board.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. /*
  2. * board.c
  3. *
  4. * (C) Copyright 2016
  5. * Heiko Schocher, DENX Software Engineering, hs@denx.de.
  6. *
  7. * Based on:
  8. * Board functions for TI AM335X based boards
  9. *
  10. * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
  11. *
  12. * SPDX-License-Identifier: GPL-2.0+
  13. */
  14. #include <common.h>
  15. #include <errno.h>
  16. #include <spl.h>
  17. #include <asm/arch/cpu.h>
  18. #include <asm/arch/hardware.h>
  19. #include <asm/arch/omap.h>
  20. #include <asm/arch/ddr_defs.h>
  21. #include <asm/arch/clock.h>
  22. #include <asm/arch/gpio.h>
  23. #include <asm/arch/mmc_host_def.h>
  24. #include <asm/arch/sys_proto.h>
  25. #include <asm/arch/mem.h>
  26. #include <asm/io.h>
  27. #include <asm/emif.h>
  28. #include <asm/gpio.h>
  29. #include <i2c.h>
  30. #include <miiphy.h>
  31. #include <cpsw.h>
  32. #include <power/tps65217.h>
  33. #include <environment.h>
  34. #include <watchdog.h>
  35. #include <environment.h>
  36. #include "mmc.h"
  37. #include "board.h"
  38. DECLARE_GLOBAL_DATA_PTR;
  39. #if defined(CONFIG_SPL_BUILD) || \
  40. (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_DM_ETH))
  41. static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
  42. #endif
  43. static struct shc_eeprom __attribute__((section(".data"))) header;
  44. static int shc_eeprom_valid;
  45. /*
  46. * Read header information from EEPROM into global structure.
  47. */
  48. static int read_eeprom(void)
  49. {
  50. /* Check if baseboard eeprom is available */
  51. if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
  52. puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n");
  53. return -ENODEV;
  54. }
  55. /* read the eeprom using i2c */
  56. if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header,
  57. sizeof(header))) {
  58. puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n");
  59. return -EIO;
  60. }
  61. if (header.magic != HDR_MAGIC) {
  62. printf("Incorrect magic number (0x%x) in EEPROM\n",
  63. header.magic);
  64. return -EIO;
  65. }
  66. shc_eeprom_valid = 1;
  67. return 0;
  68. }
  69. static void shc_request_gpio(void)
  70. {
  71. gpio_request(LED_PWR_BL_GPIO, "LED PWR BL");
  72. gpio_request(LED_PWR_RD_GPIO, "LED PWR RD");
  73. gpio_request(RESET_GPIO, "reset");
  74. gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN");
  75. gpio_request(WIFI_RST_GPIO, "WIFI rst");
  76. gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst");
  77. gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst");
  78. gpio_request(ENOC_RST_GPIO, "ENOC rst");
  79. #if defined CONFIG_B_SAMPLE
  80. gpio_request(LED_PWR_GN_GPIO, "LED PWR GN");
  81. gpio_request(LED_CONN_BL_GPIO, "LED CONN BL");
  82. gpio_request(LED_CONN_RD_GPIO, "LED CONN RD");
  83. gpio_request(LED_CONN_GN_GPIO, "LED CONN GN");
  84. #else
  85. gpio_request(LED_LAN_BL_GPIO, "LED LAN BL");
  86. gpio_request(LED_LAN_RD_GPIO, "LED LAN RD");
  87. gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL");
  88. gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD");
  89. gpio_request(LED_PWM_GPIO, "LED PWM");
  90. gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst");
  91. #endif
  92. gpio_request(BACK_BUTTON_GPIO, "Back button");
  93. gpio_request(FRONT_BUTTON_GPIO, "Front button");
  94. }
  95. /*
  96. * Function which forces all installed modules into running state for ICT
  97. * testing. Called by SPL.
  98. */
  99. static void __maybe_unused force_modules_running(void)
  100. {
  101. /* Wi-Fi power regulator enable - high = enabled */
  102. gpio_direction_output(WIFI_REGEN_GPIO, 1);
  103. /*
  104. * Wait for Wi-Fi power regulator to reach a stable voltage
  105. * (soft-start time, max. 350 µs)
  106. */
  107. __udelay(350);
  108. /* Wi-Fi module reset - high = running */
  109. gpio_direction_output(WIFI_RST_GPIO, 1);
  110. /* ZigBee reset - high = running */
  111. gpio_direction_output(ZIGBEE_RST_GPIO, 1);
  112. /* BidCos reset - high = running */
  113. gpio_direction_output(BIDCOS_RST_GPIO, 1);
  114. #if !defined(CONFIG_B_SAMPLE)
  115. /* Z-Wave reset - high = running */
  116. gpio_direction_output(Z_WAVE_RST_GPIO, 1);
  117. #endif
  118. /* EnOcean reset - low = running */
  119. gpio_direction_output(ENOC_RST_GPIO, 0);
  120. }
  121. /*
  122. * Function which forces all installed modules into reset - to be released by
  123. * the OS, called by SPL
  124. */
  125. static void __maybe_unused force_modules_reset(void)
  126. {
  127. /* Wi-Fi module reset - low = reset */
  128. gpio_direction_output(WIFI_RST_GPIO, 0);
  129. /* Wi-Fi power regulator enable - low = disabled */
  130. gpio_direction_output(WIFI_REGEN_GPIO, 0);
  131. /* ZigBee reset - low = reset */
  132. gpio_direction_output(ZIGBEE_RST_GPIO, 0);
  133. /* BidCos reset - low = reset */
  134. /*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/
  135. #if !defined(CONFIG_B_SAMPLE)
  136. /* Z-Wave reset - low = reset */
  137. gpio_direction_output(Z_WAVE_RST_GPIO, 0);
  138. #endif
  139. /* EnOcean reset - high = reset*/
  140. gpio_direction_output(ENOC_RST_GPIO, 1);
  141. }
  142. /*
  143. * Function to set the LEDs in the state "Bootloader booting"
  144. */
  145. static void __maybe_unused leds_set_booting(void)
  146. {
  147. #if defined(CONFIG_B_SAMPLE)
  148. /* Turn all red LEDs on */
  149. gpio_direction_output(LED_PWR_RD_GPIO, 1);
  150. gpio_direction_output(LED_CONN_RD_GPIO, 1);
  151. #else /* All other SHCs starting with B2-Sample */
  152. /* Set the PWM GPIO */
  153. gpio_direction_output(LED_PWM_GPIO, 1);
  154. /* Turn all red LEDs on */
  155. gpio_direction_output(LED_PWR_RD_GPIO, 1);
  156. gpio_direction_output(LED_LAN_RD_GPIO, 1);
  157. gpio_direction_output(LED_CLOUD_RD_GPIO, 1);
  158. #endif
  159. }
  160. /*
  161. * Function to set the LEDs in the state "Bootloader error"
  162. */
  163. static void leds_set_failure(int state)
  164. {
  165. #if defined(CONFIG_B_SAMPLE)
  166. /* Turn all blue and green LEDs off */
  167. gpio_set_value(LED_PWR_BL_GPIO, 0);
  168. gpio_set_value(LED_PWR_GN_GPIO, 0);
  169. gpio_set_value(LED_CONN_BL_GPIO, 0);
  170. gpio_set_value(LED_CONN_GN_GPIO, 0);
  171. /* Turn all red LEDs to 'state' */
  172. gpio_set_value(LED_PWR_RD_GPIO, state);
  173. gpio_set_value(LED_CONN_RD_GPIO, state);
  174. #else /* All other SHCs starting with B2-Sample */
  175. /* Set the PWM GPIO */
  176. gpio_direction_output(LED_PWM_GPIO, 1);
  177. /* Turn all blue LEDs off */
  178. gpio_set_value(LED_PWR_BL_GPIO, 0);
  179. gpio_set_value(LED_LAN_BL_GPIO, 0);
  180. gpio_set_value(LED_CLOUD_BL_GPIO, 0);
  181. /* Turn all red LEDs to 'state' */
  182. gpio_set_value(LED_PWR_RD_GPIO, state);
  183. gpio_set_value(LED_LAN_RD_GPIO, state);
  184. gpio_set_value(LED_CLOUD_RD_GPIO, state);
  185. #endif
  186. }
  187. /*
  188. * Function to set the LEDs in the state "Bootloader finished"
  189. */
  190. static void leds_set_finish(void)
  191. {
  192. #if defined(CONFIG_B_SAMPLE)
  193. /* Turn all LEDs off */
  194. gpio_set_value(LED_PWR_BL_GPIO, 0);
  195. gpio_set_value(LED_PWR_RD_GPIO, 0);
  196. gpio_set_value(LED_PWR_GN_GPIO, 0);
  197. gpio_set_value(LED_CONN_BL_GPIO, 0);
  198. gpio_set_value(LED_CONN_RD_GPIO, 0);
  199. gpio_set_value(LED_CONN_GN_GPIO, 0);
  200. #else /* All other SHCs starting with B2-Sample */
  201. /* Turn all LEDs off */
  202. gpio_set_value(LED_PWR_BL_GPIO, 0);
  203. gpio_set_value(LED_PWR_RD_GPIO, 0);
  204. gpio_set_value(LED_LAN_BL_GPIO, 0);
  205. gpio_set_value(LED_LAN_RD_GPIO, 0);
  206. gpio_set_value(LED_CLOUD_BL_GPIO, 0);
  207. gpio_set_value(LED_CLOUD_RD_GPIO, 0);
  208. /* Turn off the PWM GPIO and mux it to EHRPWM */
  209. gpio_set_value(LED_PWM_GPIO, 0);
  210. enable_shc_board_pwm_pin_mux();
  211. #endif
  212. }
  213. static void check_button_status(void)
  214. {
  215. ulong value;
  216. gpio_direction_input(FRONT_BUTTON_GPIO);
  217. value = gpio_get_value(FRONT_BUTTON_GPIO);
  218. if (value == 0) {
  219. printf("front button activated !\n");
  220. setenv("harakiri", "1");
  221. }
  222. }
  223. #ifndef CONFIG_SKIP_LOWLEVEL_INIT
  224. #ifdef CONFIG_SPL_OS_BOOT
  225. int spl_start_uboot(void)
  226. {
  227. return 1;
  228. }
  229. #endif
  230. static void shc_board_early_init(void)
  231. {
  232. shc_request_gpio();
  233. # ifdef CONFIG_SHC_ICT
  234. /* Force all modules into enabled state for ICT testing */
  235. force_modules_running();
  236. # else
  237. /* Force all modules to enter Reset state until released by the OS */
  238. force_modules_reset();
  239. # endif
  240. leds_set_booting();
  241. }
  242. #define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */
  243. #define OSC (V_OSCK/1000000)
  244. /* Bosch: Predivider must be fixed to 4, so N = 4-1 */
  245. #define MPUPLL_N (4-1)
  246. /* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */
  247. #define MPUPLL_FREF (OSC / (MPUPLL_N + 1))
  248. const struct dpll_params dpll_ddr_shc = {
  249. 400, OSC-1, 1, -1, -1, -1, -1};
  250. const struct dpll_params *get_dpll_ddr_params(void)
  251. {
  252. return &dpll_ddr_shc;
  253. }
  254. /*
  255. * As we enabled downspread SSC with 1.8%, the values needed to be corrected
  256. * such that the 20% overshoot will not lead to too high frequencies.
  257. * In all cases, this is achieved by subtracting one from M (6 MHz less).
  258. * Example: 600 MHz CPU
  259. * Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz
  260. * 600 MHz - 6 MHz (1x Fref) = 594 MHz
  261. * SSC: 594 MHz * 1.8% = 10.7 MHz SSC
  262. * Overshoot: 10.7 MHz * 20 % = 2.2 MHz
  263. * --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK!
  264. */
  265. const struct dpll_params dpll_mpu_shc_opp100 = {
  266. 99, MPUPLL_N, 1, -1, -1, -1, -1};
  267. void am33xx_spl_board_init(void)
  268. {
  269. int sil_rev;
  270. int mpu_vdd;
  271. puts(BOARD_ID_STR);
  272. /*
  273. * Set CORE Frequency to OPP100
  274. * Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100)
  275. */
  276. do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
  277. sil_rev = readl(&cdev->deviceid) >> 28;
  278. if (sil_rev < 2) {
  279. puts("We do not support Silicon Revisions below 2.0!\n");
  280. return;
  281. }
  282. dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
  283. if (i2c_probe(TPS65217_CHIP_PM))
  284. return;
  285. /*
  286. * Retrieve the CPU max frequency by reading the efuse
  287. * SHC-Default: 600 MHz
  288. */
  289. switch (dpll_mpu_opp100.m) {
  290. case MPUPLL_M_1000:
  291. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
  292. break;
  293. case MPUPLL_M_800:
  294. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
  295. break;
  296. case MPUPLL_M_720:
  297. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
  298. break;
  299. case MPUPLL_M_600:
  300. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
  301. break;
  302. case MPUPLL_M_300:
  303. mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV;
  304. break;
  305. default:
  306. puts("Cannot determine the frequency, failing!\n");
  307. return;
  308. }
  309. if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
  310. puts("tps65217_voltage_update failure\n");
  311. return;
  312. }
  313. /* Set MPU Frequency to what we detected */
  314. printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF);
  315. printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF *
  316. dpll_mpu_shc_opp100.m);
  317. do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100);
  318. /* Enable Spread Spectrum for this freq to be clean on EMI side */
  319. set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE);
  320. /*
  321. * Using the default voltages for the PMIC (TPS65217D)
  322. * LS1 = 1.8V (VDD_1V8)
  323. * LS2 = 3.3V (VDD_3V3A)
  324. * LDO1 = 1.8V (VIO and VRTC)
  325. * LDO2 = 3.3V (VDD_3V3AUX)
  326. */
  327. shc_board_early_init();
  328. }
  329. void set_uart_mux_conf(void)
  330. {
  331. enable_uart0_pin_mux();
  332. }
  333. void set_mux_conf_regs(void)
  334. {
  335. enable_shc_board_pin_mux();
  336. }
  337. const struct ctrl_ioregs ioregs_evmsk = {
  338. .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  339. .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  340. .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  341. .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  342. .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  343. };
  344. static const struct ddr_data ddr3_shc_data = {
  345. .datardsratio0 = MT41K256M16HA125E_RD_DQS,
  346. .datawdsratio0 = MT41K256M16HA125E_WR_DQS,
  347. .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
  348. .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
  349. };
  350. static const struct cmd_control ddr3_shc_cmd_ctrl_data = {
  351. .cmd0csratio = MT41K256M16HA125E_RATIO,
  352. .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
  353. .cmd1csratio = MT41K256M16HA125E_RATIO,
  354. .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
  355. .cmd2csratio = MT41K256M16HA125E_RATIO,
  356. .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
  357. };
  358. static struct emif_regs ddr3_shc_emif_reg_data = {
  359. .sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
  360. .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
  361. .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
  362. .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
  363. .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
  364. .zq_config = MT41K256M16HA125E_ZQ_CFG,
  365. .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY |
  366. PHY_EN_DYN_PWRDN,
  367. };
  368. void sdram_init(void)
  369. {
  370. /* Configure the DDR3 RAM */
  371. config_ddr(400, &ioregs_evmsk, &ddr3_shc_data,
  372. &ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0);
  373. }
  374. #endif
  375. /*
  376. * Basic board specific setup. Pinmux has been handled already.
  377. */
  378. int board_init(void)
  379. {
  380. #if defined(CONFIG_HW_WATCHDOG)
  381. hw_watchdog_init();
  382. #endif
  383. i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
  384. if (read_eeprom() < 0)
  385. puts("EEPROM Content Invalid.\n");
  386. gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
  387. #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
  388. gpmc_init();
  389. #endif
  390. shc_request_gpio();
  391. return 0;
  392. }
  393. #ifdef CONFIG_BOARD_LATE_INIT
  394. int board_late_init(void)
  395. {
  396. check_button_status();
  397. #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
  398. if (shc_eeprom_valid)
  399. if (is_valid_ethaddr(header.mac_addr))
  400. eth_setenv_enetaddr("ethaddr", header.mac_addr);
  401. #endif
  402. return 0;
  403. }
  404. #endif
  405. #ifndef CONFIG_DM_ETH
  406. #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
  407. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  408. static void cpsw_control(int enabled)
  409. {
  410. /* VTP can be added here */
  411. return;
  412. }
  413. static struct cpsw_slave_data cpsw_slaves[] = {
  414. {
  415. .slave_reg_ofs = 0x208,
  416. .sliver_reg_ofs = 0xd80,
  417. .phy_addr = 0,
  418. },
  419. {
  420. .slave_reg_ofs = 0x308,
  421. .sliver_reg_ofs = 0xdc0,
  422. .phy_addr = 1,
  423. },
  424. };
  425. static struct cpsw_platform_data cpsw_data = {
  426. .mdio_base = CPSW_MDIO_BASE,
  427. .cpsw_base = CPSW_BASE,
  428. .mdio_div = 0xff,
  429. .channels = 8,
  430. .cpdma_reg_ofs = 0x800,
  431. .slaves = 1,
  432. .slave_data = cpsw_slaves,
  433. .ale_reg_ofs = 0xd00,
  434. .ale_entries = 1024,
  435. .host_port_reg_ofs = 0x108,
  436. .hw_stats_reg_ofs = 0x900,
  437. .bd_ram_ofs = 0x2000,
  438. .mac_control = (1 << 5),
  439. .control = cpsw_control,
  440. .host_port_num = 0,
  441. .version = CPSW_CTRL_VERSION_2,
  442. };
  443. #endif
  444. /*
  445. * This function will:
  446. * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
  447. * in the environment
  448. * Perform fixups to the PHY present on certain boards. We only need this
  449. * function in:
  450. * - SPL with either CPSW or USB ethernet support
  451. * - Full U-Boot, with either CPSW or USB ethernet
  452. * Build in only these cases to avoid warnings about unused variables
  453. * when we build an SPL that has neither option but full U-Boot will.
  454. */
  455. #if ((defined(CONFIG_SPL_ETH_SUPPORT) || \
  456. defined(CONFIG_SPL_USBETH_SUPPORT)) && \
  457. defined(CONFIG_SPL_BUILD)) || \
  458. ((defined(CONFIG_DRIVER_TI_CPSW) || \
  459. defined(CONFIG_USB_ETHER) && defined(CONFIG_USB_MUSB_GADGET)) && \
  460. !defined(CONFIG_SPL_BUILD))
  461. int board_eth_init(bd_t *bis)
  462. {
  463. int rv, n = 0;
  464. uint8_t mac_addr[6];
  465. uint32_t mac_hi, mac_lo;
  466. /* try reading mac address from efuse */
  467. mac_lo = readl(&cdev->macid0l);
  468. mac_hi = readl(&cdev->macid0h);
  469. mac_addr[0] = mac_hi & 0xFF;
  470. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  471. mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
  472. mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
  473. mac_addr[4] = mac_lo & 0xFF;
  474. mac_addr[5] = (mac_lo & 0xFF00) >> 8;
  475. #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
  476. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  477. if (!getenv("ethaddr")) {
  478. printf("<ethaddr> not set. Validating first E-fuse MAC\n");
  479. if (is_valid_ethaddr(mac_addr))
  480. eth_setenv_enetaddr("ethaddr", mac_addr);
  481. }
  482. writel(MII_MODE_ENABLE, &cdev->miisel);
  483. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_MII;
  484. cpsw_slaves[1].phy_if = cpsw_slaves[0].phy_if;
  485. rv = cpsw_register(&cpsw_data);
  486. if (rv < 0)
  487. printf("Error %d registering CPSW switch\n", rv);
  488. else
  489. n += rv;
  490. #endif
  491. #if defined(CONFIG_USB_ETHER) && \
  492. (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
  493. if (is_valid_ethaddr(mac_addr))
  494. eth_setenv_enetaddr("usbnet_devaddr", mac_addr);
  495. rv = usb_eth_initialize(bis);
  496. if (rv < 0)
  497. printf("Error %d registering USB_ETHER\n", rv);
  498. else
  499. n += rv;
  500. #endif
  501. return n;
  502. }
  503. #endif
  504. #endif /* CONFIG_DM_ETH */
  505. #ifdef CONFIG_SHOW_BOOT_PROGRESS
  506. static void bosch_check_reset_pin(void)
  507. {
  508. if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) {
  509. printf("Resetting ...\n");
  510. writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
  511. disable_interrupts();
  512. reset_cpu(0);
  513. /*NOTREACHED*/
  514. }
  515. }
  516. static void hang_bosch(const char *cause, int code)
  517. {
  518. int lv;
  519. gpio_direction_input(RESET_GPIO);
  520. /* Enable reset pin interrupt on falling edge */
  521. writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
  522. writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT);
  523. enable_interrupts();
  524. puts(cause);
  525. for (;;) {
  526. for (lv = 0; lv < code; lv++) {
  527. bosch_check_reset_pin();
  528. leds_set_failure(1);
  529. __udelay(150 * 1000);
  530. leds_set_failure(0);
  531. __udelay(150 * 1000);
  532. }
  533. #if defined(BLINK_CODE)
  534. __udelay(300 * 1000);
  535. #endif
  536. }
  537. }
  538. void show_boot_progress(int val)
  539. {
  540. switch (val) {
  541. case BOOTSTAGE_ID_NEED_RESET:
  542. hang_bosch("need reset", 4);
  543. break;
  544. }
  545. }
  546. #endif
  547. void arch_preboot_os(void)
  548. {
  549. leds_set_finish();
  550. }
  551. #if defined(CONFIG_GENERIC_MMC)
  552. int board_mmc_init(bd_t *bis)
  553. {
  554. int ret;
  555. /* Bosch: Do not enable 52MHz for eMMC device to avoid EMI */
  556. ret = omap_mmc_init(0, MMC_MODE_HS_52MHz, 26000000, -1, -1);
  557. if (ret)
  558. return ret;
  559. ret = omap_mmc_init(1, MMC_MODE_HS_52MHz, 26000000, -1, -1);
  560. return ret;
  561. }
  562. #endif