icp.hpp 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. //
  2. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  3. //
  4. // By downloading, copying, installing or using the software you agree to this license.
  5. // If you do not agree to this license, do not download, install,
  6. // copy or use the software.
  7. //
  8. //
  9. // License Agreement
  10. // For Open Source Computer Vision Library
  11. //
  12. // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
  13. // Third party copyrights are property of their respective owners.
  14. //
  15. // Redistribution and use in source and binary forms, with or without modification,
  16. // are permitted provided that the following conditions are met:
  17. //
  18. // * Redistribution's of source code must retain the above copyright notice,
  19. // this list of conditions and the following disclaimer.
  20. //
  21. // * Redistribution's in binary form must reproduce the above copyright notice,
  22. // this list of conditions and the following disclaimer in the documentation
  23. // and/or other materials provided with the distribution.
  24. //
  25. // * The name of the copyright holders may not be used to endorse or promote products
  26. // derived from this software without specific prior written permission.
  27. //
  28. // This software is provided by the copyright holders and contributors "as is" and
  29. // any express or implied warranties, including, but not limited to, the implied
  30. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  31. // In no event shall the Intel Corporation or contributors be liable for any direct,
  32. // indirect, incidental, special, exemplary, or consequential damages
  33. // (including, but not limited to, procurement of substitute goods or services;
  34. // loss of use, data, or profits; or business interruption) however caused
  35. // and on any theory of liability, whether in contract, strict liability,
  36. // or tort (including negligence or otherwise) arising in any way out of
  37. // the use of this software, even if advised of the possibility of such damage.
  38. /**
  39. * @file
  40. *
  41. * @brief Implementation of ICP (Iterative Closest Point) Algorithm
  42. * @author Tolga Birdal <tbirdal AT gmail.com>
  43. */
  44. #ifndef __OPENCV_SURFACE_MATCHING_ICP_HPP__
  45. #define __OPENCV_SURFACE_MATCHING_ICP_HPP__
  46. #include <opencv2/core.hpp>
  47. #include "pose_3d.hpp"
  48. #include <vector>
  49. namespace cv
  50. {
  51. namespace ppf_match_3d
  52. {
  53. //! @addtogroup surface_matching
  54. //! @{
  55. /**
  56. * @brief This class implements a very efficient and robust variant of the iterative closest point (ICP) algorithm.
  57. * The task is to register a 3D model (or point cloud) against a set of noisy target data. The variants are put together
  58. * by myself after certain tests. The task is to be able to match partial, noisy point clouds in cluttered scenes, quickly.
  59. * You will find that my emphasis is on the performance, while retaining the accuracy.
  60. * This implementation is based on Tolga Birdal's MATLAB implementation in here:
  61. * http://www.mathworks.com/matlabcentral/fileexchange/47152-icp-registration-using-efficient-variants-and-multi-resolution-scheme
  62. * The main contributions come from:
  63. * 1. Picky ICP:
  64. * http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2003/Zinsser03-ARI.pdf
  65. * 2. Efficient variants of the ICP Algorithm:
  66. * http://docs.happycoders.org/orgadoc/graphics/imaging/fasticp_paper.pdf
  67. * 3. Geometrically Stable Sampling for the ICP Algorithm: https://graphics.stanford.edu/papers/stabicp/stabicp.pdf
  68. * 4. Multi-resolution registration:
  69. * http://www.cvl.iis.u-tokyo.ac.jp/~oishi/Papers/Alignment/Jost_MultiResolutionICP_3DIM03.pdf
  70. * 5. Linearization of Point-to-Plane metric by Kok Lim Low:
  71. * https://www.comp.nus.edu.sg/~lowkl/publications/lowk_point-to-plane_icp_techrep.pdf
  72. */
  73. class CV_EXPORTS ICP
  74. {
  75. public:
  76. enum ICP_SAMPLING_TYPE
  77. {
  78. ICP_SAMPLING_TYPE_UNIFORM,
  79. ICP_SAMPLING_TYPE_GELFAND
  80. };
  81. ICP()
  82. {
  83. m_tolerance = 0.005f;
  84. m_rejectionScale = 2.5f;
  85. m_maxIterations = 250;
  86. m_numLevels = 6;
  87. m_sampleType = ICP_SAMPLING_TYPE_UNIFORM;
  88. m_numNeighborsCorr = 1;
  89. }
  90. virtual ~ICP() { }
  91. /**
  92. * \brief ICP constructor with default arguments.
  93. * @param [in] iterations
  94. * @param [in] tolerence Controls the accuracy of registration at each iteration of ICP.
  95. * @param [in] rejectionScale Robust outlier rejection is applied for robustness. This value
  96. actually corresponds to the standard deviation coefficient. Points with
  97. rejectionScale * &sigma are ignored during registration.
  98. * @param [in] numLevels Number of pyramid levels to proceed. Deep pyramids increase speed but
  99. decrease accuracy. Too coarse pyramids might have computational overhead on top of the
  100. inaccurate registrtaion. This parameter should be chosen to optimize a balance. Typical
  101. values range from 4 to 10.
  102. * @param [in] sampleType Currently this parameter is ignored and only uniform sampling is
  103. applied. Leave it as 0.
  104. * @param [in] numMaxCorr Currently this parameter is ignored and only PickyICP is applied. Leave it as 1.
  105. */
  106. ICP(const int iterations, const float tolerence=0.05, const float rejectionScale=2.5, const int numLevels=6, const ICP_SAMPLING_TYPE sampleType = ICP_SAMPLING_TYPE_UNIFORM, const int numMaxCorr=1)
  107. {
  108. m_tolerance = tolerence;
  109. m_numNeighborsCorr = numMaxCorr;
  110. m_rejectionScale = rejectionScale;
  111. m_maxIterations = iterations;
  112. m_numLevels = numLevels;
  113. m_sampleType = sampleType;
  114. }
  115. /**
  116. * \brief Perform registration
  117. *
  118. * @param [in] srcPC The input point cloud for the model. Expected to have the normals (Nx6). Currently,
  119. * CV_32F is the only supported data type.
  120. * @param [in] dstPC The input point cloud for the scene. It is assumed that the model is registered on the scene. Scene remains static. Expected to have the normals (Nx6). Currently, CV_32F is the only supported data type.
  121. * @param [out] residual The output registration error.
  122. * @param [out] pose Transformation between srcPC and dstPC.
  123. * \return On successful termination, the function returns 0.
  124. *
  125. * \details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).
  126. */
  127. int registerModelToScene(const Mat& srcPC, const Mat& dstPC, double& residual, double pose[16]);
  128. /**
  129. * \brief Perform registration with multiple initial poses
  130. *
  131. * @param [in] srcPC The input point cloud for the model. Expected to have the normals (Nx6). Currently,
  132. * CV_32F is the only supported data type.
  133. * @param [in] dstPC The input point cloud for the scene. Currently, CV_32F is the only supported data type.
  134. * @param [in,out] poses Input poses to start with but also list output of poses.
  135. * \return On successful termination, the function returns 0.
  136. *
  137. * \details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).
  138. */
  139. int registerModelToScene(const Mat& srcPC, const Mat& dstPC, std::vector<Pose3DPtr>& poses);
  140. private:
  141. float m_tolerance;
  142. int m_maxIterations;
  143. float m_rejectionScale;
  144. int m_numNeighborsCorr;
  145. int m_numLevels;
  146. int m_sampleType;
  147. };
  148. //! @}
  149. } // namespace ppf_match_3d
  150. } // namespace cv
  151. #endif