clock.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /*
  2. * Keystone2: pll initialization
  3. *
  4. * (C) Copyright 2012-2014
  5. * Texas Instruments Incorporated, <www.ti.com>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <asm/arch/clock.h>
  11. #include <asm/arch/clock_defs.h>
  12. /* DEV and ARM speed definitions as specified in DEVSPEED register */
  13. int __weak speeds[DEVSPEED_NUMSPDS] = {
  14. SPD1000,
  15. SPD1200,
  16. SPD1350,
  17. SPD1400,
  18. SPD1500,
  19. SPD1400,
  20. SPD1350,
  21. SPD1200,
  22. SPD1000,
  23. SPD800,
  24. };
  25. const struct keystone_pll_regs keystone_pll_regs[] = {
  26. [CORE_PLL] = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
  27. [PASS_PLL] = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
  28. [TETRIS_PLL] = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
  29. [DDR3A_PLL] = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
  30. [DDR3B_PLL] = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
  31. [UART_PLL] = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
  32. };
  33. inline void pll_pa_clk_sel(void)
  34. {
  35. setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
  36. }
  37. static void wait_for_completion(const struct pll_init_data *data)
  38. {
  39. int i;
  40. for (i = 0; i < 100; i++) {
  41. sdelay(450);
  42. if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
  43. break;
  44. }
  45. }
  46. static inline void bypass_main_pll(const struct pll_init_data *data)
  47. {
  48. pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
  49. PLLCTL_PLLEN_MASK);
  50. /* 4 cycles of reference clock CLKIN*/
  51. sdelay(340);
  52. }
  53. static void configure_mult_div(const struct pll_init_data *data)
  54. {
  55. u32 pllm, plld, bwadj;
  56. pllm = data->pll_m - 1;
  57. plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
  58. /* Program Multiplier */
  59. if (data->pll == MAIN_PLL)
  60. pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
  61. clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  62. CFG_PLLCTL0_PLLM_MASK,
  63. pllm << CFG_PLLCTL0_PLLM_SHIFT);
  64. /* Program BWADJ */
  65. bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
  66. clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  67. CFG_PLLCTL0_BWADJ_MASK,
  68. (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
  69. CFG_PLLCTL0_BWADJ_MASK);
  70. bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
  71. clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
  72. CFG_PLLCTL1_BWADJ_MASK, bwadj);
  73. /* Program Divider */
  74. clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  75. CFG_PLLCTL0_PLLD_MASK, plld);
  76. }
  77. void configure_main_pll(const struct pll_init_data *data)
  78. {
  79. u32 tmp, pllod, i, alnctl_val = 0;
  80. u32 *offset;
  81. pllod = data->pll_od - 1;
  82. /* 100 micro sec for stabilization */
  83. sdelay(210000);
  84. tmp = pllctl_reg_read(data->pll, secctl);
  85. /* Check for Bypass */
  86. if (tmp & SECCTL_BYPASS_MASK) {
  87. setbits_le32(keystone_pll_regs[data->pll].reg1,
  88. CFG_PLLCTL1_ENSAT_MASK);
  89. bypass_main_pll(data);
  90. /* Powerdown and powerup Main Pll */
  91. pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
  92. pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
  93. /* 5 micro sec */
  94. sdelay(21000);
  95. pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
  96. } else {
  97. bypass_main_pll(data);
  98. }
  99. configure_mult_div(data);
  100. /* Program Output Divider */
  101. pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
  102. ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
  103. /* Program PLLDIVn */
  104. wait_for_completion(data);
  105. for (i = 0; i < PLLDIV_MAX; i++) {
  106. if (i < 3)
  107. offset = pllctl_reg(data->pll, div1) + i;
  108. else
  109. offset = pllctl_reg(data->pll, div4) + (i - 3);
  110. if (divn_val[i] != -1) {
  111. __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
  112. alnctl_val |= BIT(i);
  113. }
  114. }
  115. if (alnctl_val) {
  116. pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
  117. /*
  118. * Set GOSET bit in PLLCMD to initiate the GO operation
  119. * to change the divide
  120. */
  121. pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
  122. wait_for_completion(data);
  123. }
  124. /* Reset PLL */
  125. pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
  126. sdelay(21000); /* Wait for a minimum of 7 us*/
  127. pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
  128. sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
  129. /* Enable PLL */
  130. pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
  131. pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
  132. }
  133. void configure_secondary_pll(const struct pll_init_data *data)
  134. {
  135. int pllod = data->pll_od - 1;
  136. /* Enable Glitch free bypass for ARM PLL */
  137. if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
  138. clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
  139. /* Enable Bypass mode */
  140. setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
  141. setbits_le32(keystone_pll_regs[data->pll].reg0,
  142. CFG_PLLCTL0_BYPASS_MASK);
  143. configure_mult_div(data);
  144. /* Program Output Divider */
  145. clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
  146. CFG_PLLCTL0_CLKOD_MASK,
  147. (pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
  148. CFG_PLLCTL0_CLKOD_MASK);
  149. /* Reset PLL */
  150. setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
  151. /* Wait for 5 micro seconds */
  152. sdelay(21000);
  153. /* Select the Output of PASS PLL as input to PASS */
  154. if (data->pll == PASS_PLL && cpu_is_k2hk())
  155. pll_pa_clk_sel();
  156. clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
  157. /* Wait for 500 * REFCLK cucles * (PLLD + 1) */
  158. sdelay(105000);
  159. /* Switch to PLL mode */
  160. clrbits_le32(keystone_pll_regs[data->pll].reg0,
  161. CFG_PLLCTL0_BYPASS_MASK);
  162. /* Select the Output of ARM PLL as input to ARM */
  163. if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
  164. setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
  165. }
  166. void init_pll(const struct pll_init_data *data)
  167. {
  168. if (data->pll == MAIN_PLL)
  169. configure_main_pll(data);
  170. else
  171. configure_secondary_pll(data);
  172. /*
  173. * This is required to provide a delay between multiple
  174. * consequent PPL configurations
  175. */
  176. sdelay(210000);
  177. }
  178. void init_plls(void)
  179. {
  180. struct pll_init_data *data;
  181. int pll;
  182. for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
  183. data = get_pll_init_data(pll);
  184. if (data)
  185. init_pll(data);
  186. }
  187. }
  188. static int get_max_speed(u32 val, u32 speed_supported, int *spds)
  189. {
  190. int speed;
  191. /* Left most setbit gives the speed */
  192. for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
  193. if ((val & BIT(speed)) & speed_supported)
  194. return spds[speed];
  195. }
  196. /* If no bit is set, return minimum speed */
  197. if (cpu_is_k2g())
  198. return SPD200;
  199. else
  200. return SPD800;
  201. }
  202. static inline u32 read_efuse_bootrom(void)
  203. {
  204. if (cpu_is_k2hk() && (cpu_revision() <= 1))
  205. return __raw_readl(KS2_REV1_DEVSPEED);
  206. else
  207. return __raw_readl(KS2_EFUSE_BOOTROM);
  208. }
  209. int get_max_arm_speed(int *spds)
  210. {
  211. u32 armspeed = read_efuse_bootrom();
  212. armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
  213. DEVSPEED_ARMSPEED_SHIFT;
  214. return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds);
  215. }
  216. int get_max_dev_speed(int *spds)
  217. {
  218. u32 devspeed = read_efuse_bootrom();
  219. devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
  220. DEVSPEED_DEVSPEED_SHIFT;
  221. return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds);
  222. }
  223. /**
  224. * pll_freq_get - get pll frequency
  225. * @pll: pll identifier
  226. */
  227. static unsigned long pll_freq_get(int pll)
  228. {
  229. unsigned long mult = 1, prediv = 1, output_div = 2;
  230. unsigned long ret;
  231. u32 tmp, reg;
  232. if (pll == MAIN_PLL) {
  233. ret = get_external_clk(sys_clk);
  234. if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
  235. /* PLL mode */
  236. tmp = __raw_readl(KS2_MAINPLLCTL0);
  237. prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
  238. mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
  239. CFG_PLLCTL0_PLLM_SHIFT |
  240. (pllctl_reg_read(pll, mult) &
  241. PLLM_MULT_LO_MASK)) + 1;
  242. output_div = ((pllctl_reg_read(pll, secctl) &
  243. SECCTL_OP_DIV_MASK) >>
  244. SECCTL_OP_DIV_SHIFT) + 1;
  245. ret = ret / prediv / output_div * mult;
  246. }
  247. } else {
  248. switch (pll) {
  249. case PASS_PLL:
  250. ret = get_external_clk(pa_clk);
  251. reg = KS2_PASSPLLCTL0;
  252. break;
  253. case TETRIS_PLL:
  254. ret = get_external_clk(tetris_clk);
  255. reg = KS2_ARMPLLCTL0;
  256. break;
  257. case DDR3A_PLL:
  258. ret = get_external_clk(ddr3a_clk);
  259. reg = KS2_DDR3APLLCTL0;
  260. break;
  261. case DDR3B_PLL:
  262. ret = get_external_clk(ddr3b_clk);
  263. reg = KS2_DDR3BPLLCTL0;
  264. break;
  265. case UART_PLL:
  266. ret = get_external_clk(uart_clk);
  267. reg = KS2_UARTPLLCTL0;
  268. break;
  269. default:
  270. return 0;
  271. }
  272. tmp = __raw_readl(reg);
  273. if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
  274. /* Bypass disabled */
  275. prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
  276. mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
  277. CFG_PLLCTL0_PLLM_SHIFT) + 1;
  278. output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
  279. CFG_PLLCTL0_CLKOD_SHIFT) + 1;
  280. ret = ((ret / prediv) * mult) / output_div;
  281. }
  282. }
  283. return ret;
  284. }
  285. unsigned long ks_clk_get_rate(unsigned int clk)
  286. {
  287. unsigned long freq = 0;
  288. switch (clk) {
  289. case core_pll_clk:
  290. freq = pll_freq_get(CORE_PLL);
  291. break;
  292. case pass_pll_clk:
  293. freq = pll_freq_get(PASS_PLL);
  294. break;
  295. case tetris_pll_clk:
  296. if (!cpu_is_k2e())
  297. freq = pll_freq_get(TETRIS_PLL);
  298. break;
  299. case ddr3a_pll_clk:
  300. freq = pll_freq_get(DDR3A_PLL);
  301. break;
  302. case ddr3b_pll_clk:
  303. if (cpu_is_k2hk())
  304. freq = pll_freq_get(DDR3B_PLL);
  305. break;
  306. case uart_pll_clk:
  307. if (cpu_is_k2g())
  308. freq = pll_freq_get(UART_PLL);
  309. break;
  310. case sys_clk0_1_clk:
  311. case sys_clk0_clk:
  312. freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
  313. break;
  314. case sys_clk1_clk:
  315. return pll_freq_get(CORE_PLL) / pll0div_read(2);
  316. break;
  317. case sys_clk2_clk:
  318. freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
  319. break;
  320. case sys_clk3_clk:
  321. freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
  322. break;
  323. case sys_clk0_2_clk:
  324. freq = ks_clk_get_rate(sys_clk0_clk) / 2;
  325. break;
  326. case sys_clk0_3_clk:
  327. freq = ks_clk_get_rate(sys_clk0_clk) / 3;
  328. break;
  329. case sys_clk0_4_clk:
  330. freq = ks_clk_get_rate(sys_clk0_clk) / 4;
  331. break;
  332. case sys_clk0_6_clk:
  333. freq = ks_clk_get_rate(sys_clk0_clk) / 6;
  334. break;
  335. case sys_clk0_8_clk:
  336. freq = ks_clk_get_rate(sys_clk0_clk) / 8;
  337. break;
  338. case sys_clk0_12_clk:
  339. freq = ks_clk_get_rate(sys_clk0_clk) / 12;
  340. break;
  341. case sys_clk0_24_clk:
  342. freq = ks_clk_get_rate(sys_clk0_clk) / 24;
  343. break;
  344. case sys_clk1_3_clk:
  345. freq = ks_clk_get_rate(sys_clk1_clk) / 3;
  346. break;
  347. case sys_clk1_4_clk:
  348. freq = ks_clk_get_rate(sys_clk1_clk) / 4;
  349. break;
  350. case sys_clk1_6_clk:
  351. freq = ks_clk_get_rate(sys_clk1_clk) / 6;
  352. break;
  353. case sys_clk1_12_clk:
  354. freq = ks_clk_get_rate(sys_clk1_clk) / 12;
  355. break;
  356. default:
  357. break;
  358. }
  359. return freq;
  360. }