gadget.h 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * <linux/usb/gadget.h>
  3. *
  4. * We call the USB code inside a Linux-based peripheral device a "gadget"
  5. * driver, except for the hardware-specific bus glue. One USB host can
  6. * master many USB gadgets, but the gadgets are only slaved to one host.
  7. *
  8. *
  9. * (C) Copyright 2002-2004 by David Brownell
  10. * All Rights Reserved.
  11. *
  12. * This software is licensed under the GNU GPL version 2.
  13. *
  14. * Ported to U-Boot by: Thomas Smits <ts.smits@gmail.com> and
  15. * Remy Bohmer <linux@bohmer.net>
  16. */
  17. #ifndef __LINUX_USB_GADGET_H
  18. #define __LINUX_USB_GADGET_H
  19. #include <errno.h>
  20. #include <linux/compat.h>
  21. #include <linux/list.h>
  22. struct usb_ep;
  23. /**
  24. * struct usb_request - describes one i/o request
  25. * @buf: Buffer used for data. Always provide this; some controllers
  26. * only use PIO, or don't use DMA for some endpoints.
  27. * @dma: DMA address corresponding to 'buf'. If you don't set this
  28. * field, and the usb controller needs one, it is responsible
  29. * for mapping and unmapping the buffer.
  30. * @stream_id: The stream id, when USB3.0 bulk streams are being used
  31. * @length: Length of that data
  32. * @no_interrupt: If true, hints that no completion irq is needed.
  33. * Helpful sometimes with deep request queues that are handled
  34. * directly by DMA controllers.
  35. * @zero: If true, when writing data, makes the last packet be "short"
  36. * by adding a zero length packet as needed;
  37. * @short_not_ok: When reading data, makes short packets be
  38. * treated as errors (queue stops advancing till cleanup).
  39. * @complete: Function called when request completes, so this request and
  40. * its buffer may be re-used.
  41. * Reads terminate with a short packet, or when the buffer fills,
  42. * whichever comes first. When writes terminate, some data bytes
  43. * will usually still be in flight (often in a hardware fifo).
  44. * Errors (for reads or writes) stop the queue from advancing
  45. * until the completion function returns, so that any transfers
  46. * invalidated by the error may first be dequeued.
  47. * @context: For use by the completion callback
  48. * @list: For use by the gadget driver.
  49. * @status: Reports completion code, zero or a negative errno.
  50. * Normally, faults block the transfer queue from advancing until
  51. * the completion callback returns.
  52. * Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  53. * or when the driver disabled the endpoint.
  54. * @actual: Reports bytes transferred to/from the buffer. For reads (OUT
  55. * transfers) this may be less than the requested length. If the
  56. * short_not_ok flag is set, short reads are treated as errors
  57. * even when status otherwise indicates successful completion.
  58. * Note that for writes (IN transfers) some data bytes may still
  59. * reside in a device-side FIFO when the request is reported as
  60. * complete.
  61. *
  62. * These are allocated/freed through the endpoint they're used with. The
  63. * hardware's driver can add extra per-request data to the memory it returns,
  64. * which often avoids separate memory allocations (potential failures),
  65. * later when the request is queued.
  66. *
  67. * Request flags affect request handling, such as whether a zero length
  68. * packet is written (the "zero" flag), whether a short read should be
  69. * treated as an error (blocking request queue advance, the "short_not_ok"
  70. * flag), or hinting that an interrupt is not required (the "no_interrupt"
  71. * flag, for use with deep request queues).
  72. *
  73. * Bulk endpoints can use any size buffers, and can also be used for interrupt
  74. * transfers. interrupt-only endpoints can be much less functional.
  75. *
  76. * NOTE: this is analagous to 'struct urb' on the host side, except that
  77. * it's thinner and promotes more pre-allocation.
  78. */
  79. struct usb_request {
  80. void *buf;
  81. unsigned length;
  82. dma_addr_t dma;
  83. unsigned stream_id:16;
  84. unsigned no_interrupt:1;
  85. unsigned zero:1;
  86. unsigned short_not_ok:1;
  87. void (*complete)(struct usb_ep *ep,
  88. struct usb_request *req);
  89. void *context;
  90. struct list_head list;
  91. int status;
  92. unsigned actual;
  93. };
  94. /*-------------------------------------------------------------------------*/
  95. /* endpoint-specific parts of the api to the usb controller hardware.
  96. * unlike the urb model, (de)multiplexing layers are not required.
  97. * (so this api could slash overhead if used on the host side...)
  98. *
  99. * note that device side usb controllers commonly differ in how many
  100. * endpoints they support, as well as their capabilities.
  101. */
  102. struct usb_ep_ops {
  103. int (*enable) (struct usb_ep *ep,
  104. const struct usb_endpoint_descriptor *desc);
  105. int (*disable) (struct usb_ep *ep);
  106. struct usb_request *(*alloc_request) (struct usb_ep *ep,
  107. gfp_t gfp_flags);
  108. void (*free_request) (struct usb_ep *ep, struct usb_request *req);
  109. int (*queue) (struct usb_ep *ep, struct usb_request *req,
  110. gfp_t gfp_flags);
  111. int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
  112. int (*set_halt) (struct usb_ep *ep, int value);
  113. int (*set_wedge)(struct usb_ep *ep);
  114. int (*fifo_status) (struct usb_ep *ep);
  115. void (*fifo_flush) (struct usb_ep *ep);
  116. };
  117. /**
  118. * struct usb_ep - device side representation of USB endpoint
  119. * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
  120. * @ops: Function pointers used to access hardware-specific operations.
  121. * @ep_list:the gadget's ep_list holds all of its endpoints
  122. * @maxpacket:The maximum packet size used on this endpoint. The initial
  123. * value can sometimes be reduced (hardware allowing), according to
  124. * the endpoint descriptor used to configure the endpoint.
  125. * @maxpacket_limit:The maximum packet size value which can be handled by this
  126. * endpoint. It's set once by UDC driver when endpoint is initialized, and
  127. * should not be changed. Should not be confused with maxpacket.
  128. * @max_streams: The maximum number of streams supported
  129. * by this EP (0 - 16, actual number is 2^n)
  130. * @maxburst: the maximum number of bursts supported by this EP (for usb3)
  131. * @driver_data:for use by the gadget driver. all other fields are
  132. * read-only to gadget drivers.
  133. * @desc: endpoint descriptor. This pointer is set before the endpoint is
  134. * enabled and remains valid until the endpoint is disabled.
  135. * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
  136. * descriptor that is used to configure the endpoint
  137. *
  138. * the bus controller driver lists all the general purpose endpoints in
  139. * gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
  140. * and is accessed only in response to a driver setup() callback.
  141. */
  142. struct usb_ep {
  143. void *driver_data;
  144. const char *name;
  145. const struct usb_ep_ops *ops;
  146. struct list_head ep_list;
  147. unsigned maxpacket:16;
  148. unsigned maxpacket_limit:16;
  149. unsigned max_streams:16;
  150. unsigned maxburst:5;
  151. const struct usb_endpoint_descriptor *desc;
  152. const struct usb_ss_ep_comp_descriptor *comp_desc;
  153. };
  154. /*-------------------------------------------------------------------------*/
  155. /**
  156. * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
  157. * @ep:the endpoint being configured
  158. * @maxpacket_limit:value of maximum packet size limit
  159. *
  160. * This function shoud be used only in UDC drivers to initialize endpoint
  161. * (usually in probe function).
  162. */
  163. static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
  164. unsigned maxpacket_limit)
  165. {
  166. ep->maxpacket_limit = maxpacket_limit;
  167. ep->maxpacket = maxpacket_limit;
  168. }
  169. /**
  170. * usb_ep_enable - configure endpoint, making it usable
  171. * @ep:the endpoint being configured. may not be the endpoint named "ep0".
  172. * drivers discover endpoints through the ep_list of a usb_gadget.
  173. * @desc:descriptor for desired behavior. caller guarantees this pointer
  174. * remains valid until the endpoint is disabled; the data byte order
  175. * is little-endian (usb-standard).
  176. *
  177. * when configurations are set, or when interface settings change, the driver
  178. * will enable or disable the relevant endpoints. while it is enabled, an
  179. * endpoint may be used for i/o until the driver receives a disconnect() from
  180. * the host or until the endpoint is disabled.
  181. *
  182. * the ep0 implementation (which calls this routine) must ensure that the
  183. * hardware capabilities of each endpoint match the descriptor provided
  184. * for it. for example, an endpoint named "ep2in-bulk" would be usable
  185. * for interrupt transfers as well as bulk, but it likely couldn't be used
  186. * for iso transfers or for endpoint 14. some endpoints are fully
  187. * configurable, with more generic names like "ep-a". (remember that for
  188. * USB, "in" means "towards the USB master".)
  189. *
  190. * returns zero, or a negative error code.
  191. */
  192. static inline int usb_ep_enable(struct usb_ep *ep,
  193. const struct usb_endpoint_descriptor *desc)
  194. {
  195. return ep->ops->enable(ep, desc);
  196. }
  197. /**
  198. * usb_ep_disable - endpoint is no longer usable
  199. * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
  200. *
  201. * no other task may be using this endpoint when this is called.
  202. * any pending and uncompleted requests will complete with status
  203. * indicating disconnect (-ESHUTDOWN) before this call returns.
  204. * gadget drivers must call usb_ep_enable() again before queueing
  205. * requests to the endpoint.
  206. *
  207. * returns zero, or a negative error code.
  208. */
  209. static inline int usb_ep_disable(struct usb_ep *ep)
  210. {
  211. return ep->ops->disable(ep);
  212. }
  213. /**
  214. * usb_ep_alloc_request - allocate a request object to use with this endpoint
  215. * @ep:the endpoint to be used with with the request
  216. * @gfp_flags:GFP_* flags to use
  217. *
  218. * Request objects must be allocated with this call, since they normally
  219. * need controller-specific setup and may even need endpoint-specific
  220. * resources such as allocation of DMA descriptors.
  221. * Requests may be submitted with usb_ep_queue(), and receive a single
  222. * completion callback. Free requests with usb_ep_free_request(), when
  223. * they are no longer needed.
  224. *
  225. * Returns the request, or null if one could not be allocated.
  226. */
  227. static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
  228. gfp_t gfp_flags)
  229. {
  230. return ep->ops->alloc_request(ep, gfp_flags);
  231. }
  232. /**
  233. * usb_ep_free_request - frees a request object
  234. * @ep:the endpoint associated with the request
  235. * @req:the request being freed
  236. *
  237. * Reverses the effect of usb_ep_alloc_request().
  238. * Caller guarantees the request is not queued, and that it will
  239. * no longer be requeued (or otherwise used).
  240. */
  241. static inline void usb_ep_free_request(struct usb_ep *ep,
  242. struct usb_request *req)
  243. {
  244. ep->ops->free_request(ep, req);
  245. }
  246. /**
  247. * usb_ep_queue - queues (submits) an I/O request to an endpoint.
  248. * @ep:the endpoint associated with the request
  249. * @req:the request being submitted
  250. * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
  251. * pre-allocate all necessary memory with the request.
  252. *
  253. * This tells the device controller to perform the specified request through
  254. * that endpoint (reading or writing a buffer). When the request completes,
  255. * including being canceled by usb_ep_dequeue(), the request's completion
  256. * routine is called to return the request to the driver. Any endpoint
  257. * (except control endpoints like ep0) may have more than one transfer
  258. * request queued; they complete in FIFO order. Once a gadget driver
  259. * submits a request, that request may not be examined or modified until it
  260. * is given back to that driver through the completion callback.
  261. *
  262. * Each request is turned into one or more packets. The controller driver
  263. * never merges adjacent requests into the same packet. OUT transfers
  264. * will sometimes use data that's already buffered in the hardware.
  265. * Drivers can rely on the fact that the first byte of the request's buffer
  266. * always corresponds to the first byte of some USB packet, for both
  267. * IN and OUT transfers.
  268. *
  269. * Bulk endpoints can queue any amount of data; the transfer is packetized
  270. * automatically. The last packet will be short if the request doesn't fill it
  271. * out completely. Zero length packets (ZLPs) should be avoided in portable
  272. * protocols since not all usb hardware can successfully handle zero length
  273. * packets. (ZLPs may be explicitly written, and may be implicitly written if
  274. * the request 'zero' flag is set.) Bulk endpoints may also be used
  275. * for interrupt transfers; but the reverse is not true, and some endpoints
  276. * won't support every interrupt transfer. (Such as 768 byte packets.)
  277. *
  278. * Interrupt-only endpoints are less functional than bulk endpoints, for
  279. * example by not supporting queueing or not handling buffers that are
  280. * larger than the endpoint's maxpacket size. They may also treat data
  281. * toggle differently.
  282. *
  283. * Control endpoints ... after getting a setup() callback, the driver queues
  284. * one response (even if it would be zero length). That enables the
  285. * status ack, after transfering data as specified in the response. Setup
  286. * functions may return negative error codes to generate protocol stalls.
  287. * (Note that some USB device controllers disallow protocol stall responses
  288. * in some cases.) When control responses are deferred (the response is
  289. * written after the setup callback returns), then usb_ep_set_halt() may be
  290. * used on ep0 to trigger protocol stalls.
  291. *
  292. * For periodic endpoints, like interrupt or isochronous ones, the usb host
  293. * arranges to poll once per interval, and the gadget driver usually will
  294. * have queued some data to transfer at that time.
  295. *
  296. * Returns zero, or a negative error code. Endpoints that are not enabled
  297. * report errors; errors will also be
  298. * reported when the usb peripheral is disconnected.
  299. */
  300. static inline int usb_ep_queue(struct usb_ep *ep,
  301. struct usb_request *req, gfp_t gfp_flags)
  302. {
  303. return ep->ops->queue(ep, req, gfp_flags);
  304. }
  305. /**
  306. * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
  307. * @ep:the endpoint associated with the request
  308. * @req:the request being canceled
  309. *
  310. * if the request is still active on the endpoint, it is dequeued and its
  311. * completion routine is called (with status -ECONNRESET); else a negative
  312. * error code is returned.
  313. *
  314. * note that some hardware can't clear out write fifos (to unlink the request
  315. * at the head of the queue) except as part of disconnecting from usb. such
  316. * restrictions prevent drivers from supporting configuration changes,
  317. * even to configuration zero (a "chapter 9" requirement).
  318. */
  319. static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  320. {
  321. return ep->ops->dequeue(ep, req);
  322. }
  323. /**
  324. * usb_ep_set_halt - sets the endpoint halt feature.
  325. * @ep: the non-isochronous endpoint being stalled
  326. *
  327. * Use this to stall an endpoint, perhaps as an error report.
  328. * Except for control endpoints,
  329. * the endpoint stays halted (will not stream any data) until the host
  330. * clears this feature; drivers may need to empty the endpoint's request
  331. * queue first, to make sure no inappropriate transfers happen.
  332. *
  333. * Note that while an endpoint CLEAR_FEATURE will be invisible to the
  334. * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
  335. * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
  336. * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
  337. *
  338. * Returns zero, or a negative error code. On success, this call sets
  339. * underlying hardware state that blocks data transfers.
  340. * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
  341. * transfer requests are still queued, or if the controller hardware
  342. * (usually a FIFO) still holds bytes that the host hasn't collected.
  343. */
  344. static inline int usb_ep_set_halt(struct usb_ep *ep)
  345. {
  346. return ep->ops->set_halt(ep, 1);
  347. }
  348. /**
  349. * usb_ep_clear_halt - clears endpoint halt, and resets toggle
  350. * @ep:the bulk or interrupt endpoint being reset
  351. *
  352. * Use this when responding to the standard usb "set interface" request,
  353. * for endpoints that aren't reconfigured, after clearing any other state
  354. * in the endpoint's i/o queue.
  355. *
  356. * Returns zero, or a negative error code. On success, this call clears
  357. * the underlying hardware state reflecting endpoint halt and data toggle.
  358. * Note that some hardware can't support this request (like pxa2xx_udc),
  359. * and accordingly can't correctly implement interface altsettings.
  360. */
  361. static inline int usb_ep_clear_halt(struct usb_ep *ep)
  362. {
  363. return ep->ops->set_halt(ep, 0);
  364. }
  365. /**
  366. * usb_ep_fifo_status - returns number of bytes in fifo, or error
  367. * @ep: the endpoint whose fifo status is being checked.
  368. *
  369. * FIFO endpoints may have "unclaimed data" in them in certain cases,
  370. * such as after aborted transfers. Hosts may not have collected all
  371. * the IN data written by the gadget driver (and reported by a request
  372. * completion). The gadget driver may not have collected all the data
  373. * written OUT to it by the host. Drivers that need precise handling for
  374. * fault reporting or recovery may need to use this call.
  375. *
  376. * This returns the number of such bytes in the fifo, or a negative
  377. * errno if the endpoint doesn't use a FIFO or doesn't support such
  378. * precise handling.
  379. */
  380. static inline int usb_ep_fifo_status(struct usb_ep *ep)
  381. {
  382. if (ep->ops->fifo_status)
  383. return ep->ops->fifo_status(ep);
  384. else
  385. return -EOPNOTSUPP;
  386. }
  387. /**
  388. * usb_ep_fifo_flush - flushes contents of a fifo
  389. * @ep: the endpoint whose fifo is being flushed.
  390. *
  391. * This call may be used to flush the "unclaimed data" that may exist in
  392. * an endpoint fifo after abnormal transaction terminations. The call
  393. * must never be used except when endpoint is not being used for any
  394. * protocol translation.
  395. */
  396. static inline void usb_ep_fifo_flush(struct usb_ep *ep)
  397. {
  398. if (ep->ops->fifo_flush)
  399. ep->ops->fifo_flush(ep);
  400. }
  401. /*-------------------------------------------------------------------------*/
  402. struct usb_gadget;
  403. struct usb_gadget_driver;
  404. /* the rest of the api to the controller hardware: device operations,
  405. * which don't involve endpoints (or i/o).
  406. */
  407. struct usb_gadget_ops {
  408. int (*get_frame)(struct usb_gadget *);
  409. int (*wakeup)(struct usb_gadget *);
  410. int (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
  411. int (*vbus_session) (struct usb_gadget *, int is_active);
  412. int (*vbus_draw) (struct usb_gadget *, unsigned mA);
  413. int (*pullup) (struct usb_gadget *, int is_on);
  414. int (*ioctl)(struct usb_gadget *,
  415. unsigned code, unsigned long param);
  416. int (*udc_start)(struct usb_gadget *,
  417. struct usb_gadget_driver *);
  418. int (*udc_stop)(struct usb_gadget *);
  419. };
  420. /**
  421. * struct usb_gadget - represents a usb slave device
  422. * @ops: Function pointers used to access hardware-specific operations.
  423. * @ep0: Endpoint zero, used when reading or writing responses to
  424. * driver setup() requests
  425. * @ep_list: List of other endpoints supported by the device.
  426. * @speed: Speed of current connection to USB host.
  427. * @max_speed: Maximal speed the UDC can handle. UDC must support this
  428. * and all slower speeds.
  429. * @is_dualspeed: true if the controller supports both high and full speed
  430. * operation. If it does, the gadget driver must also support both.
  431. * @is_otg: true if the USB device port uses a Mini-AB jack, so that the
  432. * gadget driver must provide a USB OTG descriptor.
  433. * @is_a_peripheral: false unless is_otg, the "A" end of a USB cable
  434. * is in the Mini-AB jack, and HNP has been used to switch roles
  435. * so that the "A" device currently acts as A-Peripheral, not A-Host.
  436. * @a_hnp_support: OTG device feature flag, indicating that the A-Host
  437. * supports HNP at this port.
  438. * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
  439. * only supports HNP on a different root port.
  440. * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
  441. * enabled HNP support.
  442. * @name: Identifies the controller hardware type. Used in diagnostics
  443. * and sometimes configuration.
  444. * @dev: Driver model state for this abstract device.
  445. * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
  446. * MaxPacketSize.
  447. *
  448. * Gadgets have a mostly-portable "gadget driver" implementing device
  449. * functions, handling all usb configurations and interfaces. Gadget
  450. * drivers talk to hardware-specific code indirectly, through ops vectors.
  451. * That insulates the gadget driver from hardware details, and packages
  452. * the hardware endpoints through generic i/o queues. The "usb_gadget"
  453. * and "usb_ep" interfaces provide that insulation from the hardware.
  454. *
  455. * Except for the driver data, all fields in this structure are
  456. * read-only to the gadget driver. That driver data is part of the
  457. * "driver model" infrastructure in 2.6 (and later) kernels, and for
  458. * earlier systems is grouped in a similar structure that's not known
  459. * to the rest of the kernel.
  460. *
  461. * Values of the three OTG device feature flags are updated before the
  462. * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
  463. * driver suspend() calls. They are valid only when is_otg, and when the
  464. * device is acting as a B-Peripheral (so is_a_peripheral is false).
  465. */
  466. struct usb_gadget {
  467. /* readonly to gadget driver */
  468. const struct usb_gadget_ops *ops;
  469. struct usb_ep *ep0;
  470. struct list_head ep_list; /* of usb_ep */
  471. enum usb_device_speed speed;
  472. enum usb_device_speed max_speed;
  473. enum usb_device_state state;
  474. unsigned is_dualspeed:1;
  475. unsigned is_otg:1;
  476. unsigned is_a_peripheral:1;
  477. unsigned b_hnp_enable:1;
  478. unsigned a_hnp_support:1;
  479. unsigned a_alt_hnp_support:1;
  480. const char *name;
  481. struct device dev;
  482. unsigned quirk_ep_out_aligned_size:1;
  483. };
  484. static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
  485. {
  486. gadget->dev.driver_data = data;
  487. }
  488. static inline void *get_gadget_data(struct usb_gadget *gadget)
  489. {
  490. return gadget->dev.driver_data;
  491. }
  492. static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
  493. {
  494. return container_of(dev, struct usb_gadget, dev);
  495. }
  496. /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
  497. #define gadget_for_each_ep(tmp, gadget) \
  498. list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
  499. /**
  500. * gadget_is_dualspeed - return true iff the hardware handles high speed
  501. * @g: controller that might support both high and full speeds
  502. */
  503. static inline int gadget_is_dualspeed(struct usb_gadget *g)
  504. {
  505. #ifdef CONFIG_USB_GADGET_DUALSPEED
  506. /* runtime test would check "g->is_dualspeed" ... that might be
  507. * useful to work around hardware bugs, but is mostly pointless
  508. */
  509. return 1;
  510. #else
  511. return 0;
  512. #endif
  513. }
  514. /**
  515. * gadget_is_otg - return true iff the hardware is OTG-ready
  516. * @g: controller that might have a Mini-AB connector
  517. *
  518. * This is a runtime test, since kernels with a USB-OTG stack sometimes
  519. * run on boards which only have a Mini-B (or Mini-A) connector.
  520. */
  521. static inline int gadget_is_otg(struct usb_gadget *g)
  522. {
  523. #ifdef CONFIG_USB_OTG
  524. return g->is_otg;
  525. #else
  526. return 0;
  527. #endif
  528. }
  529. /**
  530. * usb_gadget_frame_number - returns the current frame number
  531. * @gadget: controller that reports the frame number
  532. *
  533. * Returns the usb frame number, normally eleven bits from a SOF packet,
  534. * or negative errno if this device doesn't support this capability.
  535. */
  536. static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
  537. {
  538. return gadget->ops->get_frame(gadget);
  539. }
  540. /**
  541. * usb_gadget_wakeup - tries to wake up the host connected to this gadget
  542. * @gadget: controller used to wake up the host
  543. *
  544. * Returns zero on success, else negative error code if the hardware
  545. * doesn't support such attempts, or its support has not been enabled
  546. * by the usb host. Drivers must return device descriptors that report
  547. * their ability to support this, or hosts won't enable it.
  548. *
  549. * This may also try to use SRP to wake the host and start enumeration,
  550. * even if OTG isn't otherwise in use. OTG devices may also start
  551. * remote wakeup even when hosts don't explicitly enable it.
  552. */
  553. static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
  554. {
  555. if (!gadget->ops->wakeup)
  556. return -EOPNOTSUPP;
  557. return gadget->ops->wakeup(gadget);
  558. }
  559. /**
  560. * usb_gadget_set_selfpowered - sets the device selfpowered feature.
  561. * @gadget:the device being declared as self-powered
  562. *
  563. * this affects the device status reported by the hardware driver
  564. * to reflect that it now has a local power supply.
  565. *
  566. * returns zero on success, else negative errno.
  567. */
  568. static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
  569. {
  570. if (!gadget->ops->set_selfpowered)
  571. return -EOPNOTSUPP;
  572. return gadget->ops->set_selfpowered(gadget, 1);
  573. }
  574. /**
  575. * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
  576. * @gadget:the device being declared as bus-powered
  577. *
  578. * this affects the device status reported by the hardware driver.
  579. * some hardware may not support bus-powered operation, in which
  580. * case this feature's value can never change.
  581. *
  582. * returns zero on success, else negative errno.
  583. */
  584. static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
  585. {
  586. if (!gadget->ops->set_selfpowered)
  587. return -EOPNOTSUPP;
  588. return gadget->ops->set_selfpowered(gadget, 0);
  589. }
  590. /**
  591. * usb_gadget_vbus_connect - Notify controller that VBUS is powered
  592. * @gadget:The device which now has VBUS power.
  593. *
  594. * This call is used by a driver for an external transceiver (or GPIO)
  595. * that detects a VBUS power session starting. Common responses include
  596. * resuming the controller, activating the D+ (or D-) pullup to let the
  597. * host detect that a USB device is attached, and starting to draw power
  598. * (8mA or possibly more, especially after SET_CONFIGURATION).
  599. *
  600. * Returns zero on success, else negative errno.
  601. */
  602. static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
  603. {
  604. if (!gadget->ops->vbus_session)
  605. return -EOPNOTSUPP;
  606. return gadget->ops->vbus_session(gadget, 1);
  607. }
  608. /**
  609. * usb_gadget_vbus_draw - constrain controller's VBUS power usage
  610. * @gadget:The device whose VBUS usage is being described
  611. * @mA:How much current to draw, in milliAmperes. This should be twice
  612. * the value listed in the configuration descriptor bMaxPower field.
  613. *
  614. * This call is used by gadget drivers during SET_CONFIGURATION calls,
  615. * reporting how much power the device may consume. For example, this
  616. * could affect how quickly batteries are recharged.
  617. *
  618. * Returns zero on success, else negative errno.
  619. */
  620. static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
  621. {
  622. if (!gadget->ops->vbus_draw)
  623. return -EOPNOTSUPP;
  624. return gadget->ops->vbus_draw(gadget, mA);
  625. }
  626. /**
  627. * usb_gadget_vbus_disconnect - notify controller about VBUS session end
  628. * @gadget:the device whose VBUS supply is being described
  629. *
  630. * This call is used by a driver for an external transceiver (or GPIO)
  631. * that detects a VBUS power session ending. Common responses include
  632. * reversing everything done in usb_gadget_vbus_connect().
  633. *
  634. * Returns zero on success, else negative errno.
  635. */
  636. static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
  637. {
  638. if (!gadget->ops->vbus_session)
  639. return -EOPNOTSUPP;
  640. return gadget->ops->vbus_session(gadget, 0);
  641. }
  642. /**
  643. * usb_gadget_connect - software-controlled connect to USB host
  644. * @gadget:the peripheral being connected
  645. *
  646. * Enables the D+ (or potentially D-) pullup. The host will start
  647. * enumerating this gadget when the pullup is active and a VBUS session
  648. * is active (the link is powered). This pullup is always enabled unless
  649. * usb_gadget_disconnect() has been used to disable it.
  650. *
  651. * Returns zero on success, else negative errno.
  652. */
  653. static inline int usb_gadget_connect(struct usb_gadget *gadget)
  654. {
  655. if (!gadget->ops->pullup)
  656. return -EOPNOTSUPP;
  657. return gadget->ops->pullup(gadget, 1);
  658. }
  659. /**
  660. * usb_gadget_disconnect - software-controlled disconnect from USB host
  661. * @gadget:the peripheral being disconnected
  662. *
  663. * Disables the D+ (or potentially D-) pullup, which the host may see
  664. * as a disconnect (when a VBUS session is active). Not all systems
  665. * support software pullup controls.
  666. *
  667. * This routine may be used during the gadget driver bind() call to prevent
  668. * the peripheral from ever being visible to the USB host, unless later
  669. * usb_gadget_connect() is called. For example, user mode components may
  670. * need to be activated before the system can talk to hosts.
  671. *
  672. * Returns zero on success, else negative errno.
  673. */
  674. static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
  675. {
  676. if (!gadget->ops->pullup)
  677. return -EOPNOTSUPP;
  678. return gadget->ops->pullup(gadget, 0);
  679. }
  680. /*-------------------------------------------------------------------------*/
  681. /**
  682. * struct usb_gadget_driver - driver for usb 'slave' devices
  683. * @function: String describing the gadget's function
  684. * @speed: Highest speed the driver handles.
  685. * @bind: Invoked when the driver is bound to a gadget, usually
  686. * after registering the driver.
  687. * At that point, ep0 is fully initialized, and ep_list holds
  688. * the currently-available endpoints.
  689. * Called in a context that permits sleeping.
  690. * @setup: Invoked for ep0 control requests that aren't handled by
  691. * the hardware level driver. Most calls must be handled by
  692. * the gadget driver, including descriptor and configuration
  693. * management. The 16 bit members of the setup data are in
  694. * USB byte order. Called in_interrupt; this may not sleep. Driver
  695. * queues a response to ep0, or returns negative to stall.
  696. * @disconnect: Invoked after all transfers have been stopped,
  697. * when the host is disconnected. May be called in_interrupt; this
  698. * may not sleep. Some devices can't detect disconnect, so this might
  699. * not be called except as part of controller shutdown.
  700. * @unbind: Invoked when the driver is unbound from a gadget,
  701. * usually from rmmod (after a disconnect is reported).
  702. * Called in a context that permits sleeping.
  703. * @suspend: Invoked on USB suspend. May be called in_interrupt.
  704. * @resume: Invoked on USB resume. May be called in_interrupt.
  705. * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
  706. * and should be called in_interrupt.
  707. *
  708. * Devices are disabled till a gadget driver successfully bind()s, which
  709. * means the driver will handle setup() requests needed to enumerate (and
  710. * meet "chapter 9" requirements) then do some useful work.
  711. *
  712. * If gadget->is_otg is true, the gadget driver must provide an OTG
  713. * descriptor during enumeration, or else fail the bind() call. In such
  714. * cases, no USB traffic may flow until both bind() returns without
  715. * having called usb_gadget_disconnect(), and the USB host stack has
  716. * initialized.
  717. *
  718. * Drivers use hardware-specific knowledge to configure the usb hardware.
  719. * endpoint addressing is only one of several hardware characteristics that
  720. * are in descriptors the ep0 implementation returns from setup() calls.
  721. *
  722. * Except for ep0 implementation, most driver code shouldn't need change to
  723. * run on top of different usb controllers. It'll use endpoints set up by
  724. * that ep0 implementation.
  725. *
  726. * The usb controller driver handles a few standard usb requests. Those
  727. * include set_address, and feature flags for devices, interfaces, and
  728. * endpoints (the get_status, set_feature, and clear_feature requests).
  729. *
  730. * Accordingly, the driver's setup() callback must always implement all
  731. * get_descriptor requests, returning at least a device descriptor and
  732. * a configuration descriptor. Drivers must make sure the endpoint
  733. * descriptors match any hardware constraints. Some hardware also constrains
  734. * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
  735. *
  736. * The driver's setup() callback must also implement set_configuration,
  737. * and should also implement set_interface, get_configuration, and
  738. * get_interface. Setting a configuration (or interface) is where
  739. * endpoints should be activated or (config 0) shut down.
  740. *
  741. * (Note that only the default control endpoint is supported. Neither
  742. * hosts nor devices generally support control traffic except to ep0.)
  743. *
  744. * Most devices will ignore USB suspend/resume operations, and so will
  745. * not provide those callbacks. However, some may need to change modes
  746. * when the host is not longer directing those activities. For example,
  747. * local controls (buttons, dials, etc) may need to be re-enabled since
  748. * the (remote) host can't do that any longer; or an error state might
  749. * be cleared, to make the device behave identically whether or not
  750. * power is maintained.
  751. */
  752. struct usb_gadget_driver {
  753. char *function;
  754. enum usb_device_speed speed;
  755. int (*bind)(struct usb_gadget *);
  756. void (*unbind)(struct usb_gadget *);
  757. int (*setup)(struct usb_gadget *,
  758. const struct usb_ctrlrequest *);
  759. void (*disconnect)(struct usb_gadget *);
  760. void (*suspend)(struct usb_gadget *);
  761. void (*resume)(struct usb_gadget *);
  762. void (*reset)(struct usb_gadget *);
  763. };
  764. /*-------------------------------------------------------------------------*/
  765. /* driver modules register and unregister, as usual.
  766. * these calls must be made in a context that can sleep.
  767. *
  768. * these will usually be implemented directly by the hardware-dependent
  769. * usb bus interface driver, which will only support a single driver.
  770. */
  771. /**
  772. * usb_gadget_register_driver - register a gadget driver
  773. * @driver:the driver being registered
  774. *
  775. * Call this in your gadget driver's module initialization function,
  776. * to tell the underlying usb controller driver about your driver.
  777. * The driver's bind() function will be called to bind it to a
  778. * gadget before this registration call returns. It's expected that
  779. * the bind() functions will be in init sections.
  780. * This function must be called in a context that can sleep.
  781. */
  782. int usb_gadget_register_driver(struct usb_gadget_driver *driver);
  783. /**
  784. * usb_gadget_unregister_driver - unregister a gadget driver
  785. * @driver:the driver being unregistered
  786. *
  787. * Call this in your gadget driver's module cleanup function,
  788. * to tell the underlying usb controller that your driver is
  789. * going away. If the controller is connected to a USB host,
  790. * it will first disconnect(). The driver is also requested
  791. * to unbind() and clean up any device state, before this procedure
  792. * finally returns. It's expected that the unbind() functions
  793. * will in in exit sections, so may not be linked in some kernels.
  794. * This function must be called in a context that can sleep.
  795. */
  796. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
  797. int usb_add_gadget_udc_release(struct device *parent,
  798. struct usb_gadget *gadget, void (*release)(struct device *dev));
  799. int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
  800. void usb_del_gadget_udc(struct usb_gadget *gadget);
  801. /*-------------------------------------------------------------------------*/
  802. /* utility to simplify dealing with string descriptors */
  803. /**
  804. * struct usb_gadget_strings - a set of USB strings in a given language
  805. * @language:identifies the strings' language (0x0409 for en-us)
  806. * @strings:array of strings with their ids
  807. *
  808. * If you're using usb_gadget_get_string(), use this to wrap all the
  809. * strings for a given language.
  810. */
  811. struct usb_gadget_strings {
  812. u16 language; /* 0x0409 for en-us */
  813. struct usb_string *strings;
  814. };
  815. /* put descriptor for string with that id into buf (buflen >= 256) */
  816. int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
  817. /*-------------------------------------------------------------------------*/
  818. /* utility to simplify managing config descriptors */
  819. /* write vector of descriptors into buffer */
  820. int usb_descriptor_fillbuf(void *, unsigned,
  821. const struct usb_descriptor_header **);
  822. /* build config descriptor from single descriptor vector */
  823. int usb_gadget_config_buf(const struct usb_config_descriptor *config,
  824. void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
  825. /*-------------------------------------------------------------------------*/
  826. /* utility to simplify map/unmap of usb_requests to/from DMA */
  827. extern int usb_gadget_map_request(struct usb_gadget *gadget,
  828. struct usb_request *req, int is_in);
  829. extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
  830. struct usb_request *req, int is_in);
  831. /*-------------------------------------------------------------------------*/
  832. /* utility to set gadget state properly */
  833. extern void usb_gadget_set_state(struct usb_gadget *gadget,
  834. enum usb_device_state state);
  835. /*-------------------------------------------------------------------------*/
  836. /* utility to tell udc core that the bus reset occurs */
  837. extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
  838. struct usb_gadget_driver *driver);
  839. /*-------------------------------------------------------------------------*/
  840. /* utility to give requests back to the gadget layer */
  841. extern void usb_gadget_giveback_request(struct usb_ep *ep,
  842. struct usb_request *req);
  843. /*-------------------------------------------------------------------------*/
  844. /* utility wrapping a simple endpoint selection policy */
  845. extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
  846. struct usb_endpoint_descriptor *);
  847. extern void usb_ep_autoconfig_reset(struct usb_gadget *);
  848. extern int usb_gadget_handle_interrupts(int index);
  849. #endif /* __LINUX_USB_GADGET_H */