evm.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329
  1. /*
  2. * (C) Copyright 2013
  3. * Texas Instruments Incorporated, <www.ti.com>
  4. *
  5. * Lokesh Vutla <lokeshvutla@ti.com>
  6. *
  7. * Based on previous work by:
  8. * Aneesh V <aneesh@ti.com>
  9. * Steve Sakoman <steve@sakoman.com>
  10. *
  11. * SPDX-License-Identifier: GPL-2.0+
  12. */
  13. #include <common.h>
  14. #include <palmas.h>
  15. #include <sata.h>
  16. #include <linux/string.h>
  17. #include <asm/gpio.h>
  18. #include <usb.h>
  19. #include <linux/usb/gadget.h>
  20. #include <asm/omap_common.h>
  21. #include <asm/omap_sec_common.h>
  22. #include <asm/arch/gpio.h>
  23. #include <asm/arch/dra7xx_iodelay.h>
  24. #include <asm/emif.h>
  25. #include <asm/arch/sys_proto.h>
  26. #include <asm/arch/mmc_host_def.h>
  27. #include <asm/arch/sata.h>
  28. #include <environment.h>
  29. #include <dwc3-uboot.h>
  30. #include <dwc3-omap-uboot.h>
  31. #include <fdt_support.h>
  32. #include <i2c.h>
  33. #include <ti-usb-phy-uboot.h>
  34. #include <miiphy.h>
  35. #include "mux_data.h"
  36. #include "../common/board_detect.h"
  37. #define board_is_dra76x_evm() board_ti_is("DRA76/7x")
  38. #define board_is_dra74x_evm() board_ti_is("5777xCPU")
  39. #define board_is_dra72x_evm() board_ti_is("DRA72x-T")
  40. #define board_is_dra71x_evm() board_ti_is("DRA79x,D")
  41. #define board_is_dra74x_revh_or_later() (board_is_dra74x_evm() && \
  42. (strncmp("H", board_ti_get_rev(), 1) <= 0))
  43. #define board_is_dra72x_revc_or_later() (board_is_dra72x_evm() && \
  44. (strncmp("C", board_ti_get_rev(), 1) <= 0))
  45. #define board_ti_get_emif_size() board_ti_get_emif1_size() + \
  46. board_ti_get_emif2_size()
  47. #ifdef CONFIG_DRIVER_TI_CPSW
  48. #include <cpsw.h>
  49. #endif
  50. DECLARE_GLOBAL_DATA_PTR;
  51. /* GPIO 7_11 */
  52. #define GPIO_DDR_VTT_EN 203
  53. #define SYSINFO_BOARD_NAME_MAX_LEN 37
  54. /* I2C I/O Expander */
  55. #define NAND_PCF8575_ADDR 0x21
  56. #define NAND_PCF8575_I2C_BUS_NUM 0
  57. const struct omap_sysinfo sysinfo = {
  58. "Board: UNKNOWN(DRA7 EVM) REV UNKNOWN\n"
  59. };
  60. static const struct emif_regs emif1_ddr3_532_mhz_1cs = {
  61. .sdram_config_init = 0x61851ab2,
  62. .sdram_config = 0x61851ab2,
  63. .sdram_config2 = 0x08000000,
  64. .ref_ctrl = 0x000040F1,
  65. .ref_ctrl_final = 0x00001035,
  66. .sdram_tim1 = 0xCCCF36B3,
  67. .sdram_tim2 = 0x308F7FDA,
  68. .sdram_tim3 = 0x427F88A8,
  69. .read_idle_ctrl = 0x00050000,
  70. .zq_config = 0x0007190B,
  71. .temp_alert_config = 0x00000000,
  72. .emif_ddr_phy_ctlr_1_init = 0x0024400B,
  73. .emif_ddr_phy_ctlr_1 = 0x0E24400B,
  74. .emif_ddr_ext_phy_ctrl_1 = 0x10040100,
  75. .emif_ddr_ext_phy_ctrl_2 = 0x00910091,
  76. .emif_ddr_ext_phy_ctrl_3 = 0x00950095,
  77. .emif_ddr_ext_phy_ctrl_4 = 0x009B009B,
  78. .emif_ddr_ext_phy_ctrl_5 = 0x009E009E,
  79. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  80. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  81. .emif_rd_wr_lvl_ctl = 0x00000000,
  82. .emif_rd_wr_exec_thresh = 0x00000305
  83. };
  84. static const struct emif_regs emif2_ddr3_532_mhz_1cs = {
  85. .sdram_config_init = 0x61851B32,
  86. .sdram_config = 0x61851B32,
  87. .sdram_config2 = 0x08000000,
  88. .ref_ctrl = 0x000040F1,
  89. .ref_ctrl_final = 0x00001035,
  90. .sdram_tim1 = 0xCCCF36B3,
  91. .sdram_tim2 = 0x308F7FDA,
  92. .sdram_tim3 = 0x427F88A8,
  93. .read_idle_ctrl = 0x00050000,
  94. .zq_config = 0x0007190B,
  95. .temp_alert_config = 0x00000000,
  96. .emif_ddr_phy_ctlr_1_init = 0x0024400B,
  97. .emif_ddr_phy_ctlr_1 = 0x0E24400B,
  98. .emif_ddr_ext_phy_ctrl_1 = 0x10040100,
  99. .emif_ddr_ext_phy_ctrl_2 = 0x00910091,
  100. .emif_ddr_ext_phy_ctrl_3 = 0x00950095,
  101. .emif_ddr_ext_phy_ctrl_4 = 0x009B009B,
  102. .emif_ddr_ext_phy_ctrl_5 = 0x009E009E,
  103. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  104. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  105. .emif_rd_wr_lvl_ctl = 0x00000000,
  106. .emif_rd_wr_exec_thresh = 0x00000305
  107. };
  108. static const struct emif_regs emif_1_regs_ddr3_666_mhz_1cs_dra_es1 = {
  109. .sdram_config_init = 0x61862B32,
  110. .sdram_config = 0x61862B32,
  111. .sdram_config2 = 0x08000000,
  112. .ref_ctrl = 0x0000514C,
  113. .ref_ctrl_final = 0x0000144A,
  114. .sdram_tim1 = 0xD113781C,
  115. .sdram_tim2 = 0x30717FE3,
  116. .sdram_tim3 = 0x409F86A8,
  117. .read_idle_ctrl = 0x00050000,
  118. .zq_config = 0x5007190B,
  119. .temp_alert_config = 0x00000000,
  120. .emif_ddr_phy_ctlr_1_init = 0x0024400D,
  121. .emif_ddr_phy_ctlr_1 = 0x0E24400D,
  122. .emif_ddr_ext_phy_ctrl_1 = 0x10040100,
  123. .emif_ddr_ext_phy_ctrl_2 = 0x00A400A4,
  124. .emif_ddr_ext_phy_ctrl_3 = 0x00A900A9,
  125. .emif_ddr_ext_phy_ctrl_4 = 0x00B000B0,
  126. .emif_ddr_ext_phy_ctrl_5 = 0x00B000B0,
  127. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  128. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  129. .emif_rd_wr_lvl_ctl = 0x00000000,
  130. .emif_rd_wr_exec_thresh = 0x00000305
  131. };
  132. const struct emif_regs emif_1_regs_ddr3_666_mhz_1cs_dra_es2 = {
  133. .sdram_config_init = 0x61862BB2,
  134. .sdram_config = 0x61862BB2,
  135. .sdram_config2 = 0x00000000,
  136. .ref_ctrl = 0x0000514D,
  137. .ref_ctrl_final = 0x0000144A,
  138. .sdram_tim1 = 0xD1137824,
  139. .sdram_tim2 = 0x30B37FE3,
  140. .sdram_tim3 = 0x409F8AD8,
  141. .read_idle_ctrl = 0x00050000,
  142. .zq_config = 0x5007190B,
  143. .temp_alert_config = 0x00000000,
  144. .emif_ddr_phy_ctlr_1_init = 0x0824400E,
  145. .emif_ddr_phy_ctlr_1 = 0x0E24400E,
  146. .emif_ddr_ext_phy_ctrl_1 = 0x04040100,
  147. .emif_ddr_ext_phy_ctrl_2 = 0x006B009F,
  148. .emif_ddr_ext_phy_ctrl_3 = 0x006B00A2,
  149. .emif_ddr_ext_phy_ctrl_4 = 0x006B00A8,
  150. .emif_ddr_ext_phy_ctrl_5 = 0x006B00A8,
  151. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  152. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  153. .emif_rd_wr_lvl_ctl = 0x00000000,
  154. .emif_rd_wr_exec_thresh = 0x00000305
  155. };
  156. const struct emif_regs emif1_ddr3_532_mhz_1cs_2G = {
  157. .sdram_config_init = 0x61851ab2,
  158. .sdram_config = 0x61851ab2,
  159. .sdram_config2 = 0x08000000,
  160. .ref_ctrl = 0x000040F1,
  161. .ref_ctrl_final = 0x00001035,
  162. .sdram_tim1 = 0xCCCF36B3,
  163. .sdram_tim2 = 0x30BF7FDA,
  164. .sdram_tim3 = 0x427F8BA8,
  165. .read_idle_ctrl = 0x00050000,
  166. .zq_config = 0x0007190B,
  167. .temp_alert_config = 0x00000000,
  168. .emif_ddr_phy_ctlr_1_init = 0x0024400B,
  169. .emif_ddr_phy_ctlr_1 = 0x0E24400B,
  170. .emif_ddr_ext_phy_ctrl_1 = 0x10040100,
  171. .emif_ddr_ext_phy_ctrl_2 = 0x00910091,
  172. .emif_ddr_ext_phy_ctrl_3 = 0x00950095,
  173. .emif_ddr_ext_phy_ctrl_4 = 0x009B009B,
  174. .emif_ddr_ext_phy_ctrl_5 = 0x009E009E,
  175. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  176. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  177. .emif_rd_wr_lvl_ctl = 0x00000000,
  178. .emif_rd_wr_exec_thresh = 0x00000305
  179. };
  180. const struct emif_regs emif2_ddr3_532_mhz_1cs_2G = {
  181. .sdram_config_init = 0x61851B32,
  182. .sdram_config = 0x61851B32,
  183. .sdram_config2 = 0x08000000,
  184. .ref_ctrl = 0x000040F1,
  185. .ref_ctrl_final = 0x00001035,
  186. .sdram_tim1 = 0xCCCF36B3,
  187. .sdram_tim2 = 0x308F7FDA,
  188. .sdram_tim3 = 0x427F88A8,
  189. .read_idle_ctrl = 0x00050000,
  190. .zq_config = 0x0007190B,
  191. .temp_alert_config = 0x00000000,
  192. .emif_ddr_phy_ctlr_1_init = 0x0024400B,
  193. .emif_ddr_phy_ctlr_1 = 0x0E24400B,
  194. .emif_ddr_ext_phy_ctrl_1 = 0x10040100,
  195. .emif_ddr_ext_phy_ctrl_2 = 0x00910091,
  196. .emif_ddr_ext_phy_ctrl_3 = 0x00950095,
  197. .emif_ddr_ext_phy_ctrl_4 = 0x009B009B,
  198. .emif_ddr_ext_phy_ctrl_5 = 0x009E009E,
  199. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  200. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  201. .emif_rd_wr_lvl_ctl = 0x00000000,
  202. .emif_rd_wr_exec_thresh = 0x00000305
  203. };
  204. const struct emif_regs emif_1_regs_ddr3_666_mhz_1cs_dra76 = {
  205. .sdram_config_init = 0x61862B32,
  206. .sdram_config = 0x61862B32,
  207. .sdram_config2 = 0x00000000,
  208. .ref_ctrl = 0x0000514C,
  209. .ref_ctrl_final = 0x0000144A,
  210. .sdram_tim1 = 0xD113783C,
  211. .sdram_tim2 = 0x30B47FE3,
  212. .sdram_tim3 = 0x409F8AD8,
  213. .read_idle_ctrl = 0x00050000,
  214. .zq_config = 0x5007190B,
  215. .temp_alert_config = 0x00000000,
  216. .emif_ddr_phy_ctlr_1_init = 0x0824400D,
  217. .emif_ddr_phy_ctlr_1 = 0x0E24400D,
  218. .emif_ddr_ext_phy_ctrl_1 = 0x04040100,
  219. .emif_ddr_ext_phy_ctrl_2 = 0x006B009F,
  220. .emif_ddr_ext_phy_ctrl_3 = 0x006B00A2,
  221. .emif_ddr_ext_phy_ctrl_4 = 0x006B00A8,
  222. .emif_ddr_ext_phy_ctrl_5 = 0x006B00A8,
  223. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  224. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  225. .emif_rd_wr_lvl_ctl = 0x00000000,
  226. .emif_rd_wr_exec_thresh = 0x00000305
  227. };
  228. const struct emif_regs emif_2_regs_ddr3_666_mhz_1cs_dra76 = {
  229. .sdram_config_init = 0x61862B32,
  230. .sdram_config = 0x61862B32,
  231. .sdram_config2 = 0x00000000,
  232. .ref_ctrl = 0x0000514C,
  233. .ref_ctrl_final = 0x0000144A,
  234. .sdram_tim1 = 0xD113781C,
  235. .sdram_tim2 = 0x30B47FE3,
  236. .sdram_tim3 = 0x409F8AD8,
  237. .read_idle_ctrl = 0x00050000,
  238. .zq_config = 0x5007190B,
  239. .temp_alert_config = 0x00000000,
  240. .emif_ddr_phy_ctlr_1_init = 0x0824400D,
  241. .emif_ddr_phy_ctlr_1 = 0x0E24400D,
  242. .emif_ddr_ext_phy_ctrl_1 = 0x04040100,
  243. .emif_ddr_ext_phy_ctrl_2 = 0x006B009F,
  244. .emif_ddr_ext_phy_ctrl_3 = 0x006B00A2,
  245. .emif_ddr_ext_phy_ctrl_4 = 0x006B00A8,
  246. .emif_ddr_ext_phy_ctrl_5 = 0x006B00A8,
  247. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  248. .emif_rd_wr_lvl_rmp_ctl = 0x80000000,
  249. .emif_rd_wr_lvl_ctl = 0x00000000,
  250. .emif_rd_wr_exec_thresh = 0x00000305
  251. };
  252. void emif_get_reg_dump(u32 emif_nr, const struct emif_regs **regs)
  253. {
  254. u64 ram_size;
  255. ram_size = board_ti_get_emif_size();
  256. switch (omap_revision()) {
  257. case DRA752_ES1_0:
  258. case DRA752_ES1_1:
  259. case DRA752_ES2_0:
  260. switch (emif_nr) {
  261. case 1:
  262. if (ram_size > CONFIG_MAX_MEM_MAPPED)
  263. *regs = &emif1_ddr3_532_mhz_1cs_2G;
  264. else
  265. *regs = &emif1_ddr3_532_mhz_1cs;
  266. break;
  267. case 2:
  268. if (ram_size > CONFIG_MAX_MEM_MAPPED)
  269. *regs = &emif2_ddr3_532_mhz_1cs_2G;
  270. else
  271. *regs = &emif2_ddr3_532_mhz_1cs;
  272. break;
  273. }
  274. break;
  275. case DRA762_ABZ_ES1_0:
  276. case DRA762_ACD_ES1_0:
  277. case DRA762_ES1_0:
  278. if (emif_nr == 1)
  279. *regs = &emif_1_regs_ddr3_666_mhz_1cs_dra76;
  280. else
  281. *regs = &emif_2_regs_ddr3_666_mhz_1cs_dra76;
  282. break;
  283. case DRA722_ES1_0:
  284. case DRA722_ES2_0:
  285. case DRA722_ES2_1:
  286. if (ram_size < CONFIG_MAX_MEM_MAPPED)
  287. *regs = &emif_1_regs_ddr3_666_mhz_1cs_dra_es1;
  288. else
  289. *regs = &emif_1_regs_ddr3_666_mhz_1cs_dra_es2;
  290. break;
  291. default:
  292. *regs = &emif1_ddr3_532_mhz_1cs;
  293. }
  294. }
  295. static const struct dmm_lisa_map_regs lisa_map_dra7_1536MB = {
  296. .dmm_lisa_map_0 = 0x0,
  297. .dmm_lisa_map_1 = 0x80640300,
  298. .dmm_lisa_map_2 = 0xC0500220,
  299. .dmm_lisa_map_3 = 0xFF020100,
  300. .is_ma_present = 0x1
  301. };
  302. static const struct dmm_lisa_map_regs lisa_map_2G_x_2 = {
  303. .dmm_lisa_map_0 = 0x0,
  304. .dmm_lisa_map_1 = 0x0,
  305. .dmm_lisa_map_2 = 0x80600100,
  306. .dmm_lisa_map_3 = 0xFF020100,
  307. .is_ma_present = 0x1
  308. };
  309. const struct dmm_lisa_map_regs lisa_map_dra7_2GB = {
  310. .dmm_lisa_map_0 = 0x0,
  311. .dmm_lisa_map_1 = 0x0,
  312. .dmm_lisa_map_2 = 0x80740300,
  313. .dmm_lisa_map_3 = 0xFF020100,
  314. .is_ma_present = 0x1
  315. };
  316. /*
  317. * DRA722 EVM EMIF1 2GB CONFIGURATION
  318. * EMIF1 4 devices of 512Mb x 8 Micron
  319. */
  320. const struct dmm_lisa_map_regs lisa_map_2G_x_4 = {
  321. .dmm_lisa_map_0 = 0x0,
  322. .dmm_lisa_map_1 = 0x0,
  323. .dmm_lisa_map_2 = 0x80700100,
  324. .dmm_lisa_map_3 = 0xFF020100,
  325. .is_ma_present = 0x1
  326. };
  327. void emif_get_dmm_regs(const struct dmm_lisa_map_regs **dmm_lisa_regs)
  328. {
  329. u64 ram_size;
  330. ram_size = board_ti_get_emif_size();
  331. switch (omap_revision()) {
  332. case DRA762_ABZ_ES1_0:
  333. case DRA762_ACD_ES1_0:
  334. case DRA762_ES1_0:
  335. case DRA752_ES1_0:
  336. case DRA752_ES1_1:
  337. case DRA752_ES2_0:
  338. if (ram_size > CONFIG_MAX_MEM_MAPPED)
  339. *dmm_lisa_regs = &lisa_map_dra7_2GB;
  340. else
  341. *dmm_lisa_regs = &lisa_map_dra7_1536MB;
  342. break;
  343. case DRA722_ES1_0:
  344. case DRA722_ES2_0:
  345. case DRA722_ES2_1:
  346. default:
  347. if (ram_size < CONFIG_MAX_MEM_MAPPED)
  348. *dmm_lisa_regs = &lisa_map_2G_x_2;
  349. else
  350. *dmm_lisa_regs = &lisa_map_2G_x_4;
  351. break;
  352. }
  353. }
  354. struct vcores_data dra752_volts = {
  355. .mpu.value[OPP_NOM] = VDD_MPU_DRA7_NOM,
  356. .mpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_MPU_NOM,
  357. .mpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  358. .mpu.addr = TPS659038_REG_ADDR_SMPS12,
  359. .mpu.pmic = &tps659038,
  360. .mpu.abb_tx_done_mask = OMAP_ABB_MPU_TXDONE_MASK,
  361. .eve.value[OPP_NOM] = VDD_EVE_DRA7_NOM,
  362. .eve.value[OPP_OD] = VDD_EVE_DRA7_OD,
  363. .eve.value[OPP_HIGH] = VDD_EVE_DRA7_HIGH,
  364. .eve.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_DSPEVE_NOM,
  365. .eve.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_DSPEVE_OD,
  366. .eve.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_DSPEVE_HIGH,
  367. .eve.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  368. .eve.addr = TPS659038_REG_ADDR_SMPS45,
  369. .eve.pmic = &tps659038,
  370. .eve.abb_tx_done_mask = OMAP_ABB_EVE_TXDONE_MASK,
  371. .gpu.value[OPP_NOM] = VDD_GPU_DRA7_NOM,
  372. .gpu.value[OPP_OD] = VDD_GPU_DRA7_OD,
  373. .gpu.value[OPP_HIGH] = VDD_GPU_DRA7_HIGH,
  374. .gpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_GPU_NOM,
  375. .gpu.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_GPU_OD,
  376. .gpu.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_GPU_HIGH,
  377. .gpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  378. .gpu.addr = TPS659038_REG_ADDR_SMPS6,
  379. .gpu.pmic = &tps659038,
  380. .gpu.abb_tx_done_mask = OMAP_ABB_GPU_TXDONE_MASK,
  381. .core.value[OPP_NOM] = VDD_CORE_DRA7_NOM,
  382. .core.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_CORE_NOM,
  383. .core.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  384. .core.addr = TPS659038_REG_ADDR_SMPS7,
  385. .core.pmic = &tps659038,
  386. .iva.value[OPP_NOM] = VDD_IVA_DRA7_NOM,
  387. .iva.value[OPP_OD] = VDD_IVA_DRA7_OD,
  388. .iva.value[OPP_HIGH] = VDD_IVA_DRA7_HIGH,
  389. .iva.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_IVA_NOM,
  390. .iva.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_IVA_OD,
  391. .iva.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_IVA_HIGH,
  392. .iva.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  393. .iva.addr = TPS659038_REG_ADDR_SMPS8,
  394. .iva.pmic = &tps659038,
  395. .iva.abb_tx_done_mask = OMAP_ABB_IVA_TXDONE_MASK,
  396. };
  397. struct vcores_data dra76x_volts = {
  398. .mpu.value[OPP_NOM] = VDD_MPU_DRA7_NOM,
  399. .mpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_MPU_NOM,
  400. .mpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  401. .mpu.addr = LP87565_REG_ADDR_BUCK01,
  402. .mpu.pmic = &lp87565,
  403. .mpu.abb_tx_done_mask = OMAP_ABB_MPU_TXDONE_MASK,
  404. .eve.value[OPP_NOM] = VDD_EVE_DRA7_NOM,
  405. .eve.value[OPP_OD] = VDD_EVE_DRA7_OD,
  406. .eve.value[OPP_HIGH] = VDD_EVE_DRA7_HIGH,
  407. .eve.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_DSPEVE_NOM,
  408. .eve.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_DSPEVE_OD,
  409. .eve.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_DSPEVE_HIGH,
  410. .eve.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  411. .eve.addr = TPS65917_REG_ADDR_SMPS1,
  412. .eve.pmic = &tps659038,
  413. .eve.abb_tx_done_mask = OMAP_ABB_EVE_TXDONE_MASK,
  414. .gpu.value[OPP_NOM] = VDD_GPU_DRA7_NOM,
  415. .gpu.value[OPP_OD] = VDD_GPU_DRA7_OD,
  416. .gpu.value[OPP_HIGH] = VDD_GPU_DRA7_HIGH,
  417. .gpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_GPU_NOM,
  418. .gpu.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_GPU_OD,
  419. .gpu.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_GPU_HIGH,
  420. .gpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  421. .gpu.addr = LP87565_REG_ADDR_BUCK23,
  422. .gpu.pmic = &lp87565,
  423. .gpu.abb_tx_done_mask = OMAP_ABB_GPU_TXDONE_MASK,
  424. .core.value[OPP_NOM] = VDD_CORE_DRA7_NOM,
  425. .core.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_CORE_NOM,
  426. .core.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  427. .core.addr = TPS65917_REG_ADDR_SMPS3,
  428. .core.pmic = &tps659038,
  429. .iva.value[OPP_NOM] = VDD_IVA_DRA7_NOM,
  430. .iva.value[OPP_OD] = VDD_IVA_DRA7_OD,
  431. .iva.value[OPP_HIGH] = VDD_IVA_DRA7_HIGH,
  432. .iva.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_IVA_NOM,
  433. .iva.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_IVA_OD,
  434. .iva.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_IVA_HIGH,
  435. .iva.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  436. .iva.addr = TPS65917_REG_ADDR_SMPS4,
  437. .iva.pmic = &tps659038,
  438. .iva.abb_tx_done_mask = OMAP_ABB_IVA_TXDONE_MASK,
  439. };
  440. struct vcores_data dra722_volts = {
  441. .mpu.value[OPP_NOM] = VDD_MPU_DRA7_NOM,
  442. .mpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_MPU_NOM,
  443. .mpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  444. .mpu.addr = TPS65917_REG_ADDR_SMPS1,
  445. .mpu.pmic = &tps659038,
  446. .mpu.abb_tx_done_mask = OMAP_ABB_MPU_TXDONE_MASK,
  447. .core.value[OPP_NOM] = VDD_CORE_DRA7_NOM,
  448. .core.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_CORE_NOM,
  449. .core.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  450. .core.addr = TPS65917_REG_ADDR_SMPS2,
  451. .core.pmic = &tps659038,
  452. /*
  453. * The DSPEVE, GPU and IVA rails are usually grouped on DRA72x
  454. * designs and powered by TPS65917 SMPS3, as on the J6Eco EVM.
  455. */
  456. .gpu.value[OPP_NOM] = VDD_GPU_DRA7_NOM,
  457. .gpu.value[OPP_OD] = VDD_GPU_DRA7_OD,
  458. .gpu.value[OPP_HIGH] = VDD_GPU_DRA7_HIGH,
  459. .gpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_GPU_NOM,
  460. .gpu.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_GPU_OD,
  461. .gpu.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_GPU_HIGH,
  462. .gpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  463. .gpu.addr = TPS65917_REG_ADDR_SMPS3,
  464. .gpu.pmic = &tps659038,
  465. .gpu.abb_tx_done_mask = OMAP_ABB_GPU_TXDONE_MASK,
  466. .eve.value[OPP_NOM] = VDD_EVE_DRA7_NOM,
  467. .eve.value[OPP_OD] = VDD_EVE_DRA7_OD,
  468. .eve.value[OPP_HIGH] = VDD_EVE_DRA7_HIGH,
  469. .eve.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_DSPEVE_NOM,
  470. .eve.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_DSPEVE_OD,
  471. .eve.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_DSPEVE_HIGH,
  472. .eve.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  473. .eve.addr = TPS65917_REG_ADDR_SMPS3,
  474. .eve.pmic = &tps659038,
  475. .eve.abb_tx_done_mask = OMAP_ABB_EVE_TXDONE_MASK,
  476. .iva.value[OPP_NOM] = VDD_IVA_DRA7_NOM,
  477. .iva.value[OPP_OD] = VDD_IVA_DRA7_OD,
  478. .iva.value[OPP_HIGH] = VDD_IVA_DRA7_HIGH,
  479. .iva.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_IVA_NOM,
  480. .iva.efuse.reg[OPP_OD] = STD_FUSE_OPP_VMIN_IVA_OD,
  481. .iva.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_IVA_HIGH,
  482. .iva.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  483. .iva.addr = TPS65917_REG_ADDR_SMPS3,
  484. .iva.pmic = &tps659038,
  485. .iva.abb_tx_done_mask = OMAP_ABB_IVA_TXDONE_MASK,
  486. };
  487. struct vcores_data dra718_volts = {
  488. /*
  489. * In the case of dra71x GPU MPU and CORE
  490. * are all powered up by BUCK0 of LP873X PMIC
  491. */
  492. .mpu.value[OPP_NOM] = VDD_MPU_DRA7_NOM,
  493. .mpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_MPU_NOM,
  494. .mpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  495. .mpu.addr = LP873X_REG_ADDR_BUCK0,
  496. .mpu.pmic = &lp8733,
  497. .mpu.abb_tx_done_mask = OMAP_ABB_MPU_TXDONE_MASK,
  498. .core.value[OPP_NOM] = VDD_CORE_DRA7_NOM,
  499. .core.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_CORE_NOM,
  500. .core.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  501. .core.addr = LP873X_REG_ADDR_BUCK0,
  502. .core.pmic = &lp8733,
  503. .gpu.value[OPP_NOM] = VDD_GPU_DRA7_NOM,
  504. .gpu.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_GPU_NOM,
  505. .gpu.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  506. .gpu.addr = LP873X_REG_ADDR_BUCK0,
  507. .gpu.pmic = &lp8733,
  508. .gpu.abb_tx_done_mask = OMAP_ABB_GPU_TXDONE_MASK,
  509. /*
  510. * The DSPEVE and IVA rails are grouped on DRA71x-evm
  511. * and are powered by BUCK1 of LP873X PMIC
  512. */
  513. .eve.value[OPP_NOM] = VDD_EVE_DRA7_NOM,
  514. .eve.value[OPP_HIGH] = VDD_EVE_DRA7_HIGH,
  515. .eve.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_DSPEVE_NOM,
  516. .eve.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_DSPEVE_HIGH,
  517. .eve.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  518. .eve.addr = LP873X_REG_ADDR_BUCK1,
  519. .eve.pmic = &lp8733,
  520. .eve.abb_tx_done_mask = OMAP_ABB_EVE_TXDONE_MASK,
  521. .iva.value[OPP_NOM] = VDD_IVA_DRA7_NOM,
  522. .iva.value[OPP_HIGH] = VDD_IVA_DRA7_HIGH,
  523. .iva.efuse.reg[OPP_NOM] = STD_FUSE_OPP_VMIN_IVA_NOM,
  524. .iva.efuse.reg[OPP_HIGH] = STD_FUSE_OPP_VMIN_IVA_HIGH,
  525. .iva.efuse.reg_bits = DRA752_EFUSE_REGBITS,
  526. .iva.addr = LP873X_REG_ADDR_BUCK1,
  527. .iva.pmic = &lp8733,
  528. .iva.abb_tx_done_mask = OMAP_ABB_IVA_TXDONE_MASK,
  529. };
  530. int get_voltrail_opp(int rail_offset)
  531. {
  532. int opp;
  533. switch (rail_offset) {
  534. case VOLT_MPU:
  535. opp = DRA7_MPU_OPP;
  536. /* DRA71x supports only OPP_NOM for MPU */
  537. if (board_is_dra71x_evm())
  538. opp = OPP_NOM;
  539. break;
  540. case VOLT_CORE:
  541. opp = DRA7_CORE_OPP;
  542. /* DRA71x supports only OPP_NOM for CORE */
  543. if (board_is_dra71x_evm())
  544. opp = OPP_NOM;
  545. break;
  546. case VOLT_GPU:
  547. opp = DRA7_GPU_OPP;
  548. /* DRA71x supports only OPP_NOM for GPU */
  549. if (board_is_dra71x_evm())
  550. opp = OPP_NOM;
  551. break;
  552. case VOLT_EVE:
  553. opp = DRA7_DSPEVE_OPP;
  554. /*
  555. * DRA71x does not support OPP_OD for EVE.
  556. * If OPP_OD is selected by menuconfig, fallback
  557. * to OPP_NOM.
  558. */
  559. if (board_is_dra71x_evm() && opp == OPP_OD)
  560. opp = OPP_NOM;
  561. break;
  562. case VOLT_IVA:
  563. opp = DRA7_IVA_OPP;
  564. /*
  565. * DRA71x does not support OPP_OD for IVA.
  566. * If OPP_OD is selected by menuconfig, fallback
  567. * to OPP_NOM.
  568. */
  569. if (board_is_dra71x_evm() && opp == OPP_OD)
  570. opp = OPP_NOM;
  571. break;
  572. default:
  573. opp = OPP_NOM;
  574. }
  575. return opp;
  576. }
  577. /**
  578. * @brief board_init
  579. *
  580. * @return 0
  581. */
  582. int board_init(void)
  583. {
  584. gpmc_init();
  585. gd->bd->bi_boot_params = (0x80000000 + 0x100); /* boot param addr */
  586. return 0;
  587. }
  588. void dram_init_banksize(void)
  589. {
  590. u64 ram_size;
  591. ram_size = board_ti_get_emif_size();
  592. gd->bd->bi_dram[0].start = CONFIG_SYS_SDRAM_BASE;
  593. gd->bd->bi_dram[0].size = get_effective_memsize();
  594. if (ram_size > CONFIG_MAX_MEM_MAPPED) {
  595. gd->bd->bi_dram[1].start = 0x200000000;
  596. gd->bd->bi_dram[1].size = ram_size - CONFIG_MAX_MEM_MAPPED;
  597. }
  598. }
  599. int board_late_init(void)
  600. {
  601. #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
  602. char *name = "unknown";
  603. if (is_dra72x()) {
  604. if (board_is_dra72x_revc_or_later())
  605. name = "dra72x-revc";
  606. else if (board_is_dra71x_evm())
  607. name = "dra71x";
  608. else
  609. name = "dra72x";
  610. } else if (is_dra76x_abz()) {
  611. name = "dra76x_abz";
  612. } else if (is_dra76x_acd()) {
  613. name = "dra76x_acd";
  614. } else {
  615. name = "dra7xx";
  616. }
  617. set_board_info_env(name);
  618. /*
  619. * Default FIT boot on HS devices. Non FIT images are not allowed
  620. * on HS devices.
  621. */
  622. if (get_device_type() == HS_DEVICE)
  623. setenv("boot_fit", "1");
  624. omap_die_id_serial();
  625. omap_set_fastboot_vars();
  626. /*
  627. * Hook the LDO1 regulator to EN pin. This applies only to LP8733
  628. * Rest all regulators are hooked to EN Pin at reset.
  629. */
  630. if (board_is_dra71x_evm())
  631. palmas_i2c_write_u8(LP873X_I2C_SLAVE_ADDR, 0x9, 0x7);
  632. #endif
  633. return 0;
  634. }
  635. #ifdef CONFIG_SPL_BUILD
  636. void do_board_detect(void)
  637. {
  638. int rc;
  639. rc = ti_i2c_eeprom_dra7_get(CONFIG_EEPROM_BUS_ADDRESS,
  640. CONFIG_EEPROM_CHIP_ADDRESS);
  641. if (rc)
  642. printf("ti_i2c_eeprom_init failed %d\n", rc);
  643. }
  644. #else
  645. void do_board_detect(void)
  646. {
  647. char *bname = NULL;
  648. int rc;
  649. rc = ti_i2c_eeprom_dra7_get(CONFIG_EEPROM_BUS_ADDRESS,
  650. CONFIG_EEPROM_CHIP_ADDRESS);
  651. if (rc)
  652. printf("ti_i2c_eeprom_init failed %d\n", rc);
  653. if (board_is_dra74x_evm()) {
  654. bname = "DRA74x EVM";
  655. } else if (board_is_dra72x_evm()) {
  656. bname = "DRA72x EVM";
  657. } else if (board_is_dra71x_evm()) {
  658. bname = "DRA71x EVM";
  659. } else if (board_is_dra76x_evm()) {
  660. bname = "DRA76x EVM";
  661. } else {
  662. /* If EEPROM is not populated */
  663. if (is_dra72x())
  664. bname = "DRA72x EVM";
  665. else
  666. bname = "DRA74x EVM";
  667. }
  668. if (bname)
  669. snprintf(sysinfo.board_string, SYSINFO_BOARD_NAME_MAX_LEN,
  670. "Board: %s REV %s\n", bname, board_ti_get_rev());
  671. }
  672. #endif /* CONFIG_SPL_BUILD */
  673. void vcores_init(void)
  674. {
  675. if (board_is_dra74x_evm()) {
  676. *omap_vcores = &dra752_volts;
  677. } else if (board_is_dra72x_evm()) {
  678. *omap_vcores = &dra722_volts;
  679. } else if (board_is_dra71x_evm()) {
  680. *omap_vcores = &dra718_volts;
  681. } else if (board_is_dra76x_evm()) {
  682. *omap_vcores = &dra76x_volts;
  683. } else {
  684. /* If EEPROM is not populated */
  685. if (is_dra72x())
  686. *omap_vcores = &dra722_volts;
  687. else
  688. *omap_vcores = &dra752_volts;
  689. }
  690. }
  691. void set_muxconf_regs(void)
  692. {
  693. do_set_mux32((*ctrl)->control_padconf_core_base,
  694. early_padconf, ARRAY_SIZE(early_padconf));
  695. }
  696. #if defined(CONFIG_NAND)
  697. int nand_sw_detect(void)
  698. {
  699. int rc, alen;
  700. uchar data[2];
  701. alen = 1;
  702. rc = i2c_set_bus_num(NAND_PCF8575_I2C_BUS_NUM);
  703. if (rc)
  704. return -1;
  705. rc = i2c_probe(NAND_PCF8575_ADDR);
  706. if (rc < 0)
  707. return -1;
  708. rc = ti_i2c_set_alen(NAND_PCF8575_I2C_BUS_NUM, NAND_PCF8575_ADDR, alen);
  709. if (rc < 0)
  710. return -1;
  711. i2c_read(NAND_PCF8575_ADDR, 0x00, alen, (uint8_t *)&data, sizeof(data));
  712. /* We are only interested in P10 and P11 on PCF8575 which is equal to
  713. * bits 8 and 9.
  714. */
  715. data[1] = data[1] & 0x3;
  716. /* Insure only P11 is set and P10 is cleared. This insures only
  717. * NAND (P10) is configured and not NOR (P11) which are both low
  718. * true signals. NAND and NOR settings should not be enabled at
  719. * the same time.
  720. */
  721. if (data[1] == 0x2)
  722. return 0;
  723. return -1;
  724. }
  725. #else
  726. int nand_sw_detect(void)
  727. {
  728. return -1;
  729. }
  730. #endif
  731. #ifdef CONFIG_IODELAY_RECALIBRATION
  732. void recalibrate_iodelay(void)
  733. {
  734. struct pad_conf_entry const *pads, *delta_pads = NULL;
  735. struct iodelay_cfg_entry const *iodelay;
  736. int npads, niodelays, delta_npads = 0;
  737. int ret;
  738. switch (omap_revision()) {
  739. case DRA722_ES1_0:
  740. case DRA722_ES2_0:
  741. case DRA722_ES2_1:
  742. pads = dra72x_core_padconf_array_common;
  743. npads = ARRAY_SIZE(dra72x_core_padconf_array_common);
  744. if (board_is_dra71x_evm()) {
  745. pads = dra71x_core_padconf_array;
  746. npads = ARRAY_SIZE(dra71x_core_padconf_array);
  747. iodelay = dra71_iodelay_cfg_array;
  748. niodelays = ARRAY_SIZE(dra71_iodelay_cfg_array);
  749. /* If SW8 on the EVM is set to enable NAND then
  750. * overwrite the pins used by VOUT3 with NAND.
  751. */
  752. if (!nand_sw_detect()) {
  753. delta_pads = dra71x_nand_padconf_array;
  754. delta_npads =
  755. ARRAY_SIZE(dra71x_nand_padconf_array);
  756. } else {
  757. delta_pads = dra71x_vout3_padconf_array;
  758. delta_npads =
  759. ARRAY_SIZE(dra71x_vout3_padconf_array);
  760. }
  761. } else if (board_is_dra72x_revc_or_later()) {
  762. delta_pads = dra72x_rgmii_padconf_array_revc;
  763. delta_npads =
  764. ARRAY_SIZE(dra72x_rgmii_padconf_array_revc);
  765. iodelay = dra72_iodelay_cfg_array_revc;
  766. niodelays = ARRAY_SIZE(dra72_iodelay_cfg_array_revc);
  767. } else {
  768. delta_pads = dra72x_rgmii_padconf_array_revb;
  769. delta_npads =
  770. ARRAY_SIZE(dra72x_rgmii_padconf_array_revb);
  771. iodelay = dra72_iodelay_cfg_array_revb;
  772. niodelays = ARRAY_SIZE(dra72_iodelay_cfg_array_revb);
  773. }
  774. break;
  775. case DRA752_ES1_0:
  776. case DRA752_ES1_1:
  777. pads = dra74x_core_padconf_array;
  778. npads = ARRAY_SIZE(dra74x_core_padconf_array);
  779. iodelay = dra742_es1_1_iodelay_cfg_array;
  780. niodelays = ARRAY_SIZE(dra742_es1_1_iodelay_cfg_array);
  781. break;
  782. case DRA762_ACD_ES1_0:
  783. case DRA762_ES1_0:
  784. pads = dra76x_core_padconf_array;
  785. npads = ARRAY_SIZE(dra76x_core_padconf_array);
  786. iodelay = dra76x_es1_0_iodelay_cfg_array;
  787. niodelays = ARRAY_SIZE(dra76x_es1_0_iodelay_cfg_array);
  788. break;
  789. default:
  790. case DRA752_ES2_0:
  791. case DRA762_ABZ_ES1_0:
  792. pads = dra74x_core_padconf_array;
  793. npads = ARRAY_SIZE(dra74x_core_padconf_array);
  794. iodelay = dra742_es2_0_iodelay_cfg_array;
  795. niodelays = ARRAY_SIZE(dra742_es2_0_iodelay_cfg_array);
  796. /* Setup port1 and port2 for rgmii with 'no-id' mode */
  797. clrset_spare_register(1, 0, RGMII2_ID_MODE_N_MASK |
  798. RGMII1_ID_MODE_N_MASK);
  799. break;
  800. }
  801. /* Setup I/O isolation */
  802. ret = __recalibrate_iodelay_start();
  803. if (ret)
  804. goto err;
  805. /* Do the muxing here */
  806. do_set_mux32((*ctrl)->control_padconf_core_base, pads, npads);
  807. /* Now do the weird minor deltas that should be safe */
  808. if (delta_npads)
  809. do_set_mux32((*ctrl)->control_padconf_core_base,
  810. delta_pads, delta_npads);
  811. if (is_dra76x())
  812. /* Set mux for MCAN instead of DCAN1 */
  813. clrsetbits_le32((*ctrl)->control_core_control_spare_rw,
  814. MCAN_SEL_ALT_MASK, MCAN_SEL);
  815. /* Setup IOdelay configuration */
  816. ret = do_set_iodelay((*ctrl)->iodelay_config_base, iodelay, niodelays);
  817. err:
  818. /* Closeup.. remove isolation */
  819. __recalibrate_iodelay_end(ret);
  820. }
  821. #endif
  822. #if defined(CONFIG_GENERIC_MMC)
  823. int board_mmc_init(bd_t *bis)
  824. {
  825. omap_mmc_init(0, 0, 0, -1, -1);
  826. omap_mmc_init(1, 0, 0, -1, -1);
  827. return 0;
  828. }
  829. void board_mmc_poweron_ldo(uint voltage)
  830. {
  831. if (board_is_dra71x_evm()) {
  832. if (voltage == LDO_VOLT_3V0)
  833. voltage = 0x19;
  834. else if (voltage == LDO_VOLT_1V8)
  835. voltage = 0xa;
  836. lp873x_mmc1_poweron_ldo(voltage);
  837. } else if (board_is_dra76x_evm()) {
  838. palmas_mmc1_poweron_ldo(LDO4_VOLTAGE, LDO4_CTRL, voltage);
  839. } else {
  840. palmas_mmc1_poweron_ldo(LDO1_VOLTAGE, LDO1_CTRL, voltage);
  841. }
  842. }
  843. #endif
  844. #ifdef CONFIG_OMAP_HSMMC
  845. #if defined(CONFIG_IODELAY_RECALIBRATION) && defined(CONFIG_SPL_BUILD)
  846. struct pinctrl_desc {
  847. const char *name;
  848. struct omap_hsmmc_pinctrl_state *pinctrl;
  849. };
  850. static struct pinctrl_desc pinctrl_descs_hsmmc1[] = {
  851. {"default", &hsmmc1_default},
  852. {"hs", &hsmmc1_default},
  853. {NULL}
  854. };
  855. static struct pinctrl_desc pinctrl_descs_hsmmc2_rev20[] = {
  856. {"default", &hsmmc2_default_hs},
  857. {"hs", &hsmmc2_default_hs},
  858. {"ddr_1_8v", &hsmmc2_ddr_1v8_rev20},
  859. {"hs200_1_8v", &hsmmc2_hs200_1v8_rev20},
  860. {NULL}
  861. };
  862. static struct pinctrl_desc pinctrl_descs_hsmmc2_rev11[] = {
  863. {"default", &hsmmc2_default_hs},
  864. {"hs", &hsmmc2_default_hs},
  865. {"ddr_1_8v", &hsmmc2_ddr_1v8_rev11},
  866. {"hs200_1_8v", &hsmmc2_hs200_1v8_rev11},
  867. {NULL}
  868. };
  869. static struct pinctrl_desc pinctrl_descs_hsmmc2_dra72x[] = {
  870. {"default", &hsmmc2_default_hs},
  871. {"hs", &hsmmc2_default_hs},
  872. {"ddr_1_8v", &hsmmc2_ddr_1v8_dra72},
  873. {"hs200_1_8v", &hsmmc2_hs200_1v8_dra72},
  874. {NULL}
  875. };
  876. static struct pinctrl_desc pinctrl_descs_hsmmc2_dra76x[] = {
  877. {"default", &hsmmc2_default_hs},
  878. {"hs", &hsmmc2_default_hs},
  879. {"ddr_1_8v", &hsmmc2_default_hs},
  880. {"hs200_1_8v", &hsmmc2_hs200_1v8_dra76},
  881. {NULL}
  882. };
  883. struct omap_hsmmc_pinctrl_state *platform_fixup_get_pinctrl_by_mode
  884. (struct hsmmc *base, const char *mode)
  885. {
  886. struct pinctrl_desc *p = NULL;
  887. switch ((u32)&base->res1) {
  888. case OMAP_HSMMC1_BASE:
  889. p = pinctrl_descs_hsmmc1;
  890. break;
  891. case OMAP_HSMMC2_BASE:
  892. if ((omap_revision() == DRA752_ES1_0) ||
  893. (omap_revision() == DRA752_ES1_1))
  894. p = pinctrl_descs_hsmmc2_rev11;
  895. else if (is_dra72x())
  896. p = pinctrl_descs_hsmmc2_dra72x;
  897. else if (is_dra76x())
  898. p = pinctrl_descs_hsmmc2_dra76x;
  899. else if (is_dra7xx())
  900. p = pinctrl_descs_hsmmc2_rev20;
  901. break;
  902. default:
  903. break;
  904. }
  905. if (!p) {
  906. printf("%s no pinctrl defined for MMC@%p\n", __func__,
  907. base);
  908. return NULL;
  909. }
  910. while (p->name) {
  911. if (strcmp(mode, p->name) == 0)
  912. return p->pinctrl;
  913. p++;
  914. }
  915. return NULL;
  916. }
  917. #endif
  918. int platform_fixup_disable_uhs_mode(void)
  919. {
  920. return omap_revision() == DRA752_ES1_1;
  921. }
  922. #endif
  923. #ifdef CONFIG_USB_DWC3
  924. static struct dwc3_device usb_otg_ss1 = {
  925. .maximum_speed = USB_SPEED_SUPER,
  926. .base = DRA7_USB_OTG_SS1_BASE,
  927. .tx_fifo_resize = false,
  928. .index = 0,
  929. };
  930. static struct dwc3_omap_device usb_otg_ss1_glue = {
  931. .base = (void *)DRA7_USB_OTG_SS1_GLUE_BASE,
  932. .utmi_mode = DWC3_OMAP_UTMI_MODE_SW,
  933. .index = 0,
  934. };
  935. static struct ti_usb_phy_device usb_phy1_device = {
  936. .pll_ctrl_base = (void *)DRA7_USB3_PHY1_PLL_CTRL,
  937. .usb2_phy_power = (void *)DRA7_USB2_PHY1_POWER,
  938. .usb3_phy_power = (void *)DRA7_USB3_PHY1_POWER,
  939. .index = 0,
  940. };
  941. static struct dwc3_device usb_otg_ss2 = {
  942. .maximum_speed = USB_SPEED_SUPER,
  943. .base = DRA7_USB_OTG_SS2_BASE,
  944. .tx_fifo_resize = false,
  945. .index = 1,
  946. };
  947. static struct dwc3_omap_device usb_otg_ss2_glue = {
  948. .base = (void *)DRA7_USB_OTG_SS2_GLUE_BASE,
  949. .utmi_mode = DWC3_OMAP_UTMI_MODE_SW,
  950. .index = 1,
  951. };
  952. static struct ti_usb_phy_device usb_phy2_device = {
  953. .usb2_phy_power = (void *)DRA7_USB2_PHY2_POWER,
  954. .index = 1,
  955. };
  956. int board_usb_init(int index, enum usb_init_type init)
  957. {
  958. enable_usb_clocks(index);
  959. switch (index) {
  960. case 0:
  961. if (init == USB_INIT_DEVICE) {
  962. usb_otg_ss1.dr_mode = USB_DR_MODE_PERIPHERAL;
  963. usb_otg_ss1_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID;
  964. } else {
  965. usb_otg_ss1.dr_mode = USB_DR_MODE_HOST;
  966. usb_otg_ss1_glue.vbus_id_status = OMAP_DWC3_ID_GROUND;
  967. }
  968. ti_usb_phy_uboot_init(&usb_phy1_device);
  969. dwc3_omap_uboot_init(&usb_otg_ss1_glue);
  970. dwc3_uboot_init(&usb_otg_ss1);
  971. break;
  972. case 1:
  973. if (init == USB_INIT_DEVICE) {
  974. usb_otg_ss2.dr_mode = USB_DR_MODE_PERIPHERAL;
  975. usb_otg_ss2_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID;
  976. } else {
  977. usb_otg_ss2.dr_mode = USB_DR_MODE_HOST;
  978. usb_otg_ss2_glue.vbus_id_status = OMAP_DWC3_ID_GROUND;
  979. }
  980. ti_usb_phy_uboot_init(&usb_phy2_device);
  981. dwc3_omap_uboot_init(&usb_otg_ss2_glue);
  982. dwc3_uboot_init(&usb_otg_ss2);
  983. break;
  984. default:
  985. printf("Invalid Controller Index\n");
  986. }
  987. return 0;
  988. }
  989. int board_usb_cleanup(int index, enum usb_init_type init)
  990. {
  991. switch (index) {
  992. case 0:
  993. case 1:
  994. ti_usb_phy_uboot_exit(index);
  995. dwc3_uboot_exit(index);
  996. dwc3_omap_uboot_exit(index);
  997. break;
  998. default:
  999. printf("Invalid Controller Index\n");
  1000. }
  1001. disable_usb_clocks(index);
  1002. return 0;
  1003. }
  1004. int usb_gadget_handle_interrupts(int index)
  1005. {
  1006. u32 status;
  1007. status = dwc3_omap_uboot_interrupt_status(index);
  1008. if (status)
  1009. dwc3_uboot_handle_interrupt(index);
  1010. return 0;
  1011. }
  1012. #endif
  1013. #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_OS_BOOT)
  1014. int spl_start_uboot(void)
  1015. {
  1016. /* break into full u-boot on 'c' */
  1017. if (serial_tstc() && serial_getc() == 'c')
  1018. return 1;
  1019. #ifdef CONFIG_SPL_ENV_SUPPORT
  1020. env_init();
  1021. env_relocate_spec();
  1022. if (getenv_yesno("boot_os") != 1)
  1023. return 1;
  1024. #endif
  1025. return 0;
  1026. }
  1027. #endif
  1028. #ifdef CONFIG_DRIVER_TI_CPSW
  1029. extern u32 *const omap_si_rev;
  1030. static void cpsw_control(int enabled)
  1031. {
  1032. /* VTP can be added here */
  1033. return;
  1034. }
  1035. static struct cpsw_slave_data cpsw_slaves[] = {
  1036. {
  1037. .slave_reg_ofs = 0x208,
  1038. .sliver_reg_ofs = 0xd80,
  1039. .phy_addr = 2,
  1040. },
  1041. {
  1042. .slave_reg_ofs = 0x308,
  1043. .sliver_reg_ofs = 0xdc0,
  1044. .phy_addr = 3,
  1045. },
  1046. };
  1047. static struct cpsw_platform_data cpsw_data = {
  1048. .mdio_base = CPSW_MDIO_BASE,
  1049. .cpsw_base = CPSW_BASE,
  1050. .mdio_div = 0xff,
  1051. .channels = 8,
  1052. .cpdma_reg_ofs = 0x800,
  1053. .slaves = 2,
  1054. .slave_data = cpsw_slaves,
  1055. .ale_reg_ofs = 0xd00,
  1056. .ale_entries = 1024,
  1057. .host_port_reg_ofs = 0x108,
  1058. .hw_stats_reg_ofs = 0x900,
  1059. .bd_ram_ofs = 0x2000,
  1060. .mac_control = (1 << 5),
  1061. .control = cpsw_control,
  1062. .host_port_num = 0,
  1063. .version = CPSW_CTRL_VERSION_2,
  1064. };
  1065. int board_eth_init(bd_t *bis)
  1066. {
  1067. int ret;
  1068. uint8_t mac_addr[6];
  1069. uint32_t mac_hi, mac_lo;
  1070. uint32_t ctrl_val;
  1071. /* try reading mac address from efuse */
  1072. mac_lo = readl((*ctrl)->control_core_mac_id_0_lo);
  1073. mac_hi = readl((*ctrl)->control_core_mac_id_0_hi);
  1074. mac_addr[0] = (mac_hi & 0xFF0000) >> 16;
  1075. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  1076. mac_addr[2] = mac_hi & 0xFF;
  1077. mac_addr[3] = (mac_lo & 0xFF0000) >> 16;
  1078. mac_addr[4] = (mac_lo & 0xFF00) >> 8;
  1079. mac_addr[5] = mac_lo & 0xFF;
  1080. if (!getenv("ethaddr")) {
  1081. printf("<ethaddr> not set. Validating first E-fuse MAC\n");
  1082. if (is_valid_ethaddr(mac_addr))
  1083. eth_setenv_enetaddr("ethaddr", mac_addr);
  1084. }
  1085. mac_lo = readl((*ctrl)->control_core_mac_id_1_lo);
  1086. mac_hi = readl((*ctrl)->control_core_mac_id_1_hi);
  1087. mac_addr[0] = (mac_hi & 0xFF0000) >> 16;
  1088. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  1089. mac_addr[2] = mac_hi & 0xFF;
  1090. mac_addr[3] = (mac_lo & 0xFF0000) >> 16;
  1091. mac_addr[4] = (mac_lo & 0xFF00) >> 8;
  1092. mac_addr[5] = mac_lo & 0xFF;
  1093. if (!getenv("eth1addr")) {
  1094. if (is_valid_ethaddr(mac_addr))
  1095. eth_setenv_enetaddr("eth1addr", mac_addr);
  1096. }
  1097. ctrl_val = readl((*ctrl)->control_core_control_io1) & (~0x33);
  1098. ctrl_val |= 0x22;
  1099. writel(ctrl_val, (*ctrl)->control_core_control_io1);
  1100. if (*omap_si_rev == DRA722_ES1_0)
  1101. cpsw_data.active_slave = 1;
  1102. if (board_is_dra72x_revc_or_later()) {
  1103. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII_ID;
  1104. cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RGMII_ID;
  1105. }
  1106. ret = cpsw_register(&cpsw_data);
  1107. if (ret < 0)
  1108. printf("Error %d registering CPSW switch\n", ret);
  1109. return ret;
  1110. }
  1111. #endif
  1112. #ifdef CONFIG_BOARD_EARLY_INIT_F
  1113. /* VTT regulator enable */
  1114. static inline void vtt_regulator_enable(void)
  1115. {
  1116. if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
  1117. return;
  1118. /* Do not enable VTT for DRA722 or DRA76x */
  1119. if (is_dra72x() || is_dra76x())
  1120. return;
  1121. /*
  1122. * EVM Rev G and later use gpio7_11 for DDR3 termination.
  1123. * This is safe enough to do on older revs.
  1124. */
  1125. gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
  1126. gpio_direction_output(GPIO_DDR_VTT_EN, 1);
  1127. }
  1128. int board_early_init_f(void)
  1129. {
  1130. vtt_regulator_enable();
  1131. return 0;
  1132. }
  1133. #endif
  1134. #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
  1135. int ft_board_setup(void *blob, bd_t *bd)
  1136. {
  1137. int ret;
  1138. ft_cpu_setup(blob, bd);
  1139. /* Perform fixup only on DRA71x EVM */
  1140. if (board_is_dra71x_evm()) {
  1141. if (!nand_sw_detect()) {
  1142. ret = ft_dra7x_enable_nand(blob, bd);
  1143. if (!ret)
  1144. printf("SW8[0] on EVM has selected NAND mode. DTB updated to enable NAND in the OS\n");
  1145. else
  1146. printf("SW8[0] on EVM has selected NAND mode but couldn't update DTB to enable NAND in the OS\n");
  1147. }
  1148. }
  1149. return 0;
  1150. }
  1151. #endif
  1152. #ifdef CONFIG_SPL_LOAD_FIT
  1153. int board_fit_config_name_match(const char *name)
  1154. {
  1155. if (is_dra72x()) {
  1156. if (board_is_dra71x_evm()) {
  1157. if (!strcmp(name, "dra71-evm"))
  1158. return 0;
  1159. }else if(board_is_dra72x_revc_or_later()) {
  1160. if (!strcmp(name, "dra72-evm-revc"))
  1161. return 0;
  1162. } else if (!strcmp(name, "dra72-evm")) {
  1163. return 0;
  1164. }
  1165. } else if (is_dra76x_acd() && !strcmp(name, "dra76-evm")) {
  1166. return 0;
  1167. } else if (!is_dra72x() && !is_dra76x_acd() &&
  1168. !strcmp(name, "dra7-evm")) {
  1169. return 0;
  1170. }
  1171. return -1;
  1172. }
  1173. #endif
  1174. #ifdef CONFIG_TI_SECURE_DEVICE
  1175. void board_fit_image_post_process(void **p_image, size_t *p_size)
  1176. {
  1177. secure_boot_verify_image(p_image, p_size);
  1178. }
  1179. void board_tee_image_process(ulong tee_image, size_t tee_size)
  1180. {
  1181. secure_tee_install((u32)tee_image);
  1182. }
  1183. U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_TEE, board_tee_image_process);
  1184. #endif