odroid.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * Copyright (C) 2014 Samsung Electronics
  3. * Przemyslaw Marczak <p.marczak@samsung.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <asm/arch/pinmux.h>
  9. #include <asm/arch/power.h>
  10. #include <asm/arch/clock.h>
  11. #include <asm/arch/gpio.h>
  12. #include <asm/gpio.h>
  13. #include <asm/arch/cpu.h>
  14. #include <dm.h>
  15. #include <power/pmic.h>
  16. #include <power/regulator.h>
  17. #include <power/max77686_pmic.h>
  18. #include <errno.h>
  19. #include <mmc.h>
  20. #include <usb.h>
  21. #include <usb/dwc2_udc.h>
  22. #include <samsung/misc.h>
  23. #include "setup.h"
  24. DECLARE_GLOBAL_DATA_PTR;
  25. #ifdef CONFIG_BOARD_TYPES
  26. /* Odroid board types */
  27. enum {
  28. ODROID_TYPE_U3,
  29. ODROID_TYPE_X2,
  30. ODROID_TYPES,
  31. };
  32. void set_board_type(void)
  33. {
  34. /* Set GPA1 pin 1 to HI - enable XCL205 output */
  35. writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
  36. writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
  37. writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
  38. writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
  39. /* Set GPC1 pin 2 to IN - check XCL205 output state */
  40. writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
  41. writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
  42. /* XCL205 - needs some latch time */
  43. sdelay(200000);
  44. /* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
  45. if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
  46. gd->board_type = ODROID_TYPE_X2;
  47. else
  48. gd->board_type = ODROID_TYPE_U3;
  49. }
  50. const char *get_board_type(void)
  51. {
  52. const char *board_type[] = {"u3", "x2"};
  53. return board_type[gd->board_type];
  54. }
  55. #endif
  56. #ifdef CONFIG_SET_DFU_ALT_INFO
  57. char *get_dfu_alt_system(char *interface, char *devstr)
  58. {
  59. return getenv("dfu_alt_system");
  60. }
  61. char *get_dfu_alt_boot(char *interface, char *devstr)
  62. {
  63. struct mmc *mmc;
  64. char *alt_boot;
  65. int dev_num;
  66. dev_num = simple_strtoul(devstr, NULL, 10);
  67. mmc = find_mmc_device(dev_num);
  68. if (!mmc)
  69. return NULL;
  70. if (mmc_init(mmc))
  71. return NULL;
  72. alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
  73. CONFIG_DFU_ALT_BOOT_EMMC;
  74. return alt_boot;
  75. }
  76. #endif
  77. static void board_clock_init(void)
  78. {
  79. unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
  80. struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
  81. samsung_get_base_clock();
  82. /*
  83. * CMU_CPU clocks src to MPLL
  84. * Bit values: 0 ; 1
  85. * MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
  86. * MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
  87. * MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
  88. * MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
  89. */
  90. clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
  91. MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
  92. set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
  93. MUX_MPLL_USER_SEL_C(1);
  94. clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
  95. /* Wait for mux change */
  96. while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
  97. continue;
  98. /* Set APLL to 1000MHz */
  99. clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
  100. set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
  101. clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
  102. /* Wait for PLL to be locked */
  103. while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
  104. continue;
  105. /* Set CMU_CPU clocks src to APLL */
  106. set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
  107. MUX_MPLL_USER_SEL_C(1);
  108. clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
  109. /* Wait for mux change */
  110. while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
  111. continue;
  112. set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
  113. PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
  114. APLL_RATIO(0) | CORE2_RATIO(0);
  115. /*
  116. * Set dividers for MOUTcore = 1000 MHz
  117. * coreout = MOUT / (ratio + 1) = 1000 MHz (0)
  118. * corem0 = armclk / (ratio + 1) = 333 MHz (2)
  119. * corem1 = armclk / (ratio + 1) = 166 MHz (5)
  120. * periph = armclk / (ratio + 1) = 1000 MHz (0)
  121. * atbout = MOUT / (ratio + 1) = 200 MHz (4)
  122. * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
  123. * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
  124. * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
  125. */
  126. clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
  127. PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
  128. APLL_RATIO(7) | CORE2_RATIO(7);
  129. clrsetbits_le32(&clk->div_cpu0, clr, set);
  130. /* Wait for divider ready status */
  131. while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
  132. continue;
  133. /*
  134. * For MOUThpm = 1000 MHz (MOUTapll)
  135. * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
  136. * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
  137. * cores_out = armclk / (ratio + 1) = 200 (4)
  138. */
  139. clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
  140. set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
  141. clrsetbits_le32(&clk->div_cpu1, clr, set);
  142. /* Wait for divider ready status */
  143. while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
  144. continue;
  145. /*
  146. * Set CMU_DMC clocks src to APLL
  147. * Bit values: 0 ; 1
  148. * MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL
  149. * MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL
  150. * MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL
  151. * MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT
  152. * MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
  153. * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
  154. * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
  155. * MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1
  156. */
  157. clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
  158. MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
  159. MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
  160. MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
  161. set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
  162. MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
  163. MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
  164. clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
  165. /* Wait for mux change */
  166. while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
  167. continue;
  168. /* Set MPLL to 800MHz */
  169. set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
  170. clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
  171. /* Wait for PLL to be locked */
  172. while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
  173. continue;
  174. /* Switch back CMU_DMC mux */
  175. set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
  176. MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
  177. MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
  178. clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
  179. /* Wait for mux change */
  180. while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
  181. continue;
  182. /* CLK_DIV_DMC0 */
  183. clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
  184. DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
  185. /*
  186. * For:
  187. * MOUTdmc = 800 MHz
  188. * MOUTdphy = 800 MHz
  189. *
  190. * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
  191. * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
  192. * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
  193. * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
  194. * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
  195. * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
  196. */
  197. set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
  198. DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
  199. clrsetbits_le32(&clk->div_dmc0, clr, set);
  200. /* Wait for divider ready status */
  201. while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
  202. continue;
  203. /* CLK_DIV_DMC1 */
  204. clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
  205. C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
  206. /*
  207. * For:
  208. * MOUTg2d = 800 MHz
  209. * MOUTc2c = 800 Mhz
  210. * MOUTpwi = 108 MHz
  211. *
  212. * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
  213. * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
  214. * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
  215. * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
  216. */
  217. set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
  218. C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
  219. clrsetbits_le32(&clk->div_dmc1, clr, set);
  220. /* Wait for divider ready status */
  221. while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
  222. continue;
  223. /* CLK_SRC_PERIL0 */
  224. clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
  225. UART3_SEL(15) | UART4_SEL(15);
  226. /*
  227. * Set CLK_SRC_PERIL0 clocks src to MPLL
  228. * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
  229. * 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
  230. * 8(SCLK_VPLL)
  231. *
  232. * Set all to SCLK_MPLL_USER_T
  233. */
  234. set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
  235. UART4_SEL(6);
  236. clrsetbits_le32(&clk->src_peril0, clr, set);
  237. /* CLK_DIV_PERIL0 */
  238. clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
  239. UART3_RATIO(15) | UART4_RATIO(15);
  240. /*
  241. * For MOUTuart0-4: 800MHz
  242. *
  243. * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
  244. */
  245. set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
  246. UART3_RATIO(7) | UART4_RATIO(7);
  247. clrsetbits_le32(&clk->div_peril0, clr, set);
  248. while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
  249. continue;
  250. /* CLK_DIV_FSYS1 */
  251. clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
  252. MMC1_PRE_RATIO(255);
  253. /*
  254. * For MOUTmmc0-3 = 800 MHz (MPLL)
  255. *
  256. * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
  257. * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
  258. * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
  259. * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
  260. */
  261. set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
  262. MMC1_PRE_RATIO(1);
  263. clrsetbits_le32(&clk->div_fsys1, clr, set);
  264. /* Wait for divider ready status */
  265. while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
  266. continue;
  267. /* CLK_DIV_FSYS2 */
  268. clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
  269. MMC3_PRE_RATIO(255);
  270. /*
  271. * For MOUTmmc0-3 = 800 MHz (MPLL)
  272. *
  273. * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
  274. * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
  275. * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
  276. * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
  277. */
  278. set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
  279. MMC3_PRE_RATIO(1);
  280. clrsetbits_le32(&clk->div_fsys2, clr, set);
  281. /* Wait for divider ready status */
  282. while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
  283. continue;
  284. /* CLK_DIV_FSYS3 */
  285. clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
  286. /*
  287. * For MOUTmmc4 = 800 MHz (MPLL)
  288. *
  289. * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
  290. * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
  291. */
  292. set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
  293. clrsetbits_le32(&clk->div_fsys3, clr, set);
  294. /* Wait for divider ready status */
  295. while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
  296. continue;
  297. return;
  298. }
  299. static void board_gpio_init(void)
  300. {
  301. /* eMMC Reset Pin */
  302. gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
  303. gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
  304. gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
  305. gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
  306. /* Enable FAN (Odroid U3) */
  307. gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
  308. gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
  309. gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
  310. gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
  311. /* OTG Vbus output (Odroid U3+) */
  312. gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
  313. gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
  314. gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
  315. gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
  316. /* OTG INT (Odroid U3+) */
  317. gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
  318. gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
  319. gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
  320. gpio_direction_input(EXYNOS4X12_GPIO_X31);
  321. /* Blue LED (Odroid X2/U2/U3) */
  322. gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
  323. gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
  324. #ifdef CONFIG_CMD_USB
  325. /* USB3503A Reference frequency */
  326. gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
  327. /* USB3503A Connect */
  328. gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
  329. /* USB3503A Reset */
  330. gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
  331. #endif
  332. }
  333. int exynos_early_init_f(void)
  334. {
  335. board_clock_init();
  336. return 0;
  337. }
  338. int exynos_init(void)
  339. {
  340. board_gpio_init();
  341. return 0;
  342. }
  343. int exynos_power_init(void)
  344. {
  345. const char *mmc_regulators[] = {
  346. "VDDQ_EMMC_1.8V",
  347. "VDDQ_EMMC_2.8V",
  348. "TFLASH_2.8V",
  349. NULL,
  350. };
  351. if (regulator_list_autoset(mmc_regulators, NULL, true))
  352. error("Unable to init all mmc regulators");
  353. return 0;
  354. }
  355. #ifdef CONFIG_USB_GADGET
  356. static int s5pc210_phy_control(int on)
  357. {
  358. struct udevice *dev;
  359. int ret;
  360. ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
  361. if (ret) {
  362. error("Regulator get error: %d", ret);
  363. return ret;
  364. }
  365. if (on)
  366. return regulator_set_mode(dev, OPMODE_ON);
  367. else
  368. return regulator_set_mode(dev, OPMODE_LPM);
  369. }
  370. struct dwc2_plat_otg_data s5pc210_otg_data = {
  371. .phy_control = s5pc210_phy_control,
  372. .regs_phy = EXYNOS4X12_USBPHY_BASE,
  373. .regs_otg = EXYNOS4X12_USBOTG_BASE,
  374. .usb_phy_ctrl = EXYNOS4X12_USBPHY_CONTROL,
  375. .usb_flags = PHY0_SLEEP,
  376. };
  377. #endif
  378. #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
  379. int board_usb_init(int index, enum usb_init_type init)
  380. {
  381. #ifdef CONFIG_CMD_USB
  382. struct udevice *dev;
  383. int ret;
  384. /* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
  385. /* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
  386. if (gd->board_type == ODROID_TYPE_U3)
  387. gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
  388. else
  389. gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
  390. /* Disconnect, Reset, Connect */
  391. gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
  392. gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
  393. gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
  394. gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
  395. /* Power off and on BUCK8 for LAN9730 */
  396. debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
  397. ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
  398. if (ret) {
  399. error("Regulator get error: %d", ret);
  400. return ret;
  401. }
  402. ret = regulator_set_enable(dev, true);
  403. if (ret) {
  404. error("Regulator %s enable setting error: %d", dev->name, ret);
  405. return ret;
  406. }
  407. ret = regulator_set_value(dev, 750000);
  408. if (ret) {
  409. error("Regulator %s value setting error: %d", dev->name, ret);
  410. return ret;
  411. }
  412. ret = regulator_set_value(dev, 3300000);
  413. if (ret) {
  414. error("Regulator %s value setting error: %d", dev->name, ret);
  415. return ret;
  416. }
  417. #endif
  418. debug("USB_udc_probe\n");
  419. return dwc2_udc_probe(&s5pc210_otg_data);
  420. }
  421. #endif