1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591 |
- /*
- * EMIF programming
- *
- * (C) Copyright 2010
- * Texas Instruments, <www.ti.com>
- *
- * Aneesh V <aneesh@ti.com>
- *
- * SPDX-License-Identifier: GPL-2.0+
- */
- #include <common.h>
- #include <asm/emif.h>
- #include <asm/arch/clock.h>
- #include <asm/arch/sys_proto.h>
- #include <asm/omap_common.h>
- #include <asm/omap_sec_common.h>
- #include <asm/utils.h>
- #include <linux/compiler.h>
- #include <asm/ti-common/ti-edma3.h>
- static int emif1_enabled = -1, emif2_enabled = -1;
- void set_lpmode_selfrefresh(u32 base)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- u32 reg;
- reg = readl(&emif->emif_pwr_mgmt_ctrl);
- reg &= ~EMIF_REG_LP_MODE_MASK;
- reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
- reg &= ~EMIF_REG_SR_TIM_MASK;
- writel(reg, &emif->emif_pwr_mgmt_ctrl);
- /* dummy read for the new SR_TIM to be loaded */
- readl(&emif->emif_pwr_mgmt_ctrl);
- }
- void force_emif_self_refresh()
- {
- set_lpmode_selfrefresh(EMIF1_BASE);
- if (!is_dra72x())
- set_lpmode_selfrefresh(EMIF2_BASE);
- }
- inline u32 emif_num(u32 base)
- {
- if (base == EMIF1_BASE)
- return 1;
- else if (base == EMIF2_BASE)
- return 2;
- else
- return 0;
- }
- static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
- {
- u32 mr;
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- mr_addr |= cs << EMIF_REG_CS_SHIFT;
- writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
- if (omap_revision() == OMAP4430_ES2_0)
- mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
- else
- mr = readl(&emif->emif_lpddr2_mode_reg_data);
- debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
- cs, mr_addr, mr);
- if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
- ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
- ((mr & 0xff000000) >> 24) == (mr & 0xff))
- return mr & 0xff;
- else
- return mr;
- }
- static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- mr_addr |= cs << EMIF_REG_CS_SHIFT;
- writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
- writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
- }
- void emif_reset_phy(u32 base)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- u32 iodft;
- iodft = readl(&emif->emif_iodft_tlgc);
- iodft |= EMIF_REG_RESET_PHY_MASK;
- writel(iodft, &emif->emif_iodft_tlgc);
- }
- static void do_lpddr2_init(u32 base, u32 cs)
- {
- u32 mr_addr;
- const struct lpddr2_mr_regs *mr_regs;
- get_lpddr2_mr_regs(&mr_regs);
- /* Wait till device auto initialization is complete */
- while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
- ;
- set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
- /*
- * tZQINIT = 1 us
- * Enough loops assuming a maximum of 2GHz
- */
- sdelay(2000);
- set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
- set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
- /*
- * Enable refresh along with writing MR2
- * Encoding of RL in MR2 is (RL - 2)
- */
- mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
- set_mr(base, cs, mr_addr, mr_regs->mr2);
- if (mr_regs->mr3 > 0)
- set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
- }
- static void lpddr2_init(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- /* Not NVM */
- clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
- /*
- * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
- * when EMIF_SDRAM_CONFIG register is written
- */
- setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
- /*
- * Set the SDRAM_CONFIG and PHY_CTRL for the
- * un-locked frequency & default RL
- */
- writel(regs->sdram_config_init, &emif->emif_sdram_config);
- writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
- do_ext_phy_settings(base, regs);
- do_lpddr2_init(base, CS0);
- if (regs->sdram_config & EMIF_REG_EBANK_MASK)
- do_lpddr2_init(base, CS1);
- writel(regs->sdram_config, &emif->emif_sdram_config);
- writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
- /* Enable refresh now */
- clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
- }
- __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
- {
- }
- void emif_update_timings(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- if (!is_dra7xx())
- writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
- else
- writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
- writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
- writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
- writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
- if (omap_revision() == OMAP4430_ES1_0) {
- /* ES1 bug EMIF should be in force idle during freq_update */
- writel(0, &emif->emif_pwr_mgmt_ctrl);
- } else {
- writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
- writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
- }
- writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
- writel(regs->zq_config, &emif->emif_zq_config);
- writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
- writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
- if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
- writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
- &emif->emif_l3_config);
- } else if (omap_revision() >= OMAP4460_ES1_0) {
- writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
- &emif->emif_l3_config);
- } else {
- writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
- &emif->emif_l3_config);
- }
- }
- #ifndef CONFIG_OMAP44XX
- static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- /* keep sdram in self-refresh */
- writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
- & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
- __udelay(130);
- /*
- * Set invert_clkout (if activated)--DDR_PHYCTRL_1
- * Invert clock adds an additional half cycle delay on the
- * command interface. The additional half cycle, is usually
- * meant to enable leveling in the situation that DQS is later
- * than CK on the board.It also helps provide some additional
- * margin for leveling.
- */
- writel(regs->emif_ddr_phy_ctlr_1,
- &emif->emif_ddr_phy_ctrl_1);
- writel(regs->emif_ddr_phy_ctlr_1,
- &emif->emif_ddr_phy_ctrl_1_shdw);
- __udelay(130);
- writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
- & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
- /* Launch Full leveling */
- writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
- /* Wait till full leveling is complete */
- readl(&emif->emif_rd_wr_lvl_ctl);
- __udelay(130);
- /* Read data eye leveling no of samples */
- config_data_eye_leveling_samples(base);
- /*
- * Launch 8 incremental WR_LVL- to compensate for
- * PHY limitation.
- */
- writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
- &emif->emif_rd_wr_lvl_ctl);
- __udelay(130);
- /* Launch Incremental leveling */
- writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
- __udelay(130);
- }
- static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
- u32 reg, i, phy;
- emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
- phy = readl(&emif->emif_ddr_phy_ctrl_1);
- /* Update PHY_REG_RDDQS_RATIO */
- emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
- if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
- for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
- reg = readl(emif_phy_status++);
- writel(reg, emif_ext_phy_ctrl_reg++);
- writel(reg, emif_ext_phy_ctrl_reg++);
- }
- /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
- emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
- emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
- if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
- for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
- reg = readl(emif_phy_status++);
- writel(reg, emif_ext_phy_ctrl_reg++);
- writel(reg, emif_ext_phy_ctrl_reg++);
- }
- /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
- emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
- emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
- if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
- for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
- reg = readl(emif_phy_status++);
- writel(reg, emif_ext_phy_ctrl_reg++);
- writel(reg, emif_ext_phy_ctrl_reg++);
- }
- /* Disable Leveling */
- writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
- writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
- writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
- }
- static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- /* Clear Error Status */
- clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
- EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
- EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
- clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
- EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
- EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
- /* Disable refreshed before leveling */
- clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
- EMIF_REG_INITREF_DIS_MASK);
- /* Start Full leveling */
- writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
- __udelay(300);
- /* Check for leveling timeout */
- if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
- printf("Leveling timeout on EMIF%d\n", emif_num(base));
- return;
- }
- /* Enable refreshes after leveling */
- clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
- debug("HW leveling success\n");
- /*
- * Update slave ratios in EXT_PHY_CTRLx registers
- * as per HW leveling output
- */
- update_hwleveling_output(base, regs);
- }
- static void dra7_reset_ddr_data(u32 base, u32 size)
- {
- #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
- enable_edma3_clocks();
- edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
- disable_edma3_clocks();
- #else
- memset((void *)base, 0, size);
- #endif
- }
- static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- u32 rgn, size;
- /* ECC available only on dra76x EMIF1 */
- if ((base != EMIF1_BASE) || !is_dra76x())
- return;
- if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
- writel(regs->emif_ecc_address_range_1,
- &emif->emif_ecc_address_range_1);
- writel(regs->emif_ecc_address_range_2,
- &emif->emif_ecc_address_range_2);
- writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
- /* Set region1 memory with 0 */
- rgn = ((regs->emif_ecc_address_range_1 &
- EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
- CONFIG_SYS_SDRAM_BASE;
- size = (regs->emif_ecc_address_range_1 &
- EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
- if (regs->emif_ecc_ctrl_reg &
- EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
- dra7_reset_ddr_data(rgn, size);
- /* Set region2 memory with 0 */
- rgn = ((regs->emif_ecc_address_range_2 &
- EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
- CONFIG_SYS_SDRAM_BASE;
- size = (regs->emif_ecc_address_range_2 &
- EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
- if (regs->emif_ecc_ctrl_reg &
- EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
- dra7_reset_ddr_data(rgn, size);
- #ifdef CONFIG_DRA7XX
- /* Clear the status flags and other history */
- writel(readl(&emif->emif_1b_ecc_err_cnt),
- &emif->emif_1b_ecc_err_cnt);
- writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
- writel(0x1, &emif->emif_2b_ecc_err_addr_log);
- writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
- EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
- EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
- &emif->emif_irqstatus_sys);
- #endif
- }
- }
- static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- if (warm_reset()) {
- emif_reset_phy(base);
- writel(0x0, &emif->emif_pwr_mgmt_ctrl);
- }
- do_ext_phy_settings(base, regs);
- writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
- &emif->emif_sdram_ref_ctrl);
- /* Update timing registers */
- writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
- writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
- writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
- writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
- writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
- writel(regs->zq_config, &emif->emif_zq_config);
- writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
- writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
- writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
- writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
- writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
- writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
- writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
- writel(regs->sdram_config_init, &emif->emif_sdram_config);
- __udelay(1000);
- writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
- if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
- /*
- * Perform Dummy ECC setup just to allow hardware
- * leveling of ECC memories
- */
- if (is_dra76x() && (base == EMIF1_BASE) &&
- (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
- writel(0, &emif->emif_ecc_address_range_1);
- writel(0, &emif->emif_ecc_address_range_2);
- writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
- EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
- &emif->emif_ecc_ctrl_reg);
- }
- dra7_ddr3_leveling(base, regs);
- /* Disable ECC */
- if (is_dra76x())
- writel(0, &emif->emif_ecc_ctrl_reg);
- }
- /* Enable ECC as necessary */
- dra7_enable_ecc(base, regs);
- }
- static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
- writel(regs->sdram_config_init, &emif->emif_sdram_config);
- /*
- * Set SDRAM_CONFIG and PHY control registers to locked frequency
- * and RL =7. As the default values of the Mode Registers are not
- * defined, contents of mode Registers must be fully initialized.
- * H/W takes care of this initialization
- */
- writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
- /* Update timing registers */
- writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
- writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
- writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
- writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
- writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
- writel(regs->sdram_config_init, &emif->emif_sdram_config);
- do_ext_phy_settings(base, regs);
- writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
- omap5_ddr3_leveling(base, regs);
- }
- static void ddr3_init(u32 base, const struct emif_regs *regs)
- {
- if (is_omap54xx())
- omap5_ddr3_init(base, regs);
- else
- dra7_ddr3_init(base, regs);
- }
- #endif
- #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
- #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
- /*
- * Organization and refresh requirements for LPDDR2 devices of different
- * types and densities. Derived from JESD209-2 section 2.4
- */
- const struct lpddr2_addressing addressing_table[] = {
- /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
- {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
- {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
- {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
- {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
- {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
- {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
- {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
- {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
- {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
- {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
- };
- static const u32 lpddr2_density_2_size_in_mbytes[] = {
- 8, /* 64Mb */
- 16, /* 128Mb */
- 32, /* 256Mb */
- 64, /* 512Mb */
- 128, /* 1Gb */
- 256, /* 2Gb */
- 512, /* 4Gb */
- 1024, /* 8Gb */
- 2048, /* 16Gb */
- 4096 /* 32Gb */
- };
- /*
- * Calculate the period of DDR clock from frequency value and set the
- * denominator and numerator in global variables for easy access later
- */
- static void set_ddr_clk_period(u32 freq)
- {
- /*
- * period = 1/freq
- * period_in_ns = 10^9/freq
- */
- *T_num = 1000000000;
- *T_den = freq;
- cancel_out(T_num, T_den, 200);
- }
- /*
- * Convert time in nano seconds to number of cycles of DDR clock
- */
- static inline u32 ns_2_cycles(u32 ns)
- {
- return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
- }
- /*
- * ns_2_cycles with the difference that the time passed is 2 times the actual
- * value(to avoid fractions). The cycles returned is for the original value of
- * the timing parameter
- */
- static inline u32 ns_x2_2_cycles(u32 ns)
- {
- return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
- }
- /*
- * Find addressing table index based on the device's type(S2 or S4) and
- * density
- */
- s8 addressing_table_index(u8 type, u8 density, u8 width)
- {
- u8 index;
- if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
- return -1;
- /*
- * Look at the way ADDR_TABLE_INDEX* values have been defined
- * in emif.h compared to LPDDR2_DENSITY_* values
- * The table is layed out in the increasing order of density
- * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
- * at the end
- */
- if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
- index = ADDR_TABLE_INDEX1GS2;
- else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
- index = ADDR_TABLE_INDEX2GS2;
- else
- index = density;
- debug("emif: addressing table index %d\n", index);
- return index;
- }
- /*
- * Find the the right timing table from the array of timing
- * tables of the device using DDR clock frequency
- */
- static const struct lpddr2_ac_timings *get_timings_table(const struct
- lpddr2_ac_timings const *const *device_timings,
- u32 freq)
- {
- u32 i, temp, freq_nearest;
- const struct lpddr2_ac_timings *timings = 0;
- emif_assert(freq <= MAX_LPDDR2_FREQ);
- emif_assert(device_timings);
- /*
- * Start with the maximum allowed frequency - that is always safe
- */
- freq_nearest = MAX_LPDDR2_FREQ;
- /*
- * Find the timings table that has the max frequency value:
- * i. Above or equal to the DDR frequency - safe
- * ii. The lowest that satisfies condition (i) - optimal
- */
- for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
- temp = device_timings[i]->max_freq;
- if ((temp >= freq) && (temp <= freq_nearest)) {
- freq_nearest = temp;
- timings = device_timings[i];
- }
- }
- debug("emif: timings table: %d\n", freq_nearest);
- return timings;
- }
- /*
- * Finds the value of emif_sdram_config_reg
- * All parameters are programmed based on the device on CS0.
- * If there is a device on CS1, it will be same as that on CS0 or
- * it will be NVM. We don't support NVM yet.
- * If cs1_device pointer is NULL it is assumed that there is no device
- * on CS1
- */
- static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
- const struct lpddr2_device_details *cs1_device,
- const struct lpddr2_addressing *addressing,
- u8 RL)
- {
- u32 config_reg = 0;
- config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
- config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
- EMIF_REG_IBANK_POS_SHIFT;
- config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
- config_reg |= RL << EMIF_REG_CL_SHIFT;
- config_reg |= addressing->row_sz[cs0_device->io_width] <<
- EMIF_REG_ROWSIZE_SHIFT;
- config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
- config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
- EMIF_REG_EBANK_SHIFT;
- config_reg |= addressing->col_sz[cs0_device->io_width] <<
- EMIF_REG_PAGESIZE_SHIFT;
- return config_reg;
- }
- static u32 get_sdram_ref_ctrl(u32 freq,
- const struct lpddr2_addressing *addressing)
- {
- u32 ref_ctrl = 0, val = 0, freq_khz;
- freq_khz = freq / 1000;
- /*
- * refresh rate to be set is 'tREFI * freq in MHz
- * division by 10000 to account for khz and x10 in t_REFI_us_x10
- */
- val = addressing->t_REFI_us_x10 * freq_khz / 10000;
- ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
- return ref_ctrl;
- }
- static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
- const struct lpddr2_min_tck *min_tck,
- const struct lpddr2_addressing *addressing)
- {
- u32 tim1 = 0, val = 0;
- val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
- tim1 |= val << EMIF_REG_T_WTR_SHIFT;
- if (addressing->num_banks == BANKS8)
- val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
- (4 * (*T_num)) - 1;
- else
- val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
- tim1 |= val << EMIF_REG_T_RRD_SHIFT;
- val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
- tim1 |= val << EMIF_REG_T_RC_SHIFT;
- val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
- tim1 |= val << EMIF_REG_T_RAS_SHIFT;
- val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
- tim1 |= val << EMIF_REG_T_WR_SHIFT;
- val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
- tim1 |= val << EMIF_REG_T_RCD_SHIFT;
- val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
- tim1 |= val << EMIF_REG_T_RP_SHIFT;
- return tim1;
- }
- static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
- const struct lpddr2_min_tck *min_tck)
- {
- u32 tim2 = 0, val = 0;
- val = max(min_tck->tCKE, timings->tCKE) - 1;
- tim2 |= val << EMIF_REG_T_CKE_SHIFT;
- val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
- tim2 |= val << EMIF_REG_T_RTP_SHIFT;
- /*
- * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
- * same value
- */
- val = ns_2_cycles(timings->tXSR) - 1;
- tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
- tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
- val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
- tim2 |= val << EMIF_REG_T_XP_SHIFT;
- return tim2;
- }
- static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
- const struct lpddr2_min_tck *min_tck,
- const struct lpddr2_addressing *addressing)
- {
- u32 tim3 = 0, val = 0;
- val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
- tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
- val = ns_2_cycles(timings->tRFCab) - 1;
- tim3 |= val << EMIF_REG_T_RFC_SHIFT;
- val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
- tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
- val = ns_2_cycles(timings->tZQCS) - 1;
- tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
- val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
- tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
- return tim3;
- }
- static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
- const struct lpddr2_addressing *addressing,
- u8 volt_ramp)
- {
- u32 zq = 0, val = 0;
- if (volt_ramp)
- val =
- EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
- addressing->t_REFI_us_x10;
- else
- val =
- EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
- addressing->t_REFI_us_x10;
- zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
- zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
- zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
- zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
- /*
- * Assuming that two chipselects have a single calibration resistor
- * If there are indeed two calibration resistors, then this flag should
- * be enabled to take advantage of dual calibration feature.
- * This data should ideally come from board files. But considering
- * that none of the boards today have calibration resistors per CS,
- * it would be an unnecessary overhead.
- */
- zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
- zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
- zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
- return zq;
- }
- static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
- const struct lpddr2_addressing *addressing,
- u8 is_derated)
- {
- u32 alert = 0, interval;
- interval =
- TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
- if (is_derated)
- interval *= 4;
- alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
- alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
- alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
- alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
- alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
- alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
- return alert;
- }
- static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
- {
- u32 idle = 0, val = 0;
- if (volt_ramp)
- val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
- else
- /*Maximum value in normal conditions - suggested by hw team */
- val = 0x1FF;
- idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
- idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
- return idle;
- }
- static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
- {
- u32 phy = 0, val = 0;
- phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
- if (freq <= 100000000)
- val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
- else if (freq <= 200000000)
- val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
- else
- val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
- phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
- /* Other fields are constant magic values. Hardcode them together */
- phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
- EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
- return phy;
- }
- static u32 get_emif_mem_size(u32 base)
- {
- u32 size_mbytes = 0, temp;
- struct emif_device_details dev_details;
- struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
- u32 emif_nr = emif_num(base);
- emif_reset_phy(base);
- dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
- &cs0_dev_details);
- dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
- &cs1_dev_details);
- emif_reset_phy(base);
- if (dev_details.cs0_device_details) {
- temp = dev_details.cs0_device_details->density;
- size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
- }
- if (dev_details.cs1_device_details) {
- temp = dev_details.cs1_device_details->density;
- size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
- }
- /* convert to bytes */
- return size_mbytes << 20;
- }
- /* Gets the encoding corresponding to a given DMM section size */
- u32 get_dmm_section_size_map(u32 section_size)
- {
- /*
- * Section size mapping:
- * 0x0: 16-MiB section
- * 0x1: 32-MiB section
- * 0x2: 64-MiB section
- * 0x3: 128-MiB section
- * 0x4: 256-MiB section
- * 0x5: 512-MiB section
- * 0x6: 1-GiB section
- * 0x7: 2-GiB section
- */
- section_size >>= 24; /* divide by 16 MB */
- return log_2_n_round_down(section_size);
- }
- static void emif_calculate_regs(
- const struct emif_device_details *emif_dev_details,
- u32 freq, struct emif_regs *regs)
- {
- u32 temp, sys_freq;
- const struct lpddr2_addressing *addressing;
- const struct lpddr2_ac_timings *timings;
- const struct lpddr2_min_tck *min_tck;
- const struct lpddr2_device_details *cs0_dev_details =
- emif_dev_details->cs0_device_details;
- const struct lpddr2_device_details *cs1_dev_details =
- emif_dev_details->cs1_device_details;
- const struct lpddr2_device_timings *cs0_dev_timings =
- emif_dev_details->cs0_device_timings;
- emif_assert(emif_dev_details);
- emif_assert(regs);
- /*
- * You can not have a device on CS1 without one on CS0
- * So configuring EMIF without a device on CS0 doesn't
- * make sense
- */
- emif_assert(cs0_dev_details);
- emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
- /*
- * If there is a device on CS1 it should be same type as CS0
- * (or NVM. But NVM is not supported in this driver yet)
- */
- emif_assert((cs1_dev_details == NULL) ||
- (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
- (cs0_dev_details->type == cs1_dev_details->type));
- emif_assert(freq <= MAX_LPDDR2_FREQ);
- set_ddr_clk_period(freq);
- /*
- * The device on CS0 is used for all timing calculations
- * There is only one set of registers for timings per EMIF. So, if the
- * second CS(CS1) has a device, it should have the same timings as the
- * device on CS0
- */
- timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
- emif_assert(timings);
- min_tck = cs0_dev_timings->min_tck;
- temp = addressing_table_index(cs0_dev_details->type,
- cs0_dev_details->density,
- cs0_dev_details->io_width);
- emif_assert((temp >= 0));
- addressing = &(addressing_table[temp]);
- emif_assert(addressing);
- sys_freq = get_sys_clk_freq();
- regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
- cs1_dev_details,
- addressing, RL_BOOT);
- regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
- cs1_dev_details,
- addressing, RL_FINAL);
- regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
- regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
- regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
- regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
- regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
- regs->temp_alert_config =
- get_temp_alert_config(cs1_dev_details, addressing, 0);
- regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
- LPDDR2_VOLTAGE_STABLE);
- regs->emif_ddr_phy_ctlr_1_init =
- get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
- regs->emif_ddr_phy_ctlr_1 =
- get_ddr_phy_ctrl_1(freq, RL_FINAL);
- regs->freq = freq;
- print_timing_reg(regs->sdram_config_init);
- print_timing_reg(regs->sdram_config);
- print_timing_reg(regs->ref_ctrl);
- print_timing_reg(regs->sdram_tim1);
- print_timing_reg(regs->sdram_tim2);
- print_timing_reg(regs->sdram_tim3);
- print_timing_reg(regs->read_idle_ctrl);
- print_timing_reg(regs->temp_alert_config);
- print_timing_reg(regs->zq_config);
- print_timing_reg(regs->emif_ddr_phy_ctlr_1);
- print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
- }
- #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
- #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
- const char *get_lpddr2_type(u8 type_id)
- {
- switch (type_id) {
- case LPDDR2_TYPE_S4:
- return "LPDDR2-S4";
- case LPDDR2_TYPE_S2:
- return "LPDDR2-S2";
- default:
- return NULL;
- }
- }
- const char *get_lpddr2_io_width(u8 width_id)
- {
- switch (width_id) {
- case LPDDR2_IO_WIDTH_8:
- return "x8";
- case LPDDR2_IO_WIDTH_16:
- return "x16";
- case LPDDR2_IO_WIDTH_32:
- return "x32";
- default:
- return NULL;
- }
- }
- const char *get_lpddr2_manufacturer(u32 manufacturer)
- {
- switch (manufacturer) {
- case LPDDR2_MANUFACTURER_SAMSUNG:
- return "Samsung";
- case LPDDR2_MANUFACTURER_QIMONDA:
- return "Qimonda";
- case LPDDR2_MANUFACTURER_ELPIDA:
- return "Elpida";
- case LPDDR2_MANUFACTURER_ETRON:
- return "Etron";
- case LPDDR2_MANUFACTURER_NANYA:
- return "Nanya";
- case LPDDR2_MANUFACTURER_HYNIX:
- return "Hynix";
- case LPDDR2_MANUFACTURER_MOSEL:
- return "Mosel";
- case LPDDR2_MANUFACTURER_WINBOND:
- return "Winbond";
- case LPDDR2_MANUFACTURER_ESMT:
- return "ESMT";
- case LPDDR2_MANUFACTURER_SPANSION:
- return "Spansion";
- case LPDDR2_MANUFACTURER_SST:
- return "SST";
- case LPDDR2_MANUFACTURER_ZMOS:
- return "ZMOS";
- case LPDDR2_MANUFACTURER_INTEL:
- return "Intel";
- case LPDDR2_MANUFACTURER_NUMONYX:
- return "Numonyx";
- case LPDDR2_MANUFACTURER_MICRON:
- return "Micron";
- default:
- return NULL;
- }
- }
- static void display_sdram_details(u32 emif_nr, u32 cs,
- struct lpddr2_device_details *device)
- {
- const char *mfg_str;
- const char *type_str;
- char density_str[10];
- u32 density;
- debug("EMIF%d CS%d\t", emif_nr, cs);
- if (!device) {
- debug("None\n");
- return;
- }
- mfg_str = get_lpddr2_manufacturer(device->manufacturer);
- type_str = get_lpddr2_type(device->type);
- density = lpddr2_density_2_size_in_mbytes[device->density];
- if ((density / 1024 * 1024) == density) {
- density /= 1024;
- sprintf(density_str, "%d GB", density);
- } else
- sprintf(density_str, "%d MB", density);
- if (mfg_str && type_str)
- debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
- }
- static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
- struct lpddr2_device_details *lpddr2_device)
- {
- u32 mr = 0, temp;
- mr = get_mr(base, cs, LPDDR2_MR0);
- if (mr > 0xFF) {
- /* Mode register value bigger than 8 bit */
- return 0;
- }
- temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
- if (temp) {
- /* Not SDRAM */
- return 0;
- }
- temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
- if (temp) {
- /* DNV supported - But DNV is only supported for NVM */
- return 0;
- }
- mr = get_mr(base, cs, LPDDR2_MR4);
- if (mr > 0xFF) {
- /* Mode register value bigger than 8 bit */
- return 0;
- }
- mr = get_mr(base, cs, LPDDR2_MR5);
- if (mr > 0xFF) {
- /* Mode register value bigger than 8 bit */
- return 0;
- }
- if (!get_lpddr2_manufacturer(mr)) {
- /* Manufacturer not identified */
- return 0;
- }
- lpddr2_device->manufacturer = mr;
- mr = get_mr(base, cs, LPDDR2_MR6);
- if (mr >= 0xFF) {
- /* Mode register value bigger than 8 bit */
- return 0;
- }
- mr = get_mr(base, cs, LPDDR2_MR7);
- if (mr >= 0xFF) {
- /* Mode register value bigger than 8 bit */
- return 0;
- }
- mr = get_mr(base, cs, LPDDR2_MR8);
- if (mr >= 0xFF) {
- /* Mode register value bigger than 8 bit */
- return 0;
- }
- temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
- if (!get_lpddr2_type(temp)) {
- /* Not SDRAM */
- return 0;
- }
- lpddr2_device->type = temp;
- temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
- if (temp > LPDDR2_DENSITY_32Gb) {
- /* Density not supported */
- return 0;
- }
- lpddr2_device->density = temp;
- temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
- if (!get_lpddr2_io_width(temp)) {
- /* IO width unsupported value */
- return 0;
- }
- lpddr2_device->io_width = temp;
- /*
- * If all the above tests pass we should
- * have a device on this chip-select
- */
- return 1;
- }
- struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
- struct lpddr2_device_details *lpddr2_dev_details)
- {
- u32 phy;
- u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- if (!lpddr2_dev_details)
- return NULL;
- /* Do the minimum init for mode register accesses */
- if (!(running_from_sdram() || warm_reset())) {
- phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
- writel(phy, &emif->emif_ddr_phy_ctrl_1);
- }
- if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
- return NULL;
- display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
- return lpddr2_dev_details;
- }
- #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
- static void do_sdram_init(u32 base)
- {
- const struct emif_regs *regs;
- u32 in_sdram, emif_nr;
- debug(">>do_sdram_init() %x\n", base);
- in_sdram = running_from_sdram();
- emif_nr = (base == EMIF1_BASE) ? 1 : 2;
- #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
- emif_get_reg_dump(emif_nr, ®s);
- if (!regs) {
- debug("EMIF: reg dump not provided\n");
- return;
- }
- #else
- /*
- * The user has not provided the register values. We need to
- * calculate it based on the timings and the DDR frequency
- */
- struct emif_device_details dev_details;
- struct emif_regs calculated_regs;
- /*
- * Get device details:
- * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
- * - Obtained from user otherwise
- */
- struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
- emif_reset_phy(base);
- dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
- &cs0_dev_details);
- dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
- &cs1_dev_details);
- emif_reset_phy(base);
- /* Return if no devices on this EMIF */
- if (!dev_details.cs0_device_details &&
- !dev_details.cs1_device_details) {
- return;
- }
- /*
- * Get device timings:
- * - Default timings specified by JESD209-2 if
- * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
- * - Obtained from user otherwise
- */
- emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
- &dev_details.cs1_device_timings);
- /* Calculate the register values */
- emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
- regs = &calculated_regs;
- #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
- /*
- * Initializing the DDR device can not happen from SDRAM.
- * Changing the timing registers in EMIF can happen(going from one
- * OPP to another)
- */
- if (!in_sdram && (!warm_reset() || is_dra7xx())) {
- if (emif_sdram_type(regs->sdram_config) ==
- EMIF_SDRAM_TYPE_LPDDR2)
- lpddr2_init(base, regs);
- #ifndef CONFIG_OMAP44XX
- else
- ddr3_init(base, regs);
- #endif
- }
- #ifdef CONFIG_OMAP54X
- if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
- EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
- set_lpmode_selfrefresh(base);
- emif_reset_phy(base);
- omap5_ddr3_leveling(base, regs);
- }
- #endif
- /* Write to the shadow registers */
- emif_update_timings(base, regs);
- debug("<<do_sdram_init() %x\n", base);
- }
- void emif_post_init_config(u32 base)
- {
- struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
- u32 omap_rev = omap_revision();
- /* reset phy on ES2.0 */
- if (omap_rev == OMAP4430_ES2_0)
- emif_reset_phy(base);
- /* Put EMIF back in smart idle on ES1.0 */
- if (omap_rev == OMAP4430_ES1_0)
- writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
- }
- void dmm_init(u32 base)
- {
- const struct dmm_lisa_map_regs *lisa_map_regs;
- u32 i, section, valid;
- #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
- emif_get_dmm_regs(&lisa_map_regs);
- #else
- u32 emif1_size, emif2_size, mapped_size, section_map = 0;
- u32 section_cnt, sys_addr;
- struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
- mapped_size = 0;
- section_cnt = 3;
- sys_addr = CONFIG_SYS_SDRAM_BASE;
- emif1_size = get_emif_mem_size(EMIF1_BASE);
- emif2_size = get_emif_mem_size(EMIF2_BASE);
- debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
- if (!emif1_size && !emif2_size)
- return;
- /* symmetric interleaved section */
- if (emif1_size && emif2_size) {
- mapped_size = min(emif1_size, emif2_size);
- section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
- section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
- /* only MSB */
- section_map |= (sys_addr >> 24) <<
- EMIF_SYS_ADDR_SHIFT;
- section_map |= get_dmm_section_size_map(mapped_size * 2)
- << EMIF_SYS_SIZE_SHIFT;
- lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
- emif1_size -= mapped_size;
- emif2_size -= mapped_size;
- sys_addr += (mapped_size * 2);
- section_cnt--;
- }
- /*
- * Single EMIF section(we can have a maximum of 1 single EMIF
- * section- either EMIF1 or EMIF2 or none, but not both)
- */
- if (emif1_size) {
- section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
- section_map |= get_dmm_section_size_map(emif1_size)
- << EMIF_SYS_SIZE_SHIFT;
- /* only MSB */
- section_map |= (mapped_size >> 24) <<
- EMIF_SDRC_ADDR_SHIFT;
- /* only MSB */
- section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
- section_cnt--;
- }
- if (emif2_size) {
- section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
- section_map |= get_dmm_section_size_map(emif2_size) <<
- EMIF_SYS_SIZE_SHIFT;
- /* only MSB */
- section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
- /* only MSB */
- section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
- section_cnt--;
- }
- if (section_cnt == 2) {
- /* Only 1 section - either symmetric or single EMIF */
- lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
- lis_map_regs_calculated.dmm_lisa_map_2 = 0;
- lis_map_regs_calculated.dmm_lisa_map_1 = 0;
- } else {
- /* 2 sections - 1 symmetric, 1 single EMIF */
- lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
- lis_map_regs_calculated.dmm_lisa_map_1 = 0;
- }
- /* TRAP for invalid TILER mappings in section 0 */
- lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
- if (omap_revision() >= OMAP4460_ES1_0)
- lis_map_regs_calculated.is_ma_present = 1;
- lisa_map_regs = &lis_map_regs_calculated;
- #endif
- struct dmm_lisa_map_regs *hw_lisa_map_regs =
- (struct dmm_lisa_map_regs *)base;
- writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
- writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
- writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
- writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
- writel(lisa_map_regs->dmm_lisa_map_3,
- &hw_lisa_map_regs->dmm_lisa_map_3);
- writel(lisa_map_regs->dmm_lisa_map_2,
- &hw_lisa_map_regs->dmm_lisa_map_2);
- writel(lisa_map_regs->dmm_lisa_map_1,
- &hw_lisa_map_regs->dmm_lisa_map_1);
- writel(lisa_map_regs->dmm_lisa_map_0,
- &hw_lisa_map_regs->dmm_lisa_map_0);
- if (lisa_map_regs->is_ma_present) {
- hw_lisa_map_regs =
- (struct dmm_lisa_map_regs *)MA_BASE;
- writel(lisa_map_regs->dmm_lisa_map_3,
- &hw_lisa_map_regs->dmm_lisa_map_3);
- writel(lisa_map_regs->dmm_lisa_map_2,
- &hw_lisa_map_regs->dmm_lisa_map_2);
- writel(lisa_map_regs->dmm_lisa_map_1,
- &hw_lisa_map_regs->dmm_lisa_map_1);
- writel(lisa_map_regs->dmm_lisa_map_0,
- &hw_lisa_map_regs->dmm_lisa_map_0);
- setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
- }
- /*
- * EMIF should be configured only when
- * memory is mapped on it. Using emif1_enabled
- * and emif2_enabled variables for this.
- */
- emif1_enabled = 0;
- emif2_enabled = 0;
- for (i = 0; i < 4; i++) {
- section = __raw_readl(DMM_BASE + i*4);
- valid = (section & EMIF_SDRC_MAP_MASK) >>
- (EMIF_SDRC_MAP_SHIFT);
- if (valid == 3) {
- emif1_enabled = 1;
- emif2_enabled = 1;
- break;
- }
- if (valid == 1)
- emif1_enabled = 1;
- if (valid == 2)
- emif2_enabled = 1;
- }
- }
- static void do_bug0039_workaround(u32 base)
- {
- u32 val, i, clkctrl;
- struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
- const struct read_write_regs *bug_00339_regs;
- u32 iterations;
- u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
- u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
- if (is_dra7xx())
- phy_status_base++;
- bug_00339_regs = get_bug_regs(&iterations);
- /* Put EMIF in to idle */
- clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
- __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
- /* Copy the phy status registers in to phy ctrl shadow registers */
- for (i = 0; i < iterations; i++) {
- val = __raw_readl(phy_status_base +
- bug_00339_regs[i].read_reg - 1);
- __raw_writel(val, phy_ctrl_base +
- ((bug_00339_regs[i].write_reg - 1) << 1));
- __raw_writel(val, phy_ctrl_base +
- (bug_00339_regs[i].write_reg << 1) - 1);
- }
- /* Disable leveling */
- writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
- __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
- }
- /*
- * SDRAM initialization:
- * SDRAM initialization has two parts:
- * 1. Configuring the SDRAM device
- * 2. Update the AC timings related parameters in the EMIF module
- * (1) should be done only once and should not be done while we are
- * running from SDRAM.
- * (2) can and should be done more than once if OPP changes.
- * Particularly, this may be needed when we boot without SPL and
- * and using Configuration Header(CH). ROM code supports only at 50% OPP
- * at boot (low power boot). So u-boot has to switch to OPP100 and update
- * the frequency. So,
- * Doing (1) and (2) makes sense - first time initialization
- * Doing (2) and not (1) makes sense - OPP change (when using CH)
- * Doing (1) and not (2) doen't make sense
- * See do_sdram_init() for the details
- */
- void sdram_init(void)
- {
- u32 in_sdram, size_prog, size_detect;
- struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
- u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
- debug(">>sdram_init()\n");
- if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
- return;
- in_sdram = running_from_sdram();
- debug("in_sdram = %d\n", in_sdram);
- if (!in_sdram) {
- if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
- bypass_dpll((*prcm)->cm_clkmode_dpll_core);
- else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
- writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
- }
- if (!in_sdram)
- dmm_init(DMM_BASE);
- if (emif1_enabled)
- do_sdram_init(EMIF1_BASE);
- if (emif2_enabled)
- do_sdram_init(EMIF2_BASE);
- if (!(in_sdram || warm_reset())) {
- if (emif1_enabled)
- emif_post_init_config(EMIF1_BASE);
- if (emif2_enabled)
- emif_post_init_config(EMIF2_BASE);
- }
- /* for the shadow registers to take effect */
- if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
- freq_update_core();
- /* Do some testing after the init */
- if (!in_sdram) {
- size_prog = omap_sdram_size();
- size_prog = log_2_n_round_down(size_prog);
- size_prog = (1 << size_prog);
- size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
- size_prog);
- /* Compare with the size programmed */
- if (size_detect != size_prog) {
- printf("SDRAM: identified size not same as expected"
- " size identified: %x expected: %x\n",
- size_detect,
- size_prog);
- } else
- debug("get_ram_size() successful");
- }
- #if defined(CONFIG_TI_SECURE_DEVICE)
- /*
- * On HS devices, do static EMIF firewall configuration
- * but only do it if not already running in SDRAM
- */
- if (!in_sdram)
- if (0 != secure_emif_reserve())
- hang();
- /* On HS devices, ensure static EMIF firewall APIs are locked */
- if (0 != secure_emif_firewall_lock())
- hang();
- #endif
- if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
- (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
- if (emif1_enabled)
- do_bug0039_workaround(EMIF1_BASE);
- if (emif2_enabled)
- do_bug0039_workaround(EMIF2_BASE);
- }
- debug("<<sdram_init()\n");
- }
|