use at() instead" );
  870. __TBB_ASSERT( array, "index is being allocated" );
  871. return array[j];
  872. }
  873. template<typename T, class A>
  874. T& concurrent_vector<T, A>::internal_subscript_with_exceptions( size_type index ) const {
  875. if( index >= my_early_size )
  876. internal::throw_exception(internal::eid_out_of_range); // throw std::out_of_range
  877. size_type j = index;
  878. segment_index_t k = segment_base_index_of( j );
  879. if( (segment_t*)my_segment == my_storage && k >= pointers_per_short_table )
  880. internal::throw_exception(internal::eid_segment_range_error); // throw std::range_error
  881. void *array = my_segment[k].array; // no need in __TBB_load_with_acquire
  882. if( array <= internal::vector_allocation_error_flag ) // check for correct segment pointer
  883. internal::throw_exception(internal::eid_index_range_error); // throw std::range_error
  884. return static_cast<T*>(array)[j];
  885. }
  886. template<typename T, class A> template<class I>
  887. void concurrent_vector<T, A>::internal_assign_iterators(I first, I last) {
  888. __TBB_ASSERT(my_early_size == 0, NULL);
  889. size_type n = std::distance(first, last);
  890. if( !n ) return;
  891. internal_reserve(n, sizeof(T), max_size());
  892. my_early_size = n;
  893. segment_index_t k = 0;
  894. size_type sz = segment_size( my_first_block );
  895. while( sz < n ) {
  896. internal_loop_guide loop(sz, my_segment[k].array);
  897. loop.iterate(first);
  898. n -= sz;
  899. if( !k ) k = my_first_block;
  900. else { ++k; sz <<= 1; }
  901. }
  902. internal_loop_guide loop(n, my_segment[k].array);
  903. loop.iterate(first);
  904. }
  905. template<typename T, class A>
  906. void concurrent_vector<T, A>::initialize_array( void* begin, const void *, size_type n ) {
  907. internal_loop_guide loop(n, begin); loop.init();
  908. }
  909. template<typename T, class A>
  910. void concurrent_vector<T, A>::initialize_array_by( void* begin, const void *src, size_type n ) {
  911. internal_loop_guide loop(n, begin); loop.init(src);
  912. }
  913. template<typename T, class A>
  914. void concurrent_vector<T, A>::copy_array( void* dst, const void* src, size_type n ) {
  915. internal_loop_guide loop(n, dst); loop.copy(src);
  916. }
  917. template<typename T, class A>
  918. void concurrent_vector<T, A>::assign_array( void* dst, const void* src, size_type n ) {
  919. internal_loop_guide loop(n, dst); loop.assign(src);
  920. }
  921. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
  922. // Workaround for overzealous compiler warning
  923. #pragma warning (push)
  924. #pragma warning (disable: 4189)
  925. #endif
  926. template<typename T, class A>
  927. void concurrent_vector<T, A>::destroy_array( void* begin, size_type n ) {
  928. T* array = static_cast<T*>(begin);
  929. for( size_type j=n; j>0; --j )
  930. array[j-1].~T(); // destructors are supposed to not throw any exceptions
  931. }
  932. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
  933. #pragma warning (pop)
  934. #endif // warning 4189 is back
  935. // concurrent_vector's template functions
  936. template<typename T, class A1, class A2>
  937. inline bool operator==(const concurrent_vector<T, A1> &a, const concurrent_vector<T, A2> &b) {
  938. // Simply: return a.size() == b.size() && std::equal(a.begin(), a.end(), b.begin());
  939. if(a.size() != b.size()) return false;
  940. typename concurrent_vector<T, A1>::const_iterator i(a.begin());
  941. typename concurrent_vector<T, A2>::const_iterator j(b.begin());
  942. for(; i != a.end(); ++i, ++j)
  943. if( !(*i == *j) ) return false;
  944. return true;
  945. }
  946. template<typename T, class A1, class A2>
  947. inline bool operator!=(const concurrent_vector<T, A1> &a, const concurrent_vector<T, A2> &b)
  948. { return !(a == b); }
  949. template<typename T, class A1, class A2>
  950. inline bool operator<(const concurrent_vector<T, A1> &a, const concurrent_vector<T, A2> &b)
  951. { return (std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end())); }
  952. template<typename T, class A1, class A2>
  953. inline bool operator>(const concurrent_vector<T, A1> &a, const concurrent_vector<T, A2> &b)
  954. { return b < a; }
  955. template<typename T, class A1, class A2>
  956. inline bool operator<=(const concurrent_vector<T, A1> &a, const concurrent_vector<T, A2> &b)
  957. { return !(b < a); }
  958. template<typename T, class A1, class A2>
  959. inline bool operator>=(const concurrent_vector<T, A1> &a, const concurrent_vector<T, A2> &b)
  960. { return !(a < b); }
  961. template<typename T, class A>
  962. inline void swap(concurrent_vector<T, A> &a, concurrent_vector<T, A> &b)
  963. { a.swap( b ); }
  964. } // namespace tbb
  965. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && defined(_Wp64)
  966. #pragma warning (pop)
  967. #endif // warning 4267 is back
  968. #endif /* __TBB_concurrent_vector_H */