123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_DNN_DNN_HPP__
- #define __OPENCV_DNN_DNN_HPP__
- #include <vector>
- #include <opencv2/core.hpp>
- #include <opencv2/dnn/dict.hpp>
- #include <opencv2/dnn/blob.hpp>
- namespace cv
- {
- namespace dnn //! This namespace is used for dnn module functionlaity.
- {
- //! @addtogroup dnn
- //! @{
- /** @brief Initialize dnn module and built-in layers.
- *
- * This function automatically called on most of OpenCV builds,
- * but you need to call it manually on some specific configurations (iOS for example).
- */
- CV_EXPORTS void initModule();
- /** @brief This class provides all data needed to initialize layer.
- *
- * It includes dictionary with scalar params (which can be readed by using Dict interface),
- * blob params #blobs and optional meta information: #name and #type of layer instance.
- */
- struct CV_EXPORTS LayerParams : public Dict
- {
- std::vector<Blob> blobs; //!< List of learned parameters stored as blobs.
- String name; //!< Name of the layer instance (optional, can be used internal purposes).
- String type; //!< Type name which was used for creating layer by layer factory (optional).
- };
- /** @brief This interface class allows to build new Layers - are building blocks of networks.
- *
- * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
- * Also before using the new layer into networks you must register your layer by using one of @ref LayerFactoryModule "LayerFactory" macros.
- */
- struct CV_EXPORTS Layer
- {
- //! List of learned parameters must be stored here to allow read them by using Net::getParam().
- std::vector<Blob> blobs;
- /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs.
- * @param[in] input vector of already allocated input blobs
- * @param[out] output vector of output blobs, which must be allocated
- *
- * This method must create each produced blob according to shape of @p input blobs and internal layer params.
- * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections.
- * This method can be called multiple times if size of any @p input blob was changed.
- */
- virtual void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @param[in] input the input blobs.
- * @param[out] output allocated output blobs, which will store results of the computation.
- */
- virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
- /** @brief Returns index of input blob into the input array.
- * @param inputName label of input blob
- *
- * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
- * This method maps label of input blob to its index into input vector.
- */
- virtual int inputNameToIndex(String inputName);
- /** @brief Returns index of output blob in output array.
- * @see inputNameToIndex()
- */
- virtual int outputNameToIndex(String outputName);
- String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
- String type; //!< Type name which was used for creating layer by layer factory.
- Layer();
- explicit Layer(const LayerParams ¶ms); //!< Initialize only #name, #type and #blobs fields.
- virtual ~Layer();
- };
- /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
- *
- * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
- * and edges specify relationships between layers inputs and outputs.
- *
- * Each network layer has unique integer id and unique string name inside its network.
- * LayerId can store either layer name or layer id.
- *
- * This class supports reference counting of its instances, i. e. copies point to the same instance.
- */
- class CV_EXPORTS Net
- {
- public:
- Net(); //!< Default constructor.
- ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
- /** @brief Adds new layer to the net.
- * @param name unique name of the adding layer.
- * @param type typename of the adding layer (type must be registered in LayerRegister).
- * @param params parameters which will be used to initialize the creating layer.
- * @returns unique identifier of created layer, or -1 if a failure will happen.
- */
- int addLayer(const String &name, const String &type, LayerParams ¶ms);
- /** @brief Adds new layer and connects its first input to the first output of previously added layer.
- * @see addLayer()
- */
- int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms);
- /** @brief Converts string name of the layer to the integer identifier.
- * @returns id of the layer, or -1 if the layer wasn't found.
- */
- int getLayerId(const String &layer);
- /** @brief Container for strings and integers. */
- typedef DictValue LayerId;
- /** @brief Delete layer for the network (not implemented yet) */
- void deleteLayer(LayerId layer);
- /** @brief Connects output of the first layer to input of the second layer.
- * @param outPin descriptor of the first layer output.
- * @param inpPin descriptor of the second layer input.
- *
- * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:
- * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
- * If this part is empty then the network input pseudo layer will be used;
- * - the second optional part of the template <DFN>input_number</DFN>
- * is either number of the layer input, either label one.
- * If this part is omitted then the first layer input will be used.
- *
- * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
- */
- void connect(String outPin, String inpPin);
- /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
- * @param outLayerId identifier of the first layer
- * @param inpLayerId identifier of the second layer
- * @param outNum number of the first layer output
- * @param inpNum number of the second layer input
- */
- void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
- /** @brief Sets ouputs names of the network input pseudo layer.
- *
- * Each net always has special own the network input pseudo layer with id=0.
- * This layer stores the user blobs only and don't make any computations.
- * In fact, this layer provides the only way to pass user data into the network.
- * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
- */
- void setNetInputs(const std::vector<String> &inputBlobNames);
- /** @brief Runs forward pass for the whole network */
- void forward();
- /** @brief Runs forward pass to compute output of layer @p toLayer */
- void forward(LayerId toLayer);
- /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
- void forward(LayerId startLayer, LayerId toLayer);
- /** @overload */
- void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers);
- //TODO:
- /** @brief Optimized forward.
- * @warning Not implemented yet.
- * @details Makes forward only those layers which weren't changed after previous forward().
- */
- void forwardOpt(LayerId toLayer);
- /** @overload */
- void forwardOpt(const std::vector<LayerId> &toLayers);
- /** @brief Sets the new value for the layer output blob
- * @param outputName descriptor of the updating layer output blob.
- * @param blob new blob.
- * @see connect(String, String) to know format of the descriptor.
- * @note If updating blob is not empty then @p blob must have the same shape,
- * because network reshaping is not implemented yet.
- */
- void setBlob(String outputName, const Blob &blob);
- /** @brief Returns the layer output blob.
- * @param outputName the descriptor of the returning layer output blob.
- * @see connect(String, String)
- */
- Blob getBlob(String outputName);
- /** @brief Sets the new value for the learned param of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @param blob the new value.
- * @see Layer::blobs
- * @note If shape of the new blob differs from the previous shape,
- * then the following forward pass may fail.
- */
- void setParam(LayerId layer, int numParam, const Blob &blob);
- /** @brief Returns parameter blob of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @see Layer::blobs
- */
- Blob getParam(LayerId layer, int numParam = 0);
- private:
- struct Impl;
- Ptr<Impl> impl;
- };
- /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */
- class Importer
- {
- public:
- /** @brief Adds loaded layers into the @p net and sets connetions between them. */
- virtual void populateNet(Net net) = 0;
- virtual ~Importer();
- };
- /** @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @param caffeModel path to the .caffemodel file with learned network.
- * @returns Pointer to the created importer, NULL in failure cases.
- */
- CV_EXPORTS Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());
- /** @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network.
- * @param filename path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @returns Pointer to the created importer, NULL in failure cases.
- *
- * @warning Torch7 importer is experimental now, you need explicitly set CMake opencv_dnn_BUILD_TORCH_IMPORTER flag to compile its.
- *
- * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use long type of C language,
- * which has different bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- CV_EXPORTS Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);
- /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as createTorchImporter().
- */
- CV_EXPORTS Blob readTorchBlob(const String &filename, bool isBinary = true);
- //! @}
- }
- }
- #include <opencv2/dnn/layer.hpp>
- #include <opencv2/dnn/dnn.inl.hpp>
- #endif /* __OPENCV_DNN_DNN_HPP__ */
|