123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- //By downloading, copying, installing or using the software you agree to this license.
- //If you do not agree to this license, do not download, install,
- //copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- // (3-clause BSD License)
- //
- //Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
- //Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
- //Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
- //Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
- //Copyright (C) 2015, OpenCV Foundation, all rights reserved.
- //Copyright (C) 2015, Itseez Inc., all rights reserved.
- //Third party copyrights are property of their respective owners.
- //
- //Redistribution and use in source and binary forms, with or without modification,
- //are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * Neither the names of the copyright holders nor the names of the contributors
- // may be used to endorse or promote products derived from this software
- // without specific prior written permission.
- //
- //This software is provided by the copyright holders and contributors "as is" and
- //any express or implied warranties, including, but not limited to, the implied
- //warranties of merchantability and fitness for a particular purpose are disclaimed.
- //In no event shall copyright holders or contributors be liable for any direct,
- //indirect, incidental, special, exemplary, or consequential damages
- //(including, but not limited to, procurement of substitute goods or services;
- //loss of use, data, or profits; or business interruption) however caused
- //and on any theory of liability, whether in contract, strict liability,
- //or tort (including negligence or otherwise) arising in any way out of
- //the use of this software, even if advised of the possibility of such damage.
- /*****************************************************************************************************************\
- * The interface contains the main descriptors that will be implemented in the descriptor class *
- \*****************************************************************************************************************/
- #include <stdint.h>
- #ifndef _OPENCV_DESCRIPTOR_HPP_
- #define _OPENCV_DESCRIPTOR_HPP_
- #ifdef __cplusplus
- namespace cv
- {
- namespace stereo
- {
- //types of supported kernels
- enum {
- CV_DENSE_CENSUS, CV_SPARSE_CENSUS,
- CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM,
- CV_MEAN_VARIATION, CV_STAR_KERNEL
- };
- //!Mean Variation is a robust kernel that compares a pixel
- //!not just with the center but also with the mean of the window
- template<int num_images>
- struct MVKernel
- {
- uint8_t *image[num_images];
- int *integralImage[num_images];
- int stop;
- MVKernel(){}
- MVKernel(uint8_t **images, int **integral)
- {
- for(int i = 0; i < num_images; i++)
- {
- image[i] = images[i];
- integralImage[i] = integral[i];
- }
- stop = num_images;
- }
- void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
- {
- (void)w2;
- for (int i = 0; i < stop; i++)
- {
- if (image[i][rrWidth + jj] > image[i][rWidth + j])
- {
- c[i] = c[i] + 1;
- }
- c[i] = c[i] << 1;
- if (integralImage[i][rrWidth + jj] > image[i][rWidth + j])
- {
- c[i] = c[i] + 1;
- }
- c[i] = c[i] << 1;
- }
- }
- };
- //!Compares pixels from a patch giving high weights to pixels in which
- //!the intensity is higher. The other pixels receive a lower weight
- template <int num_images>
- struct MCTKernel
- {
- uint8_t *image[num_images];
- int t,imageStop;
- MCTKernel(){}
- MCTKernel(uint8_t ** images, int threshold)
- {
- for(int i = 0; i < num_images; i++)
- {
- image[i] = images[i];
- }
- imageStop = num_images;
- t = threshold;
- }
- void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
- {
- (void)w2;
- for(int i = 0; i < imageStop; i++)
- {
- if (image[i][rrWidth + jj] > image[i][rWidth + j] - t)
- {
- c[i] = c[i] << 1;
- c[i] = c[i] + 1;
- c[i] = c[i] << 1;
- c[i] = c[i] + 1;
- }
- else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj])
- {
- c[i] = c[i] << 2;
- c[i] = c[i] + 1;
- }
- else
- {
- c[i] <<= 2;
- }
- }
- }
- };
- //!A madified cs census that compares a pixel with the imediat neightbour starting
- //!from the center
- template<int num_images>
- struct ModifiedCsCensus
- {
- uint8_t *image[num_images];
- int n2;
- int imageStop;
- ModifiedCsCensus(){}
- ModifiedCsCensus(uint8_t **images, int ker)
- {
- for(int i = 0; i < num_images; i++)
- image[i] = images[i];
- imageStop = num_images;
- n2 = ker;
- }
- void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
- {
- (void)j;
- (void)rWidth;
- for(int i = 0; i < imageStop; i++)
- {
- if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))])
- {
- c[i] = c[i] + 1;
- }
- c[i] = c[i] * 2;
- }
- }
- };
- //!A kernel in which a pixel is compared with the center of the window
- template<int num_images>
- struct CensusKernel
- {
- uint8_t *image[num_images];
- int imageStop;
- CensusKernel(){}
- CensusKernel(uint8_t **images)
- {
- for(int i = 0; i < num_images; i++)
- image[i] = images[i];
- imageStop = num_images;
- }
- void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
- {
- (void)w2;
- for(int i = 0; i < imageStop; i++)
- {
- ////compare a pixel with the center from the kernel
- if (image[i][rrWidth + jj] > image[i][rWidth + j])
- {
- c[i] += 1;
- }
- c[i] <<= 1;
- }
- }
- };
- //template clas which efficiently combines the descriptors
- template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel>
- class CombinedDescriptor:public ParallelLoopBody
- {
- private:
- int width, height,n2;
- int stride_;
- int *dst[nr_img];
- Kernel kernel_;
- int n2_stop;
- public:
- CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop)
- {
- width = w;
- height = h;
- n2 = k2;
- stride_ = stride;
- for(int i = 0; i < nr_img; i++)
- dst[i] = distance[i];
- kernel_ = kernel;
- n2_stop = k2Stop;
- }
- void operator()(const cv::Range &r) const {
- for (int i = r.start; i <= r.end ; i++)
- {
- int rWidth = i * stride_;
- for (int j = n2 + 2; j <= width - n2 - 2; j++)
- {
- int c[nr_img];
- memset(c,0,nr_img);
- for(int step = step_start; step <= step_end; step += step_inc)
- {
- for (int ii = - n2; ii <= + n2_stop; ii += step)
- {
- int rrWidth = (ii + i) * stride_;
- int rrWidthC = (ii + i + n2) * stride_;
- for (int jj = j - n2; jj <= j + n2; jj += step)
- {
- if (ii != i || jj != j)
- {
- kernel_(rrWidth,rrWidthC, rWidth, jj, j,c);
- }
- }
- }
- }
- for(int l = 0; l < nr_img; l++)
- dst[l][rWidth + j] = c[l];
- }
- }
- }
- };
- //!calculate the mean of every windowSizexWindwoSize block from the integral Image
- //!this is a preprocessing for MV kernel
- class MeanKernelIntegralImage : public ParallelLoopBody
- {
- private:
- int *img;
- int windowSize,width;
- float scalling;
- int *c;
- public:
- MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost):
- img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){};
- void operator()(const cv::Range &r) const{
- for (int i = r.start; i <= r.end; i++)
- {
- int iw = i * width;
- for (int j = windowSize + 1; j <= width - windowSize - 1; j++)
- {
- c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1]
- - img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling);
- }
- }
- }
- };
- //!implementation for the star kernel descriptor
- template<int num_images>
- class StarKernelCensus:public ParallelLoopBody
- {
- private:
- uint8_t *image[num_images];
- int *dst[num_images];
- int n2, width, height, im_num,stride_;
- public:
- StarKernelCensus(const cv::Mat *img, int k2, int **distance)
- {
- for(int i = 0; i < num_images; i++)
- {
- image[i] = img[i].data;
- dst[i] = distance[i];
- }
- n2 = k2;
- width = img[0].cols;
- height = img[0].rows;
- im_num = num_images;
- stride_ = (int)img[0].step;
- }
- void operator()(const cv::Range &r) const {
- for (int i = r.start; i <= r.end ; i++)
- {
- int rWidth = i * stride_;
- for (int j = n2; j <= width - n2; j++)
- {
- for(int d = 0 ; d < im_num; d++)
- {
- int c = 0;
- for(int step = 4; step > 0; step--)
- {
- for (int ii = i - step; ii <= i + step; ii += step)
- {
- int rrWidth = ii * stride_;
- for (int jj = j - step; jj <= j + step; jj += step)
- {
- if (image[d][rrWidth + jj] > image[d][rWidth + j])
- {
- c = c + 1;
- }
- c = c * 2;
- }
- }
- }
- for (int ii = -1; ii <= +1; ii++)
- {
- int rrWidth = (ii + i) * stride_;
- if (i == -1)
- {
- if (ii + i != i)
- {
- if (image[d][rrWidth + j] > image[d][rWidth + j])
- {
- c = c + 1;
- }
- c = c * 2;
- }
- }
- else if (i == 0)
- {
- for (int j2 = -1; j2 <= 1; j2 += 2)
- {
- if (ii + i != i)
- {
- if (image[d][rrWidth + j + j2] > image[d][rWidth + j])
- {
- c = c + 1;
- }
- c = c * 2;
- }
- }
- }
- else
- {
- if (ii + i != i)
- {
- if (image[d][rrWidth + j] > image[d][rWidth + j])
- {
- c = c + 1;
- }
- c = c * 2;
- }
- }
- }
- dst[d][rWidth + j] = c;
- }
- }
- }
- }
- };
- //!paralel implementation of the center symetric census
- template <int num_images>
- class SymetricCensus:public ParallelLoopBody
- {
- private:
- uint8_t *image[num_images];
- int *dst[num_images];
- int n2, width, height, im_num,stride_;
- public:
- SymetricCensus(const cv::Mat *img, int k2, int **distance)
- {
- for(int i = 0; i < num_images; i++)
- {
- image[i] = img[i].data;
- dst[i] = distance[i];
- }
- n2 = k2;
- width = img[0].cols;
- height = img[0].rows;
- im_num = num_images;
- stride_ = (int)img[0].step;
- }
- void operator()(const cv::Range &r) const {
- for (int i = r.start; i <= r.end ; i++)
- {
- int distV = i*stride_;
- for (int j = n2; j <= width - n2; j++)
- {
- for(int d = 0; d < im_num; d++)
- {
- int c = 0;
- //the classic center symetric census which compares the curent pixel with its symetric not its center.
- for (int ii = -n2; ii <= 0; ii++)
- {
- int rrWidth = (ii + i) * stride_;
- for (int jj = -n2; jj <= +n2; jj++)
- {
- if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)])
- {
- c = c + 1;
- }
- c = c * 2;
- if(ii == 0 && jj < 0)
- {
- if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)])
- {
- c = c + 1;
- }
- c = c * 2;
- }
- }
- }
- dst[d][(distV + j)] = c;
- }
- }
- }
- }
- };
- /**
- Two variations of census applied on input images
- Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes
- **/
- //void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type);
- CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
- //single image census transform
- CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type);
- /**
- STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison
- MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel
- **/
- CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1));
- //single version of modified census transform descriptor
- CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1));
- /**The classical center symetric census
- A modified version of cs census which is comparing a pixel with its correspondent after the center
- **/
- CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
- //single version of census transform
- CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type);
- //in a 9x9 kernel only certain positions are choosen
- CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2);
- //single image version of star kernel
- CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist);
- //integral image computation used in the Mean Variation Census Transform
- void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c);
- }
- }
- #endif
- #endif
- /*End of file*/
|