encrypted.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys-trusted-encrypted.txt
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/ctype.h>
  31. #include <crypto/aes.h>
  32. #include <crypto/hash.h>
  33. #include <crypto/sha.h>
  34. #include <crypto/skcipher.h>
  35. #include "encrypted.h"
  36. #include "ecryptfs_format.h"
  37. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  38. static const char KEY_USER_PREFIX[] = "user:";
  39. static const char hash_alg[] = "sha256";
  40. static const char hmac_alg[] = "hmac(sha256)";
  41. static const char blkcipher_alg[] = "cbc(aes)";
  42. static const char key_format_default[] = "default";
  43. static const char key_format_ecryptfs[] = "ecryptfs";
  44. static unsigned int ivsize;
  45. static int blksize;
  46. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  47. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  48. #define KEY_ECRYPTFS_DESC_LEN 16
  49. #define HASH_SIZE SHA256_DIGEST_SIZE
  50. #define MAX_DATA_SIZE 4096
  51. #define MIN_DATA_SIZE 20
  52. struct sdesc {
  53. struct shash_desc shash;
  54. char ctx[];
  55. };
  56. static struct crypto_shash *hashalg;
  57. static struct crypto_shash *hmacalg;
  58. enum {
  59. Opt_err = -1, Opt_new, Opt_load, Opt_update
  60. };
  61. enum {
  62. Opt_error = -1, Opt_default, Opt_ecryptfs
  63. };
  64. static const match_table_t key_format_tokens = {
  65. {Opt_default, "default"},
  66. {Opt_ecryptfs, "ecryptfs"},
  67. {Opt_error, NULL}
  68. };
  69. static const match_table_t key_tokens = {
  70. {Opt_new, "new"},
  71. {Opt_load, "load"},
  72. {Opt_update, "update"},
  73. {Opt_err, NULL}
  74. };
  75. static int aes_get_sizes(void)
  76. {
  77. struct crypto_skcipher *tfm;
  78. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  79. if (IS_ERR(tfm)) {
  80. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  81. PTR_ERR(tfm));
  82. return PTR_ERR(tfm);
  83. }
  84. ivsize = crypto_skcipher_ivsize(tfm);
  85. blksize = crypto_skcipher_blocksize(tfm);
  86. crypto_free_skcipher(tfm);
  87. return 0;
  88. }
  89. /*
  90. * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  91. *
  92. * The description of a encrypted key with format 'ecryptfs' must contain
  93. * exactly 16 hexadecimal characters.
  94. *
  95. */
  96. static int valid_ecryptfs_desc(const char *ecryptfs_desc)
  97. {
  98. int i;
  99. if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
  100. pr_err("encrypted_key: key description must be %d hexadecimal "
  101. "characters long\n", KEY_ECRYPTFS_DESC_LEN);
  102. return -EINVAL;
  103. }
  104. for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
  105. if (!isxdigit(ecryptfs_desc[i])) {
  106. pr_err("encrypted_key: key description must contain "
  107. "only hexadecimal characters\n");
  108. return -EINVAL;
  109. }
  110. }
  111. return 0;
  112. }
  113. /*
  114. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  115. *
  116. * key-type:= "trusted:" | "user:"
  117. * desc:= master-key description
  118. *
  119. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  120. * only the master key description is permitted to change, not the key-type.
  121. * The key-type remains constant.
  122. *
  123. * On success returns 0, otherwise -EINVAL.
  124. */
  125. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  126. {
  127. if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
  128. if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
  129. goto out;
  130. if (orig_desc)
  131. if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
  132. goto out;
  133. } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
  134. if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
  135. goto out;
  136. if (orig_desc)
  137. if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
  138. goto out;
  139. } else
  140. goto out;
  141. return 0;
  142. out:
  143. return -EINVAL;
  144. }
  145. /*
  146. * datablob_parse - parse the keyctl data
  147. *
  148. * datablob format:
  149. * new [<format>] <master-key name> <decrypted data length>
  150. * load [<format>] <master-key name> <decrypted data length>
  151. * <encrypted iv + data>
  152. * update <new-master-key name>
  153. *
  154. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  155. * which is null terminated.
  156. *
  157. * On success returns 0, otherwise -EINVAL.
  158. */
  159. static int datablob_parse(char *datablob, const char **format,
  160. char **master_desc, char **decrypted_datalen,
  161. char **hex_encoded_iv)
  162. {
  163. substring_t args[MAX_OPT_ARGS];
  164. int ret = -EINVAL;
  165. int key_cmd;
  166. int key_format;
  167. char *p, *keyword;
  168. keyword = strsep(&datablob, " \t");
  169. if (!keyword) {
  170. pr_info("encrypted_key: insufficient parameters specified\n");
  171. return ret;
  172. }
  173. key_cmd = match_token(keyword, key_tokens, args);
  174. /* Get optional format: default | ecryptfs */
  175. p = strsep(&datablob, " \t");
  176. if (!p) {
  177. pr_err("encrypted_key: insufficient parameters specified\n");
  178. return ret;
  179. }
  180. key_format = match_token(p, key_format_tokens, args);
  181. switch (key_format) {
  182. case Opt_ecryptfs:
  183. case Opt_default:
  184. *format = p;
  185. *master_desc = strsep(&datablob, " \t");
  186. break;
  187. case Opt_error:
  188. *master_desc = p;
  189. break;
  190. }
  191. if (!*master_desc) {
  192. pr_info("encrypted_key: master key parameter is missing\n");
  193. goto out;
  194. }
  195. if (valid_master_desc(*master_desc, NULL) < 0) {
  196. pr_info("encrypted_key: master key parameter \'%s\' "
  197. "is invalid\n", *master_desc);
  198. goto out;
  199. }
  200. if (decrypted_datalen) {
  201. *decrypted_datalen = strsep(&datablob, " \t");
  202. if (!*decrypted_datalen) {
  203. pr_info("encrypted_key: keylen parameter is missing\n");
  204. goto out;
  205. }
  206. }
  207. switch (key_cmd) {
  208. case Opt_new:
  209. if (!decrypted_datalen) {
  210. pr_info("encrypted_key: keyword \'%s\' not allowed "
  211. "when called from .update method\n", keyword);
  212. break;
  213. }
  214. ret = 0;
  215. break;
  216. case Opt_load:
  217. if (!decrypted_datalen) {
  218. pr_info("encrypted_key: keyword \'%s\' not allowed "
  219. "when called from .update method\n", keyword);
  220. break;
  221. }
  222. *hex_encoded_iv = strsep(&datablob, " \t");
  223. if (!*hex_encoded_iv) {
  224. pr_info("encrypted_key: hex blob is missing\n");
  225. break;
  226. }
  227. ret = 0;
  228. break;
  229. case Opt_update:
  230. if (decrypted_datalen) {
  231. pr_info("encrypted_key: keyword \'%s\' not allowed "
  232. "when called from .instantiate method\n",
  233. keyword);
  234. break;
  235. }
  236. ret = 0;
  237. break;
  238. case Opt_err:
  239. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  240. keyword);
  241. break;
  242. }
  243. out:
  244. return ret;
  245. }
  246. /*
  247. * datablob_format - format as an ascii string, before copying to userspace
  248. */
  249. static char *datablob_format(struct encrypted_key_payload *epayload,
  250. size_t asciiblob_len)
  251. {
  252. char *ascii_buf, *bufp;
  253. u8 *iv = epayload->iv;
  254. int len;
  255. int i;
  256. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  257. if (!ascii_buf)
  258. goto out;
  259. ascii_buf[asciiblob_len] = '\0';
  260. /* copy datablob master_desc and datalen strings */
  261. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  262. epayload->master_desc, epayload->datalen);
  263. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  264. bufp = &ascii_buf[len];
  265. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  266. bufp = hex_byte_pack(bufp, iv[i]);
  267. out:
  268. return ascii_buf;
  269. }
  270. /*
  271. * request_user_key - request the user key
  272. *
  273. * Use a user provided key to encrypt/decrypt an encrypted-key.
  274. */
  275. static struct key *request_user_key(const char *master_desc, const u8 **master_key,
  276. size_t *master_keylen)
  277. {
  278. const struct user_key_payload *upayload;
  279. struct key *ukey;
  280. ukey = request_key(&key_type_user, master_desc, NULL);
  281. if (IS_ERR(ukey))
  282. goto error;
  283. down_read(&ukey->sem);
  284. upayload = user_key_payload(ukey);
  285. if (!upayload) {
  286. /* key was revoked before we acquired its semaphore */
  287. up_read(&ukey->sem);
  288. key_put(ukey);
  289. ukey = ERR_PTR(-EKEYREVOKED);
  290. goto error;
  291. }
  292. *master_key = upayload->data;
  293. *master_keylen = upayload->datalen;
  294. error:
  295. return ukey;
  296. }
  297. static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
  298. {
  299. struct sdesc *sdesc;
  300. int size;
  301. size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  302. sdesc = kmalloc(size, GFP_KERNEL);
  303. if (!sdesc)
  304. return ERR_PTR(-ENOMEM);
  305. sdesc->shash.tfm = alg;
  306. sdesc->shash.flags = 0x0;
  307. return sdesc;
  308. }
  309. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  310. const u8 *buf, unsigned int buflen)
  311. {
  312. struct sdesc *sdesc;
  313. int ret;
  314. sdesc = alloc_sdesc(hmacalg);
  315. if (IS_ERR(sdesc)) {
  316. pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
  317. return PTR_ERR(sdesc);
  318. }
  319. ret = crypto_shash_setkey(hmacalg, key, keylen);
  320. if (!ret)
  321. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  322. kfree(sdesc);
  323. return ret;
  324. }
  325. static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
  326. {
  327. struct sdesc *sdesc;
  328. int ret;
  329. sdesc = alloc_sdesc(hashalg);
  330. if (IS_ERR(sdesc)) {
  331. pr_info("encrypted_key: can't alloc %s\n", hash_alg);
  332. return PTR_ERR(sdesc);
  333. }
  334. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  335. kfree(sdesc);
  336. return ret;
  337. }
  338. enum derived_key_type { ENC_KEY, AUTH_KEY };
  339. /* Derive authentication/encryption key from trusted key */
  340. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  341. const u8 *master_key, size_t master_keylen)
  342. {
  343. u8 *derived_buf;
  344. unsigned int derived_buf_len;
  345. int ret;
  346. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  347. if (derived_buf_len < HASH_SIZE)
  348. derived_buf_len = HASH_SIZE;
  349. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  350. if (!derived_buf) {
  351. pr_err("encrypted_key: out of memory\n");
  352. return -ENOMEM;
  353. }
  354. if (key_type)
  355. strcpy(derived_buf, "AUTH_KEY");
  356. else
  357. strcpy(derived_buf, "ENC_KEY");
  358. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  359. master_keylen);
  360. ret = calc_hash(derived_key, derived_buf, derived_buf_len);
  361. kfree(derived_buf);
  362. return ret;
  363. }
  364. static struct skcipher_request *init_skcipher_req(const u8 *key,
  365. unsigned int key_len)
  366. {
  367. struct skcipher_request *req;
  368. struct crypto_skcipher *tfm;
  369. int ret;
  370. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  371. if (IS_ERR(tfm)) {
  372. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  373. blkcipher_alg, PTR_ERR(tfm));
  374. return ERR_CAST(tfm);
  375. }
  376. ret = crypto_skcipher_setkey(tfm, key, key_len);
  377. if (ret < 0) {
  378. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  379. crypto_free_skcipher(tfm);
  380. return ERR_PTR(ret);
  381. }
  382. req = skcipher_request_alloc(tfm, GFP_KERNEL);
  383. if (!req) {
  384. pr_err("encrypted_key: failed to allocate request for %s\n",
  385. blkcipher_alg);
  386. crypto_free_skcipher(tfm);
  387. return ERR_PTR(-ENOMEM);
  388. }
  389. skcipher_request_set_callback(req, 0, NULL, NULL);
  390. return req;
  391. }
  392. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  393. const u8 **master_key, size_t *master_keylen)
  394. {
  395. struct key *mkey = ERR_PTR(-EINVAL);
  396. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  397. KEY_TRUSTED_PREFIX_LEN)) {
  398. mkey = request_trusted_key(epayload->master_desc +
  399. KEY_TRUSTED_PREFIX_LEN,
  400. master_key, master_keylen);
  401. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  402. KEY_USER_PREFIX_LEN)) {
  403. mkey = request_user_key(epayload->master_desc +
  404. KEY_USER_PREFIX_LEN,
  405. master_key, master_keylen);
  406. } else
  407. goto out;
  408. if (IS_ERR(mkey)) {
  409. int ret = PTR_ERR(mkey);
  410. if (ret == -ENOTSUPP)
  411. pr_info("encrypted_key: key %s not supported",
  412. epayload->master_desc);
  413. else
  414. pr_info("encrypted_key: key %s not found",
  415. epayload->master_desc);
  416. goto out;
  417. }
  418. dump_master_key(*master_key, *master_keylen);
  419. out:
  420. return mkey;
  421. }
  422. /* Before returning data to userspace, encrypt decrypted data. */
  423. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  424. const u8 *derived_key,
  425. unsigned int derived_keylen)
  426. {
  427. struct scatterlist sg_in[2];
  428. struct scatterlist sg_out[1];
  429. struct crypto_skcipher *tfm;
  430. struct skcipher_request *req;
  431. unsigned int encrypted_datalen;
  432. u8 iv[AES_BLOCK_SIZE];
  433. int ret;
  434. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  435. req = init_skcipher_req(derived_key, derived_keylen);
  436. ret = PTR_ERR(req);
  437. if (IS_ERR(req))
  438. goto out;
  439. dump_decrypted_data(epayload);
  440. sg_init_table(sg_in, 2);
  441. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  442. epayload->decrypted_datalen);
  443. sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
  444. sg_init_table(sg_out, 1);
  445. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  446. memcpy(iv, epayload->iv, sizeof(iv));
  447. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  448. ret = crypto_skcipher_encrypt(req);
  449. tfm = crypto_skcipher_reqtfm(req);
  450. skcipher_request_free(req);
  451. crypto_free_skcipher(tfm);
  452. if (ret < 0)
  453. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  454. else
  455. dump_encrypted_data(epayload, encrypted_datalen);
  456. out:
  457. return ret;
  458. }
  459. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  460. const u8 *master_key, size_t master_keylen)
  461. {
  462. u8 derived_key[HASH_SIZE];
  463. u8 *digest;
  464. int ret;
  465. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  466. if (ret < 0)
  467. goto out;
  468. digest = epayload->format + epayload->datablob_len;
  469. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  470. epayload->format, epayload->datablob_len);
  471. if (!ret)
  472. dump_hmac(NULL, digest, HASH_SIZE);
  473. out:
  474. return ret;
  475. }
  476. /* verify HMAC before decrypting encrypted key */
  477. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  478. const u8 *format, const u8 *master_key,
  479. size_t master_keylen)
  480. {
  481. u8 derived_key[HASH_SIZE];
  482. u8 digest[HASH_SIZE];
  483. int ret;
  484. char *p;
  485. unsigned short len;
  486. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  487. if (ret < 0)
  488. goto out;
  489. len = epayload->datablob_len;
  490. if (!format) {
  491. p = epayload->master_desc;
  492. len -= strlen(epayload->format) + 1;
  493. } else
  494. p = epayload->format;
  495. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  496. if (ret < 0)
  497. goto out;
  498. ret = memcmp(digest, epayload->format + epayload->datablob_len,
  499. sizeof digest);
  500. if (ret) {
  501. ret = -EINVAL;
  502. dump_hmac("datablob",
  503. epayload->format + epayload->datablob_len,
  504. HASH_SIZE);
  505. dump_hmac("calc", digest, HASH_SIZE);
  506. }
  507. out:
  508. return ret;
  509. }
  510. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  511. const u8 *derived_key,
  512. unsigned int derived_keylen)
  513. {
  514. struct scatterlist sg_in[1];
  515. struct scatterlist sg_out[2];
  516. struct crypto_skcipher *tfm;
  517. struct skcipher_request *req;
  518. unsigned int encrypted_datalen;
  519. u8 iv[AES_BLOCK_SIZE];
  520. u8 *pad;
  521. int ret;
  522. /* Throwaway buffer to hold the unused zero padding at the end */
  523. pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
  524. if (!pad)
  525. return -ENOMEM;
  526. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  527. req = init_skcipher_req(derived_key, derived_keylen);
  528. ret = PTR_ERR(req);
  529. if (IS_ERR(req))
  530. goto out;
  531. dump_encrypted_data(epayload, encrypted_datalen);
  532. sg_init_table(sg_in, 1);
  533. sg_init_table(sg_out, 2);
  534. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  535. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  536. epayload->decrypted_datalen);
  537. sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
  538. memcpy(iv, epayload->iv, sizeof(iv));
  539. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  540. ret = crypto_skcipher_decrypt(req);
  541. tfm = crypto_skcipher_reqtfm(req);
  542. skcipher_request_free(req);
  543. crypto_free_skcipher(tfm);
  544. if (ret < 0)
  545. goto out;
  546. dump_decrypted_data(epayload);
  547. out:
  548. kfree(pad);
  549. return ret;
  550. }
  551. /* Allocate memory for decrypted key and datablob. */
  552. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  553. const char *format,
  554. const char *master_desc,
  555. const char *datalen)
  556. {
  557. struct encrypted_key_payload *epayload = NULL;
  558. unsigned short datablob_len;
  559. unsigned short decrypted_datalen;
  560. unsigned short payload_datalen;
  561. unsigned int encrypted_datalen;
  562. unsigned int format_len;
  563. long dlen;
  564. int ret;
  565. ret = kstrtol(datalen, 10, &dlen);
  566. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  567. return ERR_PTR(-EINVAL);
  568. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  569. decrypted_datalen = dlen;
  570. payload_datalen = decrypted_datalen;
  571. if (format && !strcmp(format, key_format_ecryptfs)) {
  572. if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
  573. pr_err("encrypted_key: keylen for the ecryptfs format "
  574. "must be equal to %d bytes\n",
  575. ECRYPTFS_MAX_KEY_BYTES);
  576. return ERR_PTR(-EINVAL);
  577. }
  578. decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
  579. payload_datalen = sizeof(struct ecryptfs_auth_tok);
  580. }
  581. encrypted_datalen = roundup(decrypted_datalen, blksize);
  582. datablob_len = format_len + 1 + strlen(master_desc) + 1
  583. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  584. ret = key_payload_reserve(key, payload_datalen + datablob_len
  585. + HASH_SIZE + 1);
  586. if (ret < 0)
  587. return ERR_PTR(ret);
  588. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  589. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  590. if (!epayload)
  591. return ERR_PTR(-ENOMEM);
  592. epayload->payload_datalen = payload_datalen;
  593. epayload->decrypted_datalen = decrypted_datalen;
  594. epayload->datablob_len = datablob_len;
  595. return epayload;
  596. }
  597. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  598. const char *format, const char *hex_encoded_iv)
  599. {
  600. struct key *mkey;
  601. u8 derived_key[HASH_SIZE];
  602. const u8 *master_key;
  603. u8 *hmac;
  604. const char *hex_encoded_data;
  605. unsigned int encrypted_datalen;
  606. size_t master_keylen;
  607. size_t asciilen;
  608. int ret;
  609. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  610. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  611. if (strlen(hex_encoded_iv) != asciilen)
  612. return -EINVAL;
  613. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  614. ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  615. if (ret < 0)
  616. return -EINVAL;
  617. ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
  618. encrypted_datalen);
  619. if (ret < 0)
  620. return -EINVAL;
  621. hmac = epayload->format + epayload->datablob_len;
  622. ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
  623. HASH_SIZE);
  624. if (ret < 0)
  625. return -EINVAL;
  626. mkey = request_master_key(epayload, &master_key, &master_keylen);
  627. if (IS_ERR(mkey))
  628. return PTR_ERR(mkey);
  629. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  630. if (ret < 0) {
  631. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  632. goto out;
  633. }
  634. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  635. if (ret < 0)
  636. goto out;
  637. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  638. if (ret < 0)
  639. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  640. out:
  641. up_read(&mkey->sem);
  642. key_put(mkey);
  643. return ret;
  644. }
  645. static void __ekey_init(struct encrypted_key_payload *epayload,
  646. const char *format, const char *master_desc,
  647. const char *datalen)
  648. {
  649. unsigned int format_len;
  650. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  651. epayload->format = epayload->payload_data + epayload->payload_datalen;
  652. epayload->master_desc = epayload->format + format_len + 1;
  653. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  654. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  655. epayload->encrypted_data = epayload->iv + ivsize + 1;
  656. epayload->decrypted_data = epayload->payload_data;
  657. if (!format)
  658. memcpy(epayload->format, key_format_default, format_len);
  659. else {
  660. if (!strcmp(format, key_format_ecryptfs))
  661. epayload->decrypted_data =
  662. ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
  663. memcpy(epayload->format, format, format_len);
  664. }
  665. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  666. memcpy(epayload->datalen, datalen, strlen(datalen));
  667. }
  668. /*
  669. * encrypted_init - initialize an encrypted key
  670. *
  671. * For a new key, use a random number for both the iv and data
  672. * itself. For an old key, decrypt the hex encoded data.
  673. */
  674. static int encrypted_init(struct encrypted_key_payload *epayload,
  675. const char *key_desc, const char *format,
  676. const char *master_desc, const char *datalen,
  677. const char *hex_encoded_iv)
  678. {
  679. int ret = 0;
  680. if (format && !strcmp(format, key_format_ecryptfs)) {
  681. ret = valid_ecryptfs_desc(key_desc);
  682. if (ret < 0)
  683. return ret;
  684. ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
  685. key_desc);
  686. }
  687. __ekey_init(epayload, format, master_desc, datalen);
  688. if (!hex_encoded_iv) {
  689. get_random_bytes(epayload->iv, ivsize);
  690. get_random_bytes(epayload->decrypted_data,
  691. epayload->decrypted_datalen);
  692. } else
  693. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  694. return ret;
  695. }
  696. /*
  697. * encrypted_instantiate - instantiate an encrypted key
  698. *
  699. * Decrypt an existing encrypted datablob or create a new encrypted key
  700. * based on a kernel random number.
  701. *
  702. * On success, return 0. Otherwise return errno.
  703. */
  704. static int encrypted_instantiate(struct key *key,
  705. struct key_preparsed_payload *prep)
  706. {
  707. struct encrypted_key_payload *epayload = NULL;
  708. char *datablob = NULL;
  709. const char *format = NULL;
  710. char *master_desc = NULL;
  711. char *decrypted_datalen = NULL;
  712. char *hex_encoded_iv = NULL;
  713. size_t datalen = prep->datalen;
  714. int ret;
  715. if (datalen <= 0 || datalen > 32767 || !prep->data)
  716. return -EINVAL;
  717. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  718. if (!datablob)
  719. return -ENOMEM;
  720. datablob[datalen] = 0;
  721. memcpy(datablob, prep->data, datalen);
  722. ret = datablob_parse(datablob, &format, &master_desc,
  723. &decrypted_datalen, &hex_encoded_iv);
  724. if (ret < 0)
  725. goto out;
  726. epayload = encrypted_key_alloc(key, format, master_desc,
  727. decrypted_datalen);
  728. if (IS_ERR(epayload)) {
  729. ret = PTR_ERR(epayload);
  730. goto out;
  731. }
  732. ret = encrypted_init(epayload, key->description, format, master_desc,
  733. decrypted_datalen, hex_encoded_iv);
  734. if (ret < 0) {
  735. kfree(epayload);
  736. goto out;
  737. }
  738. rcu_assign_keypointer(key, epayload);
  739. out:
  740. kfree(datablob);
  741. return ret;
  742. }
  743. static void encrypted_rcu_free(struct rcu_head *rcu)
  744. {
  745. struct encrypted_key_payload *epayload;
  746. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  747. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  748. kfree(epayload);
  749. }
  750. /*
  751. * encrypted_update - update the master key description
  752. *
  753. * Change the master key description for an existing encrypted key.
  754. * The next read will return an encrypted datablob using the new
  755. * master key description.
  756. *
  757. * On success, return 0. Otherwise return errno.
  758. */
  759. static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
  760. {
  761. struct encrypted_key_payload *epayload = key->payload.data[0];
  762. struct encrypted_key_payload *new_epayload;
  763. char *buf;
  764. char *new_master_desc = NULL;
  765. const char *format = NULL;
  766. size_t datalen = prep->datalen;
  767. int ret = 0;
  768. if (key_is_negative(key))
  769. return -ENOKEY;
  770. if (datalen <= 0 || datalen > 32767 || !prep->data)
  771. return -EINVAL;
  772. buf = kmalloc(datalen + 1, GFP_KERNEL);
  773. if (!buf)
  774. return -ENOMEM;
  775. buf[datalen] = 0;
  776. memcpy(buf, prep->data, datalen);
  777. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  778. if (ret < 0)
  779. goto out;
  780. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  781. if (ret < 0)
  782. goto out;
  783. new_epayload = encrypted_key_alloc(key, epayload->format,
  784. new_master_desc, epayload->datalen);
  785. if (IS_ERR(new_epayload)) {
  786. ret = PTR_ERR(new_epayload);
  787. goto out;
  788. }
  789. __ekey_init(new_epayload, epayload->format, new_master_desc,
  790. epayload->datalen);
  791. memcpy(new_epayload->iv, epayload->iv, ivsize);
  792. memcpy(new_epayload->payload_data, epayload->payload_data,
  793. epayload->payload_datalen);
  794. rcu_assign_keypointer(key, new_epayload);
  795. call_rcu(&epayload->rcu, encrypted_rcu_free);
  796. out:
  797. kfree(buf);
  798. return ret;
  799. }
  800. /*
  801. * encrypted_read - format and copy the encrypted data to userspace
  802. *
  803. * The resulting datablob format is:
  804. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  805. *
  806. * On success, return to userspace the encrypted key datablob size.
  807. */
  808. static long encrypted_read(const struct key *key, char __user *buffer,
  809. size_t buflen)
  810. {
  811. struct encrypted_key_payload *epayload;
  812. struct key *mkey;
  813. const u8 *master_key;
  814. size_t master_keylen;
  815. char derived_key[HASH_SIZE];
  816. char *ascii_buf;
  817. size_t asciiblob_len;
  818. int ret;
  819. epayload = rcu_dereference_key(key);
  820. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  821. asciiblob_len = epayload->datablob_len + ivsize + 1
  822. + roundup(epayload->decrypted_datalen, blksize)
  823. + (HASH_SIZE * 2);
  824. if (!buffer || buflen < asciiblob_len)
  825. return asciiblob_len;
  826. mkey = request_master_key(epayload, &master_key, &master_keylen);
  827. if (IS_ERR(mkey))
  828. return PTR_ERR(mkey);
  829. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  830. if (ret < 0)
  831. goto out;
  832. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  833. if (ret < 0)
  834. goto out;
  835. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  836. if (ret < 0)
  837. goto out;
  838. ascii_buf = datablob_format(epayload, asciiblob_len);
  839. if (!ascii_buf) {
  840. ret = -ENOMEM;
  841. goto out;
  842. }
  843. up_read(&mkey->sem);
  844. key_put(mkey);
  845. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  846. ret = -EFAULT;
  847. kfree(ascii_buf);
  848. return asciiblob_len;
  849. out:
  850. up_read(&mkey->sem);
  851. key_put(mkey);
  852. return ret;
  853. }
  854. /*
  855. * encrypted_destroy - before freeing the key, clear the decrypted data
  856. *
  857. * Before freeing the key, clear the memory containing the decrypted
  858. * key data.
  859. */
  860. static void encrypted_destroy(struct key *key)
  861. {
  862. struct encrypted_key_payload *epayload = key->payload.data[0];
  863. if (!epayload)
  864. return;
  865. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  866. kfree(key->payload.data[0]);
  867. }
  868. struct key_type key_type_encrypted = {
  869. .name = "encrypted",
  870. .instantiate = encrypted_instantiate,
  871. .update = encrypted_update,
  872. .destroy = encrypted_destroy,
  873. .describe = user_describe,
  874. .read = encrypted_read,
  875. };
  876. EXPORT_SYMBOL_GPL(key_type_encrypted);
  877. static void encrypted_shash_release(void)
  878. {
  879. if (hashalg)
  880. crypto_free_shash(hashalg);
  881. if (hmacalg)
  882. crypto_free_shash(hmacalg);
  883. }
  884. static int __init encrypted_shash_alloc(void)
  885. {
  886. int ret;
  887. hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  888. if (IS_ERR(hmacalg)) {
  889. pr_info("encrypted_key: could not allocate crypto %s\n",
  890. hmac_alg);
  891. return PTR_ERR(hmacalg);
  892. }
  893. hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  894. if (IS_ERR(hashalg)) {
  895. pr_info("encrypted_key: could not allocate crypto %s\n",
  896. hash_alg);
  897. ret = PTR_ERR(hashalg);
  898. goto hashalg_fail;
  899. }
  900. return 0;
  901. hashalg_fail:
  902. crypto_free_shash(hmacalg);
  903. return ret;
  904. }
  905. static int __init init_encrypted(void)
  906. {
  907. int ret;
  908. ret = encrypted_shash_alloc();
  909. if (ret < 0)
  910. return ret;
  911. ret = aes_get_sizes();
  912. if (ret < 0)
  913. goto out;
  914. ret = register_key_type(&key_type_encrypted);
  915. if (ret < 0)
  916. goto out;
  917. return 0;
  918. out:
  919. encrypted_shash_release();
  920. return ret;
  921. }
  922. static void __exit cleanup_encrypted(void)
  923. {
  924. encrypted_shash_release();
  925. unregister_key_type(&key_type_encrypted);
  926. }
  927. late_initcall(init_encrypted);
  928. module_exit(cleanup_encrypted);
  929. MODULE_LICENSE("GPL");