saliencySpecializedClasses.hpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
  14. // Third party copyrights are property of their respective owners.
  15. //
  16. // Redistribution and use in source and binary forms, with or without modification,
  17. // are permitted provided that the following conditions are met:
  18. //
  19. // * Redistribution's of source code must retain the above copyright notice,
  20. // this list of conditions and the following disclaimer.
  21. //
  22. // * Redistribution's in binary form must reproduce the above copyright notice,
  23. // this list of conditions and the following disclaimer in the documentation
  24. // and/or other materials provided with the distribution.
  25. //
  26. // * The name of the copyright holders may not be used to endorse or promote products
  27. // derived from this software without specific prior written permission.
  28. //
  29. // This software is provided by the copyright holders and contributors "as is" and
  30. // any express or implied warranties, including, but not limited to, the implied
  31. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  32. // In no event shall the Intel Corporation or contributors be liable for any direct,
  33. // indirect, incidental, special, exemplary, or consequential damages
  34. // (including, but not limited to, procurement of substitute goods or services;
  35. // loss of use, data, or profits; or business interruption) however caused
  36. // and on any theory of liability, whether in contract, strict liability,
  37. // or tort (including negligence or otherwise) arising in any way out of
  38. // the use of this software, even if advised of the possibility of such damage.
  39. //
  40. //M*/
  41. #ifndef __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
  42. #define __OPENCV_SALIENCY_SPECIALIZED_CLASSES_HPP__
  43. //#include "opencv2/saliency/kyheader.hpp"
  44. #include <cstdio>
  45. #include <string>
  46. #include <iostream>
  47. #include <stdint.h>
  48. #include "opencv2/core.hpp"
  49. namespace cv
  50. {
  51. namespace saliency
  52. {
  53. //! @addtogroup saliency
  54. //! @{
  55. /************************************ Specific Static Saliency Specialized Classes ************************************/
  56. /** @brief the Spectral Residual approach from @cite SR
  57. Starting from the principle of natural image statistics, this method simulate the behavior of
  58. pre-attentive visual search. The algorithm analyze the log spectrum of each image and obtain the
  59. spectral residual. Then transform the spectral residual to spatial domain to obtain the saliency
  60. map, which suggests the positions of proto-objects.
  61. */
  62. class CV_EXPORTS StaticSaliencySpectralResidual : public StaticSaliency
  63. {
  64. public:
  65. StaticSaliencySpectralResidual();
  66. virtual ~StaticSaliencySpectralResidual();
  67. void read( const FileNode& fn );
  68. void write( FileStorage& fs ) const;
  69. int getImageWidth() const
  70. {
  71. return resImWidth;
  72. }
  73. inline void setImageWidth(int val)
  74. {
  75. resImWidth = val;
  76. }
  77. int getImageHeight() const
  78. {
  79. return resImHeight;
  80. }
  81. void setImageHeight(int val)
  82. {
  83. resImHeight = val;
  84. }
  85. protected:
  86. bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
  87. int resImWidth;
  88. int resImHeight;
  89. };
  90. /************************************ Specific Motion Saliency Specialized Classes ************************************/
  91. /*!
  92. * A Fast Self-tuning Background Subtraction Algorithm.
  93. *
  94. * This background subtraction algorithm is inspired to the work of B. Wang and P. Dudek [2]
  95. * [2] B. Wang and P. Dudek "A Fast Self-tuning Background Subtraction Algorithm", in proc of IEEE Workshop on Change Detection, 2014
  96. *
  97. */
  98. /** @brief the Fast Self-tuning Background Subtraction Algorithm from @cite BinWangApr2014
  99. */
  100. class CV_EXPORTS MotionSaliencyBinWangApr2014 : public MotionSaliency
  101. {
  102. public:
  103. MotionSaliencyBinWangApr2014();
  104. virtual ~MotionSaliencyBinWangApr2014();
  105. /** @brief This is a utility function that allows to set the correct size (taken from the input image) in the
  106. corresponding variables that will be used to size the data structures of the algorithm.
  107. @param W width of input image
  108. @param H height of input image
  109. */
  110. void setImagesize( int W, int H );
  111. /** @brief This function allows the correct initialization of all data structures that will be used by the
  112. algorithm.
  113. */
  114. bool init();
  115. int getImageWidth() const
  116. {
  117. return imageWidth;
  118. }
  119. inline void setImageWidth(int val)
  120. {
  121. imageWidth = val;
  122. }
  123. int getImageHeight() const
  124. {
  125. return imageHeight;
  126. }
  127. void setImageHeight(int val)
  128. {
  129. imageHeight = val;
  130. }
  131. protected:
  132. /** @brief Performs all the operations and calls all internal functions necessary for the accomplishment of the
  133. Fast Self-tuning Background Subtraction Algorithm algorithm.
  134. @param image input image. According to the needs of this specialized algorithm, the param image is a
  135. single *Mat*.
  136. @param saliencyMap Saliency Map. Is a binarized map that, in accordance with the nature of the algorithm, highlights the moving objects or areas of change in the scene.
  137. The saliency map is given by a single *Mat* (one for each frame of an hypothetical video
  138. stream).
  139. */
  140. bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap );
  141. private:
  142. // classification (and adaptation) functions
  143. bool fullResolutionDetection( const Mat& image, Mat& highResBFMask );
  144. bool lowResolutionDetection( const Mat& image, Mat& lowResBFMask );
  145. // Background model maintenance functions
  146. bool templateOrdering();
  147. bool templateReplacement( const Mat& finalBFMask, const Mat& image );
  148. // changing structure
  149. std::vector<Ptr<Mat> > backgroundModel;// The vector represents the background template T0---TK of reference paper.
  150. // Matrices are two-channel matrix. In the first layer there are the B (background value)
  151. // for each pixel. In the second layer, there are the C (efficacy) value for each pixel
  152. Mat potentialBackground;// Two channel Matrix. For each pixel, in the first level there are the Ba value (potential background value)
  153. // and in the secon level there are the Ca value, the counter for each potential value.
  154. Mat epslonPixelsValue; // epslon threshold
  155. //fixed parameter
  156. bool neighborhoodCheck;
  157. int N_DS;// Number of template to be downsampled and used in lowResolutionDetection function
  158. int imageWidth;// Width of input image
  159. int imageHeight;//Height of input image
  160. int K;// Number of background model template
  161. int N;// NxN is the size of the block for downsampling in the lowlowResolutionDetection
  162. float alpha;// Learning rate
  163. int L0, L1;// Upper-bound values for C0 and C1 (efficacy of the first two template (matrices) of backgroundModel
  164. int thetaL;// T0, T1 swap threshold
  165. int thetaA;// Potential background value threshold
  166. int gamma;// Parameter that controls the time that the newly updated long-term background value will remain in the
  167. // long-term template, regardless of any subsequent background changes. A relatively large (eg gamma=3) will
  168. //restrain the generation of ghosts.
  169. };
  170. /************************************ Specific Objectness Specialized Classes ************************************/
  171. /**
  172. * \brief Objectness algorithms based on [3]
  173. * [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014.
  174. */
  175. /** @brief the Binarized normed gradients algorithm from @cite BING
  176. */
  177. class CV_EXPORTS ObjectnessBING : public Objectness
  178. {
  179. public:
  180. ObjectnessBING();
  181. virtual ~ObjectnessBING();
  182. void read();
  183. void write() const;
  184. /** @brief Return the list of the rectangles' objectness value,
  185. in the same order as the *vector\<Vec4i\> objectnessBoundingBox* returned by the algorithm (in
  186. computeSaliencyImpl function). The bigger value these scores are, it is more likely to be an
  187. object window.
  188. */
  189. std::vector<float> getobjectnessValues();
  190. /** @brief This is a utility function that allows to set the correct path from which the algorithm will load
  191. the trained model.
  192. @param trainingPath trained model path
  193. */
  194. void setTrainingPath( std::string trainingPath );
  195. /** @brief This is a utility function that allows to set an arbitrary path in which the algorithm will save the
  196. optional results
  197. (ie writing on file the total number and the list of rectangles returned by objectess, one for
  198. each row).
  199. @param resultsDir results' folder path
  200. */
  201. void setBBResDir( std::string resultsDir );
  202. double getBase() const
  203. {
  204. return _base;
  205. }
  206. inline void setBase(double val)
  207. {
  208. _base = val;
  209. }
  210. int getNSS() const
  211. {
  212. return _NSS;
  213. }
  214. void setNSS(int val)
  215. {
  216. _NSS = val;
  217. }
  218. int getW() const
  219. {
  220. return _W;
  221. }
  222. void setW(int val)
  223. {
  224. _W = val;
  225. }
  226. protected:
  227. /** @brief Performs all the operations and calls all internal functions necessary for the
  228. accomplishment of the Binarized normed gradients algorithm.
  229. @param image input image. According to the needs of this specialized algorithm, the param image is a
  230. single *Mat*
  231. @param objectnessBoundingBox objectness Bounding Box vector. According to the result given by this
  232. specialized algorithm, the objectnessBoundingBox is a *vector\<Vec4i\>*. Each bounding box is
  233. represented by a *Vec4i* for (minX, minY, maxX, maxY).
  234. */
  235. bool computeSaliencyImpl( InputArray image, OutputArray objectnessBoundingBox );
  236. private:
  237. class FilterTIG
  238. {
  239. public:
  240. void update( Mat &w );
  241. // For a W by H gradient magnitude map, find a W-7 by H-7 CV_32F matching score map
  242. Mat matchTemplate( const Mat &mag1u );
  243. float dot( int64_t tig1, int64_t tig2, int64_t tig4, int64_t tig8 );
  244. void reconstruct( Mat &w );// For illustration purpose
  245. private:
  246. static const int NUM_COMP = 2;// Number of components
  247. static const int D = 64;// Dimension of TIG
  248. int64_t _bTIGs[NUM_COMP];// Binary TIG features
  249. float _coeffs1[NUM_COMP];// Coefficients of binary TIG features
  250. // For efficiently deals with different bits in CV_8U gradient map
  251. float _coeffs2[NUM_COMP], _coeffs4[NUM_COMP], _coeffs8[NUM_COMP];
  252. };
  253. template<typename VT, typename ST>
  254. struct ValStructVec
  255. {
  256. ValStructVec();
  257. int size() const;
  258. void clear();
  259. void reserve( int resSz );
  260. void pushBack( const VT& val, const ST& structVal );
  261. const VT& operator ()( int i ) const;
  262. const ST& operator []( int i ) const;
  263. VT& operator ()( int i );
  264. ST& operator []( int i );
  265. void sort( bool descendOrder = true );
  266. const std::vector<ST> &getSortedStructVal();
  267. std::vector<std::pair<VT, int> > getvalIdxes();
  268. void append( const ValStructVec<VT, ST> &newVals, int startV = 0 );
  269. std::vector<ST> structVals; // struct values
  270. int sz;// size of the value struct vector
  271. std::vector<std::pair<VT, int> > valIdxes;// Indexes after sort
  272. bool smaller()
  273. {
  274. return true;
  275. }
  276. std::vector<ST> sortedStructVals;
  277. };
  278. enum
  279. {
  280. MAXBGR,
  281. HSV,
  282. G
  283. };
  284. double _base, _logBase; // base for window size quantization
  285. int _W;// As described in the paper: #Size, Size(_W, _H) of feature window.
  286. int _NSS;// Size for non-maximal suppress
  287. int _maxT, _minT, _numT;// The minimal and maximal dimensions of the template
  288. int _Clr;//
  289. static const char* _clrName[3];
  290. // Names and paths to read model and to store results
  291. std::string _modelName, _bbResDir, _trainingPath, _resultsDir;
  292. std::vector<int> _svmSzIdxs;// Indexes of active size. It's equal to _svmFilters.size() and _svmReW1f.rows
  293. Mat _svmFilter;// Filters learned at stage I, each is a _H by _W CV_32F matrix
  294. FilterTIG _tigF;// TIG filter
  295. Mat _svmReW1f;// Re-weight parameters learned at stage II.
  296. // List of the rectangles' objectness value, in the same order as
  297. // the vector<Vec4i> objectnessBoundingBox returned by the algorithm (in computeSaliencyImpl function)
  298. std::vector<float> objectnessValues;
  299. private:
  300. // functions
  301. inline static float LoG( float x, float y, float delta )
  302. {
  303. float d = - ( x * x + y * y ) / ( 2 * delta * delta );
  304. return -1.0f / ( (float) ( CV_PI ) * pow( delta, 4 ) ) * ( 1 + d ) * exp( d );
  305. } // Laplacian of Gaussian
  306. // Read matrix from binary file
  307. static bool matRead( const std::string& filename, Mat& M );
  308. void setColorSpace( int clr = MAXBGR );
  309. // Load trained model.
  310. int loadTrainedModel( std::string modelName = "" );// Return -1, 0, or 1 if partial, none, or all loaded
  311. // Get potential bounding boxes, each of which is represented by a Vec4i for (minX, minY, maxX, maxY).
  312. // The trained model should be prepared before calling this function: loadTrainedModel() or trainStageI() + trainStageII().
  313. // Use numDet to control the final number of proposed bounding boxes, and number of per size (scale and aspect ratio)
  314. void getObjBndBoxes( Mat &img3u, ValStructVec<float, Vec4i> &valBoxes, int numDetPerSize = 120 );
  315. void getObjBndBoxesForSingleImage( Mat img, ValStructVec<float, Vec4i> &boxes, int numDetPerSize );
  316. bool filtersLoaded()
  317. {
  318. int n = (int) _svmSzIdxs.size();
  319. return n > 0 && _svmReW1f.size() == Size( 2, n ) && _svmFilter.size() == Size( _W, _W );
  320. }
  321. void predictBBoxSI( Mat &mag3u, ValStructVec<float, Vec4i> &valBoxes, std::vector<int> &sz, int NUM_WIN_PSZ = 100, bool fast = true );
  322. void predictBBoxSII( ValStructVec<float, Vec4i> &valBoxes, const std::vector<int> &sz );
  323. // Calculate the image gradient: center option as in VLFeat
  324. void gradientMag( Mat &imgBGR3u, Mat &mag1u );
  325. static void gradientRGB( Mat &bgr3u, Mat &mag1u );
  326. static void gradientGray( Mat &bgr3u, Mat &mag1u );
  327. static void gradientHSV( Mat &bgr3u, Mat &mag1u );
  328. static void gradientXY( Mat &x1i, Mat &y1i, Mat &mag1u );
  329. static inline int bgrMaxDist( const Vec3b &u, const Vec3b &v )
  330. {
  331. int b = abs( u[0] - v[0] ), g = abs( u[1] - v[1] ), r = abs( u[2] - v[2] );
  332. b = max( b, g );
  333. return max( b, r );
  334. }
  335. static inline int vecDist3b( const Vec3b &u, const Vec3b &v )
  336. {
  337. return abs( u[0] - v[0] ) + abs( u[1] - v[1] ) + abs( u[2] - v[2] );
  338. }
  339. //Non-maximal suppress
  340. static void nonMaxSup( Mat &matchCost1f, ValStructVec<float, Point> &matchCost, int NSS = 1, int maxPoint = 50, bool fast = true );
  341. };
  342. //! @}
  343. }
  344. /* namespace saliency */
  345. } /* namespace cv */
  346. #endif