af_key.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static const struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. struct mutex dump_lock;
  61. };
  62. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  63. xfrm_address_t *saddr, xfrm_address_t *daddr,
  64. u16 *family);
  65. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  66. {
  67. return (struct pfkey_sock *)sk;
  68. }
  69. static int pfkey_can_dump(const struct sock *sk)
  70. {
  71. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  72. return 1;
  73. return 0;
  74. }
  75. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  76. {
  77. if (pfk->dump.dump) {
  78. if (pfk->dump.skb) {
  79. kfree_skb(pfk->dump.skb);
  80. pfk->dump.skb = NULL;
  81. }
  82. pfk->dump.done(pfk);
  83. pfk->dump.dump = NULL;
  84. pfk->dump.done = NULL;
  85. }
  86. }
  87. static void pfkey_sock_destruct(struct sock *sk)
  88. {
  89. struct net *net = sock_net(sk);
  90. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  91. pfkey_terminate_dump(pfkey_sk(sk));
  92. skb_queue_purge(&sk->sk_receive_queue);
  93. if (!sock_flag(sk, SOCK_DEAD)) {
  94. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  95. return;
  96. }
  97. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  98. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  99. atomic_dec(&net_pfkey->socks_nr);
  100. }
  101. static const struct proto_ops pfkey_ops;
  102. static void pfkey_insert(struct sock *sk)
  103. {
  104. struct net *net = sock_net(sk);
  105. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  106. mutex_lock(&pfkey_mutex);
  107. sk_add_node_rcu(sk, &net_pfkey->table);
  108. mutex_unlock(&pfkey_mutex);
  109. }
  110. static void pfkey_remove(struct sock *sk)
  111. {
  112. mutex_lock(&pfkey_mutex);
  113. sk_del_node_init_rcu(sk);
  114. mutex_unlock(&pfkey_mutex);
  115. }
  116. static struct proto key_proto = {
  117. .name = "KEY",
  118. .owner = THIS_MODULE,
  119. .obj_size = sizeof(struct pfkey_sock),
  120. };
  121. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  122. int kern)
  123. {
  124. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  125. struct sock *sk;
  126. struct pfkey_sock *pfk;
  127. int err;
  128. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  129. return -EPERM;
  130. if (sock->type != SOCK_RAW)
  131. return -ESOCKTNOSUPPORT;
  132. if (protocol != PF_KEY_V2)
  133. return -EPROTONOSUPPORT;
  134. err = -ENOMEM;
  135. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, kern);
  136. if (sk == NULL)
  137. goto out;
  138. pfk = pfkey_sk(sk);
  139. mutex_init(&pfk->dump_lock);
  140. sock->ops = &pfkey_ops;
  141. sock_init_data(sock, sk);
  142. sk->sk_family = PF_KEY;
  143. sk->sk_destruct = pfkey_sock_destruct;
  144. atomic_inc(&net_pfkey->socks_nr);
  145. pfkey_insert(sk);
  146. return 0;
  147. out:
  148. return err;
  149. }
  150. static int pfkey_release(struct socket *sock)
  151. {
  152. struct sock *sk = sock->sk;
  153. if (!sk)
  154. return 0;
  155. pfkey_remove(sk);
  156. sock_orphan(sk);
  157. sock->sk = NULL;
  158. skb_queue_purge(&sk->sk_write_queue);
  159. synchronize_rcu();
  160. sock_put(sk);
  161. return 0;
  162. }
  163. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  164. gfp_t allocation, struct sock *sk)
  165. {
  166. int err = -ENOBUFS;
  167. sock_hold(sk);
  168. if (*skb2 == NULL) {
  169. if (atomic_read(&skb->users) != 1) {
  170. *skb2 = skb_clone(skb, allocation);
  171. } else {
  172. *skb2 = skb;
  173. atomic_inc(&skb->users);
  174. }
  175. }
  176. if (*skb2 != NULL) {
  177. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  178. skb_set_owner_r(*skb2, sk);
  179. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  180. sk->sk_data_ready(sk);
  181. *skb2 = NULL;
  182. err = 0;
  183. }
  184. }
  185. sock_put(sk);
  186. return err;
  187. }
  188. /* Send SKB to all pfkey sockets matching selected criteria. */
  189. #define BROADCAST_ALL 0
  190. #define BROADCAST_ONE 1
  191. #define BROADCAST_REGISTERED 2
  192. #define BROADCAST_PROMISC_ONLY 4
  193. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  194. int broadcast_flags, struct sock *one_sk,
  195. struct net *net)
  196. {
  197. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  198. struct sock *sk;
  199. struct sk_buff *skb2 = NULL;
  200. int err = -ESRCH;
  201. /* XXX Do we need something like netlink_overrun? I think
  202. * XXX PF_KEY socket apps will not mind current behavior.
  203. */
  204. if (!skb)
  205. return -ENOMEM;
  206. rcu_read_lock();
  207. sk_for_each_rcu(sk, &net_pfkey->table) {
  208. struct pfkey_sock *pfk = pfkey_sk(sk);
  209. int err2;
  210. /* Yes, it means that if you are meant to receive this
  211. * pfkey message you receive it twice as promiscuous
  212. * socket.
  213. */
  214. if (pfk->promisc)
  215. pfkey_broadcast_one(skb, &skb2, GFP_ATOMIC, sk);
  216. /* the exact target will be processed later */
  217. if (sk == one_sk)
  218. continue;
  219. if (broadcast_flags != BROADCAST_ALL) {
  220. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  221. continue;
  222. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  223. !pfk->registered)
  224. continue;
  225. if (broadcast_flags & BROADCAST_ONE)
  226. continue;
  227. }
  228. err2 = pfkey_broadcast_one(skb, &skb2, GFP_ATOMIC, sk);
  229. /* Error is cleared after successful sending to at least one
  230. * registered KM */
  231. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  232. err = err2;
  233. }
  234. rcu_read_unlock();
  235. if (one_sk != NULL)
  236. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  237. kfree_skb(skb2);
  238. kfree_skb(skb);
  239. return err;
  240. }
  241. static int pfkey_do_dump(struct pfkey_sock *pfk)
  242. {
  243. struct sadb_msg *hdr;
  244. int rc;
  245. mutex_lock(&pfk->dump_lock);
  246. if (!pfk->dump.dump) {
  247. rc = 0;
  248. goto out;
  249. }
  250. rc = pfk->dump.dump(pfk);
  251. if (rc == -ENOBUFS) {
  252. rc = 0;
  253. goto out;
  254. }
  255. if (pfk->dump.skb) {
  256. if (!pfkey_can_dump(&pfk->sk)) {
  257. rc = 0;
  258. goto out;
  259. }
  260. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  261. hdr->sadb_msg_seq = 0;
  262. hdr->sadb_msg_errno = rc;
  263. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  264. &pfk->sk, sock_net(&pfk->sk));
  265. pfk->dump.skb = NULL;
  266. }
  267. pfkey_terminate_dump(pfk);
  268. out:
  269. mutex_unlock(&pfk->dump_lock);
  270. return rc;
  271. }
  272. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  273. const struct sadb_msg *orig)
  274. {
  275. *new = *orig;
  276. }
  277. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  278. {
  279. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  280. struct sadb_msg *hdr;
  281. if (!skb)
  282. return -ENOBUFS;
  283. /* Woe be to the platform trying to support PFKEY yet
  284. * having normal errnos outside the 1-255 range, inclusive.
  285. */
  286. err = -err;
  287. if (err == ERESTARTSYS ||
  288. err == ERESTARTNOHAND ||
  289. err == ERESTARTNOINTR)
  290. err = EINTR;
  291. if (err >= 512)
  292. err = EINVAL;
  293. BUG_ON(err <= 0 || err >= 256);
  294. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  295. pfkey_hdr_dup(hdr, orig);
  296. hdr->sadb_msg_errno = (uint8_t) err;
  297. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  298. sizeof(uint64_t));
  299. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  300. return 0;
  301. }
  302. static const u8 sadb_ext_min_len[] = {
  303. [SADB_EXT_RESERVED] = (u8) 0,
  304. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  305. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  306. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  307. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  308. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  309. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  310. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  311. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  312. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  313. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  314. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  315. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  316. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  317. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  318. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  319. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  320. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  321. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  322. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  323. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  324. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  325. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  326. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  327. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  328. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  329. [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
  330. };
  331. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  332. static int verify_address_len(const void *p)
  333. {
  334. const struct sadb_address *sp = p;
  335. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  336. const struct sockaddr_in *sin;
  337. #if IS_ENABLED(CONFIG_IPV6)
  338. const struct sockaddr_in6 *sin6;
  339. #endif
  340. int len;
  341. switch (addr->sa_family) {
  342. case AF_INET:
  343. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  344. if (sp->sadb_address_len != len ||
  345. sp->sadb_address_prefixlen > 32)
  346. return -EINVAL;
  347. break;
  348. #if IS_ENABLED(CONFIG_IPV6)
  349. case AF_INET6:
  350. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  351. if (sp->sadb_address_len != len ||
  352. sp->sadb_address_prefixlen > 128)
  353. return -EINVAL;
  354. break;
  355. #endif
  356. default:
  357. /* It is user using kernel to keep track of security
  358. * associations for another protocol, such as
  359. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  360. * lengths.
  361. *
  362. * XXX Actually, association/policy database is not yet
  363. * XXX able to cope with arbitrary sockaddr families.
  364. * XXX When it can, remove this -EINVAL. -DaveM
  365. */
  366. return -EINVAL;
  367. }
  368. return 0;
  369. }
  370. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  373. sec_ctx->sadb_x_ctx_len,
  374. sizeof(uint64_t));
  375. }
  376. static inline int verify_sec_ctx_len(const void *p)
  377. {
  378. const struct sadb_x_sec_ctx *sec_ctx = p;
  379. int len = sec_ctx->sadb_x_ctx_len;
  380. if (len > PAGE_SIZE)
  381. return -EINVAL;
  382. len = pfkey_sec_ctx_len(sec_ctx);
  383. if (sec_ctx->sadb_x_sec_len != len)
  384. return -EINVAL;
  385. return 0;
  386. }
  387. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
  388. gfp_t gfp)
  389. {
  390. struct xfrm_user_sec_ctx *uctx = NULL;
  391. int ctx_size = sec_ctx->sadb_x_ctx_len;
  392. uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
  393. if (!uctx)
  394. return NULL;
  395. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  396. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  397. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  398. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  399. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  400. memcpy(uctx + 1, sec_ctx + 1,
  401. uctx->ctx_len);
  402. return uctx;
  403. }
  404. static int present_and_same_family(const struct sadb_address *src,
  405. const struct sadb_address *dst)
  406. {
  407. const struct sockaddr *s_addr, *d_addr;
  408. if (!src || !dst)
  409. return 0;
  410. s_addr = (const struct sockaddr *)(src + 1);
  411. d_addr = (const struct sockaddr *)(dst + 1);
  412. if (s_addr->sa_family != d_addr->sa_family)
  413. return 0;
  414. if (s_addr->sa_family != AF_INET
  415. #if IS_ENABLED(CONFIG_IPV6)
  416. && s_addr->sa_family != AF_INET6
  417. #endif
  418. )
  419. return 0;
  420. return 1;
  421. }
  422. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  423. {
  424. const char *p = (char *) hdr;
  425. int len = skb->len;
  426. len -= sizeof(*hdr);
  427. p += sizeof(*hdr);
  428. while (len > 0) {
  429. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  430. uint16_t ext_type;
  431. int ext_len;
  432. ext_len = ehdr->sadb_ext_len;
  433. ext_len *= sizeof(uint64_t);
  434. ext_type = ehdr->sadb_ext_type;
  435. if (ext_len < sizeof(uint64_t) ||
  436. ext_len > len ||
  437. ext_type == SADB_EXT_RESERVED)
  438. return -EINVAL;
  439. if (ext_type <= SADB_EXT_MAX) {
  440. int min = (int) sadb_ext_min_len[ext_type];
  441. if (ext_len < min)
  442. return -EINVAL;
  443. if (ext_hdrs[ext_type-1] != NULL)
  444. return -EINVAL;
  445. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  446. ext_type == SADB_EXT_ADDRESS_DST ||
  447. ext_type == SADB_EXT_ADDRESS_PROXY ||
  448. ext_type == SADB_X_EXT_NAT_T_OA) {
  449. if (verify_address_len(p))
  450. return -EINVAL;
  451. }
  452. if (ext_type == SADB_X_EXT_SEC_CTX) {
  453. if (verify_sec_ctx_len(p))
  454. return -EINVAL;
  455. }
  456. ext_hdrs[ext_type-1] = (void *) p;
  457. }
  458. p += ext_len;
  459. len -= ext_len;
  460. }
  461. return 0;
  462. }
  463. static uint16_t
  464. pfkey_satype2proto(uint8_t satype)
  465. {
  466. switch (satype) {
  467. case SADB_SATYPE_UNSPEC:
  468. return IPSEC_PROTO_ANY;
  469. case SADB_SATYPE_AH:
  470. return IPPROTO_AH;
  471. case SADB_SATYPE_ESP:
  472. return IPPROTO_ESP;
  473. case SADB_X_SATYPE_IPCOMP:
  474. return IPPROTO_COMP;
  475. default:
  476. return 0;
  477. }
  478. /* NOTREACHED */
  479. }
  480. static uint8_t
  481. pfkey_proto2satype(uint16_t proto)
  482. {
  483. switch (proto) {
  484. case IPPROTO_AH:
  485. return SADB_SATYPE_AH;
  486. case IPPROTO_ESP:
  487. return SADB_SATYPE_ESP;
  488. case IPPROTO_COMP:
  489. return SADB_X_SATYPE_IPCOMP;
  490. default:
  491. return 0;
  492. }
  493. /* NOTREACHED */
  494. }
  495. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  496. * say specifically 'just raw sockets' as we encode them as 255.
  497. */
  498. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  499. {
  500. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  501. }
  502. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  503. {
  504. return proto ? proto : IPSEC_PROTO_ANY;
  505. }
  506. static inline int pfkey_sockaddr_len(sa_family_t family)
  507. {
  508. switch (family) {
  509. case AF_INET:
  510. return sizeof(struct sockaddr_in);
  511. #if IS_ENABLED(CONFIG_IPV6)
  512. case AF_INET6:
  513. return sizeof(struct sockaddr_in6);
  514. #endif
  515. }
  516. return 0;
  517. }
  518. static
  519. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  520. {
  521. switch (sa->sa_family) {
  522. case AF_INET:
  523. xaddr->a4 =
  524. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  525. return AF_INET;
  526. #if IS_ENABLED(CONFIG_IPV6)
  527. case AF_INET6:
  528. memcpy(xaddr->a6,
  529. &((struct sockaddr_in6 *)sa)->sin6_addr,
  530. sizeof(struct in6_addr));
  531. return AF_INET6;
  532. #endif
  533. }
  534. return 0;
  535. }
  536. static
  537. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  538. {
  539. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  540. xaddr);
  541. }
  542. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  543. {
  544. const struct sadb_sa *sa;
  545. const struct sadb_address *addr;
  546. uint16_t proto;
  547. unsigned short family;
  548. xfrm_address_t *xaddr;
  549. sa = ext_hdrs[SADB_EXT_SA - 1];
  550. if (sa == NULL)
  551. return NULL;
  552. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  553. if (proto == 0)
  554. return NULL;
  555. /* sadb_address_len should be checked by caller */
  556. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  557. if (addr == NULL)
  558. return NULL;
  559. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  560. switch (family) {
  561. case AF_INET:
  562. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  563. break;
  564. #if IS_ENABLED(CONFIG_IPV6)
  565. case AF_INET6:
  566. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  567. break;
  568. #endif
  569. default:
  570. xaddr = NULL;
  571. }
  572. if (!xaddr)
  573. return NULL;
  574. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  575. }
  576. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  577. static int
  578. pfkey_sockaddr_size(sa_family_t family)
  579. {
  580. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  581. }
  582. static inline int pfkey_mode_from_xfrm(int mode)
  583. {
  584. switch(mode) {
  585. case XFRM_MODE_TRANSPORT:
  586. return IPSEC_MODE_TRANSPORT;
  587. case XFRM_MODE_TUNNEL:
  588. return IPSEC_MODE_TUNNEL;
  589. case XFRM_MODE_BEET:
  590. return IPSEC_MODE_BEET;
  591. default:
  592. return -1;
  593. }
  594. }
  595. static inline int pfkey_mode_to_xfrm(int mode)
  596. {
  597. switch(mode) {
  598. case IPSEC_MODE_ANY: /*XXX*/
  599. case IPSEC_MODE_TRANSPORT:
  600. return XFRM_MODE_TRANSPORT;
  601. case IPSEC_MODE_TUNNEL:
  602. return XFRM_MODE_TUNNEL;
  603. case IPSEC_MODE_BEET:
  604. return XFRM_MODE_BEET;
  605. default:
  606. return -1;
  607. }
  608. }
  609. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  610. struct sockaddr *sa,
  611. unsigned short family)
  612. {
  613. switch (family) {
  614. case AF_INET:
  615. {
  616. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  617. sin->sin_family = AF_INET;
  618. sin->sin_port = port;
  619. sin->sin_addr.s_addr = xaddr->a4;
  620. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  621. return 32;
  622. }
  623. #if IS_ENABLED(CONFIG_IPV6)
  624. case AF_INET6:
  625. {
  626. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  627. sin6->sin6_family = AF_INET6;
  628. sin6->sin6_port = port;
  629. sin6->sin6_flowinfo = 0;
  630. sin6->sin6_addr = xaddr->in6;
  631. sin6->sin6_scope_id = 0;
  632. return 128;
  633. }
  634. #endif
  635. }
  636. return 0;
  637. }
  638. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  639. int add_keys, int hsc)
  640. {
  641. struct sk_buff *skb;
  642. struct sadb_msg *hdr;
  643. struct sadb_sa *sa;
  644. struct sadb_lifetime *lifetime;
  645. struct sadb_address *addr;
  646. struct sadb_key *key;
  647. struct sadb_x_sa2 *sa2;
  648. struct sadb_x_sec_ctx *sec_ctx;
  649. struct xfrm_sec_ctx *xfrm_ctx;
  650. int ctx_size = 0;
  651. int size;
  652. int auth_key_size = 0;
  653. int encrypt_key_size = 0;
  654. int sockaddr_size;
  655. struct xfrm_encap_tmpl *natt = NULL;
  656. int mode;
  657. /* address family check */
  658. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  659. if (!sockaddr_size)
  660. return ERR_PTR(-EINVAL);
  661. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  662. key(AE), (identity(SD),) (sensitivity)> */
  663. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  664. sizeof(struct sadb_lifetime) +
  665. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  666. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  667. sizeof(struct sadb_address)*2 +
  668. sockaddr_size*2 +
  669. sizeof(struct sadb_x_sa2);
  670. if ((xfrm_ctx = x->security)) {
  671. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  672. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  673. }
  674. /* identity & sensitivity */
  675. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  676. size += sizeof(struct sadb_address) + sockaddr_size;
  677. if (add_keys) {
  678. if (x->aalg && x->aalg->alg_key_len) {
  679. auth_key_size =
  680. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  681. size += sizeof(struct sadb_key) + auth_key_size;
  682. }
  683. if (x->ealg && x->ealg->alg_key_len) {
  684. encrypt_key_size =
  685. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  686. size += sizeof(struct sadb_key) + encrypt_key_size;
  687. }
  688. }
  689. if (x->encap)
  690. natt = x->encap;
  691. if (natt && natt->encap_type) {
  692. size += sizeof(struct sadb_x_nat_t_type);
  693. size += sizeof(struct sadb_x_nat_t_port);
  694. size += sizeof(struct sadb_x_nat_t_port);
  695. }
  696. skb = alloc_skb(size + 16, GFP_ATOMIC);
  697. if (skb == NULL)
  698. return ERR_PTR(-ENOBUFS);
  699. /* call should fill header later */
  700. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  701. memset(hdr, 0, size); /* XXX do we need this ? */
  702. hdr->sadb_msg_len = size / sizeof(uint64_t);
  703. /* sa */
  704. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  705. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  706. sa->sadb_sa_exttype = SADB_EXT_SA;
  707. sa->sadb_sa_spi = x->id.spi;
  708. sa->sadb_sa_replay = x->props.replay_window;
  709. switch (x->km.state) {
  710. case XFRM_STATE_VALID:
  711. sa->sadb_sa_state = x->km.dying ?
  712. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  713. break;
  714. case XFRM_STATE_ACQ:
  715. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  716. break;
  717. default:
  718. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  719. break;
  720. }
  721. sa->sadb_sa_auth = 0;
  722. if (x->aalg) {
  723. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  724. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  725. a->desc.sadb_alg_id : 0;
  726. }
  727. sa->sadb_sa_encrypt = 0;
  728. BUG_ON(x->ealg && x->calg);
  729. if (x->ealg) {
  730. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  731. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  732. a->desc.sadb_alg_id : 0;
  733. }
  734. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  735. if (x->calg) {
  736. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  737. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  738. a->desc.sadb_alg_id : 0;
  739. }
  740. sa->sadb_sa_flags = 0;
  741. if (x->props.flags & XFRM_STATE_NOECN)
  742. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  743. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  744. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  745. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  746. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  747. /* hard time */
  748. if (hsc & 2) {
  749. lifetime = (struct sadb_lifetime *) skb_put(skb,
  750. sizeof(struct sadb_lifetime));
  751. lifetime->sadb_lifetime_len =
  752. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  753. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  754. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  755. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  756. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  757. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  758. }
  759. /* soft time */
  760. if (hsc & 1) {
  761. lifetime = (struct sadb_lifetime *) skb_put(skb,
  762. sizeof(struct sadb_lifetime));
  763. lifetime->sadb_lifetime_len =
  764. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  765. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  766. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  767. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  768. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  769. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  770. }
  771. /* current time */
  772. lifetime = (struct sadb_lifetime *) skb_put(skb,
  773. sizeof(struct sadb_lifetime));
  774. lifetime->sadb_lifetime_len =
  775. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  776. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  777. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  778. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  779. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  780. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  781. /* src address */
  782. addr = (struct sadb_address*) skb_put(skb,
  783. sizeof(struct sadb_address)+sockaddr_size);
  784. addr->sadb_address_len =
  785. (sizeof(struct sadb_address)+sockaddr_size)/
  786. sizeof(uint64_t);
  787. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  788. /* "if the ports are non-zero, then the sadb_address_proto field,
  789. normally zero, MUST be filled in with the transport
  790. protocol's number." - RFC2367 */
  791. addr->sadb_address_proto = 0;
  792. addr->sadb_address_reserved = 0;
  793. addr->sadb_address_prefixlen =
  794. pfkey_sockaddr_fill(&x->props.saddr, 0,
  795. (struct sockaddr *) (addr + 1),
  796. x->props.family);
  797. if (!addr->sadb_address_prefixlen)
  798. BUG();
  799. /* dst address */
  800. addr = (struct sadb_address*) skb_put(skb,
  801. sizeof(struct sadb_address)+sockaddr_size);
  802. addr->sadb_address_len =
  803. (sizeof(struct sadb_address)+sockaddr_size)/
  804. sizeof(uint64_t);
  805. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  806. addr->sadb_address_proto = 0;
  807. addr->sadb_address_reserved = 0;
  808. addr->sadb_address_prefixlen =
  809. pfkey_sockaddr_fill(&x->id.daddr, 0,
  810. (struct sockaddr *) (addr + 1),
  811. x->props.family);
  812. if (!addr->sadb_address_prefixlen)
  813. BUG();
  814. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  815. x->props.family)) {
  816. addr = (struct sadb_address*) skb_put(skb,
  817. sizeof(struct sadb_address)+sockaddr_size);
  818. addr->sadb_address_len =
  819. (sizeof(struct sadb_address)+sockaddr_size)/
  820. sizeof(uint64_t);
  821. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  822. addr->sadb_address_proto =
  823. pfkey_proto_from_xfrm(x->sel.proto);
  824. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  825. addr->sadb_address_reserved = 0;
  826. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  827. (struct sockaddr *) (addr + 1),
  828. x->props.family);
  829. }
  830. /* auth key */
  831. if (add_keys && auth_key_size) {
  832. key = (struct sadb_key *) skb_put(skb,
  833. sizeof(struct sadb_key)+auth_key_size);
  834. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  835. sizeof(uint64_t);
  836. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  837. key->sadb_key_bits = x->aalg->alg_key_len;
  838. key->sadb_key_reserved = 0;
  839. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  840. }
  841. /* encrypt key */
  842. if (add_keys && encrypt_key_size) {
  843. key = (struct sadb_key *) skb_put(skb,
  844. sizeof(struct sadb_key)+encrypt_key_size);
  845. key->sadb_key_len = (sizeof(struct sadb_key) +
  846. encrypt_key_size) / sizeof(uint64_t);
  847. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  848. key->sadb_key_bits = x->ealg->alg_key_len;
  849. key->sadb_key_reserved = 0;
  850. memcpy(key + 1, x->ealg->alg_key,
  851. (x->ealg->alg_key_len+7)/8);
  852. }
  853. /* sa */
  854. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  855. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  856. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  857. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  858. kfree_skb(skb);
  859. return ERR_PTR(-EINVAL);
  860. }
  861. sa2->sadb_x_sa2_mode = mode;
  862. sa2->sadb_x_sa2_reserved1 = 0;
  863. sa2->sadb_x_sa2_reserved2 = 0;
  864. sa2->sadb_x_sa2_sequence = 0;
  865. sa2->sadb_x_sa2_reqid = x->props.reqid;
  866. if (natt && natt->encap_type) {
  867. struct sadb_x_nat_t_type *n_type;
  868. struct sadb_x_nat_t_port *n_port;
  869. /* type */
  870. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  871. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  872. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  873. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  874. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  875. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  876. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  877. /* source port */
  878. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  879. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  880. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  881. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  882. n_port->sadb_x_nat_t_port_reserved = 0;
  883. /* dest port */
  884. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  885. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  886. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  887. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  888. n_port->sadb_x_nat_t_port_reserved = 0;
  889. }
  890. /* security context */
  891. if (xfrm_ctx) {
  892. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  893. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  894. sec_ctx->sadb_x_sec_len =
  895. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  896. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  897. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  898. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  899. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  900. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  901. xfrm_ctx->ctx_len);
  902. }
  903. return skb;
  904. }
  905. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  906. {
  907. struct sk_buff *skb;
  908. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  909. return skb;
  910. }
  911. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  912. int hsc)
  913. {
  914. return __pfkey_xfrm_state2msg(x, 0, hsc);
  915. }
  916. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  917. const struct sadb_msg *hdr,
  918. void * const *ext_hdrs)
  919. {
  920. struct xfrm_state *x;
  921. const struct sadb_lifetime *lifetime;
  922. const struct sadb_sa *sa;
  923. const struct sadb_key *key;
  924. const struct sadb_x_sec_ctx *sec_ctx;
  925. uint16_t proto;
  926. int err;
  927. sa = ext_hdrs[SADB_EXT_SA - 1];
  928. if (!sa ||
  929. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  930. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  931. return ERR_PTR(-EINVAL);
  932. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  933. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  934. return ERR_PTR(-EINVAL);
  935. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  936. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  937. return ERR_PTR(-EINVAL);
  938. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  939. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  940. return ERR_PTR(-EINVAL);
  941. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  942. if (proto == 0)
  943. return ERR_PTR(-EINVAL);
  944. /* default error is no buffer space */
  945. err = -ENOBUFS;
  946. /* RFC2367:
  947. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  948. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  949. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  950. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  951. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  952. not true.
  953. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  954. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  955. */
  956. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  957. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  958. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  959. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  960. return ERR_PTR(-EINVAL);
  961. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  962. if (key != NULL &&
  963. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  964. ((key->sadb_key_bits+7) / 8 == 0 ||
  965. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  966. return ERR_PTR(-EINVAL);
  967. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  968. if (key != NULL &&
  969. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  970. ((key->sadb_key_bits+7) / 8 == 0 ||
  971. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  972. return ERR_PTR(-EINVAL);
  973. x = xfrm_state_alloc(net);
  974. if (x == NULL)
  975. return ERR_PTR(-ENOBUFS);
  976. x->id.proto = proto;
  977. x->id.spi = sa->sadb_sa_spi;
  978. x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
  979. (sizeof(x->replay.bitmap) * 8));
  980. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  981. x->props.flags |= XFRM_STATE_NOECN;
  982. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  983. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  984. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  985. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  986. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  987. if (lifetime != NULL) {
  988. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  989. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  990. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  991. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  992. }
  993. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  994. if (lifetime != NULL) {
  995. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  996. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  997. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  998. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  999. }
  1000. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1001. if (sec_ctx != NULL) {
  1002. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1003. if (!uctx)
  1004. goto out;
  1005. err = security_xfrm_state_alloc(x, uctx);
  1006. kfree(uctx);
  1007. if (err)
  1008. goto out;
  1009. }
  1010. err = -ENOBUFS;
  1011. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  1012. if (sa->sadb_sa_auth) {
  1013. int keysize = 0;
  1014. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1015. if (!a || !a->pfkey_supported) {
  1016. err = -ENOSYS;
  1017. goto out;
  1018. }
  1019. if (key)
  1020. keysize = (key->sadb_key_bits + 7) / 8;
  1021. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1022. if (!x->aalg) {
  1023. err = -ENOMEM;
  1024. goto out;
  1025. }
  1026. strcpy(x->aalg->alg_name, a->name);
  1027. x->aalg->alg_key_len = 0;
  1028. if (key) {
  1029. x->aalg->alg_key_len = key->sadb_key_bits;
  1030. memcpy(x->aalg->alg_key, key+1, keysize);
  1031. }
  1032. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1033. x->props.aalgo = sa->sadb_sa_auth;
  1034. /* x->algo.flags = sa->sadb_sa_flags; */
  1035. }
  1036. if (sa->sadb_sa_encrypt) {
  1037. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1038. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1039. if (!a || !a->pfkey_supported) {
  1040. err = -ENOSYS;
  1041. goto out;
  1042. }
  1043. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1044. if (!x->calg) {
  1045. err = -ENOMEM;
  1046. goto out;
  1047. }
  1048. strcpy(x->calg->alg_name, a->name);
  1049. x->props.calgo = sa->sadb_sa_encrypt;
  1050. } else {
  1051. int keysize = 0;
  1052. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1053. if (!a || !a->pfkey_supported) {
  1054. err = -ENOSYS;
  1055. goto out;
  1056. }
  1057. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1058. if (key)
  1059. keysize = (key->sadb_key_bits + 7) / 8;
  1060. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1061. if (!x->ealg) {
  1062. err = -ENOMEM;
  1063. goto out;
  1064. }
  1065. strcpy(x->ealg->alg_name, a->name);
  1066. x->ealg->alg_key_len = 0;
  1067. if (key) {
  1068. x->ealg->alg_key_len = key->sadb_key_bits;
  1069. memcpy(x->ealg->alg_key, key+1, keysize);
  1070. }
  1071. x->props.ealgo = sa->sadb_sa_encrypt;
  1072. x->geniv = a->uinfo.encr.geniv;
  1073. }
  1074. }
  1075. /* x->algo.flags = sa->sadb_sa_flags; */
  1076. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1077. &x->props.saddr);
  1078. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1079. &x->id.daddr);
  1080. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1081. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1082. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1083. if (mode < 0) {
  1084. err = -EINVAL;
  1085. goto out;
  1086. }
  1087. x->props.mode = mode;
  1088. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1089. }
  1090. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1091. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1092. /* Nobody uses this, but we try. */
  1093. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1094. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1095. }
  1096. if (!x->sel.family)
  1097. x->sel.family = x->props.family;
  1098. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1099. const struct sadb_x_nat_t_type* n_type;
  1100. struct xfrm_encap_tmpl *natt;
  1101. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1102. if (!x->encap) {
  1103. err = -ENOMEM;
  1104. goto out;
  1105. }
  1106. natt = x->encap;
  1107. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1108. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1109. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1110. const struct sadb_x_nat_t_port *n_port =
  1111. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1112. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1113. }
  1114. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1115. const struct sadb_x_nat_t_port *n_port =
  1116. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1117. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1118. }
  1119. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1120. }
  1121. err = xfrm_init_state(x);
  1122. if (err)
  1123. goto out;
  1124. x->km.seq = hdr->sadb_msg_seq;
  1125. return x;
  1126. out:
  1127. x->km.state = XFRM_STATE_DEAD;
  1128. xfrm_state_put(x);
  1129. return ERR_PTR(err);
  1130. }
  1131. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1132. {
  1133. return -EOPNOTSUPP;
  1134. }
  1135. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1136. {
  1137. struct net *net = sock_net(sk);
  1138. struct sk_buff *resp_skb;
  1139. struct sadb_x_sa2 *sa2;
  1140. struct sadb_address *saddr, *daddr;
  1141. struct sadb_msg *out_hdr;
  1142. struct sadb_spirange *range;
  1143. struct xfrm_state *x = NULL;
  1144. int mode;
  1145. int err;
  1146. u32 min_spi, max_spi;
  1147. u32 reqid;
  1148. u8 proto;
  1149. unsigned short family;
  1150. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1151. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1152. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1153. return -EINVAL;
  1154. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1155. if (proto == 0)
  1156. return -EINVAL;
  1157. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1158. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1159. if (mode < 0)
  1160. return -EINVAL;
  1161. reqid = sa2->sadb_x_sa2_reqid;
  1162. } else {
  1163. mode = 0;
  1164. reqid = 0;
  1165. }
  1166. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1167. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1168. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1169. switch (family) {
  1170. case AF_INET:
  1171. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1172. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1173. break;
  1174. #if IS_ENABLED(CONFIG_IPV6)
  1175. case AF_INET6:
  1176. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1177. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1178. break;
  1179. #endif
  1180. }
  1181. if (hdr->sadb_msg_seq) {
  1182. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1183. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1184. xfrm_state_put(x);
  1185. x = NULL;
  1186. }
  1187. }
  1188. if (!x)
  1189. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1190. if (x == NULL)
  1191. return -ENOENT;
  1192. min_spi = 0x100;
  1193. max_spi = 0x0fffffff;
  1194. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1195. if (range) {
  1196. min_spi = range->sadb_spirange_min;
  1197. max_spi = range->sadb_spirange_max;
  1198. }
  1199. err = verify_spi_info(x->id.proto, min_spi, max_spi);
  1200. if (err) {
  1201. xfrm_state_put(x);
  1202. return err;
  1203. }
  1204. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1205. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1206. if (IS_ERR(resp_skb)) {
  1207. xfrm_state_put(x);
  1208. return PTR_ERR(resp_skb);
  1209. }
  1210. out_hdr = (struct sadb_msg *) resp_skb->data;
  1211. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1212. out_hdr->sadb_msg_type = SADB_GETSPI;
  1213. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1214. out_hdr->sadb_msg_errno = 0;
  1215. out_hdr->sadb_msg_reserved = 0;
  1216. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1217. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1218. xfrm_state_put(x);
  1219. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1220. return 0;
  1221. }
  1222. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1223. {
  1224. struct net *net = sock_net(sk);
  1225. struct xfrm_state *x;
  1226. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1227. return -EOPNOTSUPP;
  1228. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1229. return 0;
  1230. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1231. if (x == NULL)
  1232. return 0;
  1233. spin_lock_bh(&x->lock);
  1234. if (x->km.state == XFRM_STATE_ACQ)
  1235. x->km.state = XFRM_STATE_ERROR;
  1236. spin_unlock_bh(&x->lock);
  1237. xfrm_state_put(x);
  1238. return 0;
  1239. }
  1240. static inline int event2poltype(int event)
  1241. {
  1242. switch (event) {
  1243. case XFRM_MSG_DELPOLICY:
  1244. return SADB_X_SPDDELETE;
  1245. case XFRM_MSG_NEWPOLICY:
  1246. return SADB_X_SPDADD;
  1247. case XFRM_MSG_UPDPOLICY:
  1248. return SADB_X_SPDUPDATE;
  1249. case XFRM_MSG_POLEXPIRE:
  1250. // return SADB_X_SPDEXPIRE;
  1251. default:
  1252. pr_err("pfkey: Unknown policy event %d\n", event);
  1253. break;
  1254. }
  1255. return 0;
  1256. }
  1257. static inline int event2keytype(int event)
  1258. {
  1259. switch (event) {
  1260. case XFRM_MSG_DELSA:
  1261. return SADB_DELETE;
  1262. case XFRM_MSG_NEWSA:
  1263. return SADB_ADD;
  1264. case XFRM_MSG_UPDSA:
  1265. return SADB_UPDATE;
  1266. case XFRM_MSG_EXPIRE:
  1267. return SADB_EXPIRE;
  1268. default:
  1269. pr_err("pfkey: Unknown SA event %d\n", event);
  1270. break;
  1271. }
  1272. return 0;
  1273. }
  1274. /* ADD/UPD/DEL */
  1275. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1276. {
  1277. struct sk_buff *skb;
  1278. struct sadb_msg *hdr;
  1279. skb = pfkey_xfrm_state2msg(x);
  1280. if (IS_ERR(skb))
  1281. return PTR_ERR(skb);
  1282. hdr = (struct sadb_msg *) skb->data;
  1283. hdr->sadb_msg_version = PF_KEY_V2;
  1284. hdr->sadb_msg_type = event2keytype(c->event);
  1285. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1286. hdr->sadb_msg_errno = 0;
  1287. hdr->sadb_msg_reserved = 0;
  1288. hdr->sadb_msg_seq = c->seq;
  1289. hdr->sadb_msg_pid = c->portid;
  1290. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1291. return 0;
  1292. }
  1293. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1294. {
  1295. struct net *net = sock_net(sk);
  1296. struct xfrm_state *x;
  1297. int err;
  1298. struct km_event c;
  1299. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1300. if (IS_ERR(x))
  1301. return PTR_ERR(x);
  1302. xfrm_state_hold(x);
  1303. if (hdr->sadb_msg_type == SADB_ADD)
  1304. err = xfrm_state_add(x);
  1305. else
  1306. err = xfrm_state_update(x);
  1307. xfrm_audit_state_add(x, err ? 0 : 1, true);
  1308. if (err < 0) {
  1309. x->km.state = XFRM_STATE_DEAD;
  1310. __xfrm_state_put(x);
  1311. goto out;
  1312. }
  1313. if (hdr->sadb_msg_type == SADB_ADD)
  1314. c.event = XFRM_MSG_NEWSA;
  1315. else
  1316. c.event = XFRM_MSG_UPDSA;
  1317. c.seq = hdr->sadb_msg_seq;
  1318. c.portid = hdr->sadb_msg_pid;
  1319. km_state_notify(x, &c);
  1320. out:
  1321. xfrm_state_put(x);
  1322. return err;
  1323. }
  1324. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1325. {
  1326. struct net *net = sock_net(sk);
  1327. struct xfrm_state *x;
  1328. struct km_event c;
  1329. int err;
  1330. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1331. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1332. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1333. return -EINVAL;
  1334. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1335. if (x == NULL)
  1336. return -ESRCH;
  1337. if ((err = security_xfrm_state_delete(x)))
  1338. goto out;
  1339. if (xfrm_state_kern(x)) {
  1340. err = -EPERM;
  1341. goto out;
  1342. }
  1343. err = xfrm_state_delete(x);
  1344. if (err < 0)
  1345. goto out;
  1346. c.seq = hdr->sadb_msg_seq;
  1347. c.portid = hdr->sadb_msg_pid;
  1348. c.event = XFRM_MSG_DELSA;
  1349. km_state_notify(x, &c);
  1350. out:
  1351. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  1352. xfrm_state_put(x);
  1353. return err;
  1354. }
  1355. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1356. {
  1357. struct net *net = sock_net(sk);
  1358. __u8 proto;
  1359. struct sk_buff *out_skb;
  1360. struct sadb_msg *out_hdr;
  1361. struct xfrm_state *x;
  1362. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1363. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1364. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1365. return -EINVAL;
  1366. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1367. if (x == NULL)
  1368. return -ESRCH;
  1369. out_skb = pfkey_xfrm_state2msg(x);
  1370. proto = x->id.proto;
  1371. xfrm_state_put(x);
  1372. if (IS_ERR(out_skb))
  1373. return PTR_ERR(out_skb);
  1374. out_hdr = (struct sadb_msg *) out_skb->data;
  1375. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1376. out_hdr->sadb_msg_type = SADB_GET;
  1377. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1378. out_hdr->sadb_msg_errno = 0;
  1379. out_hdr->sadb_msg_reserved = 0;
  1380. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1381. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1382. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1383. return 0;
  1384. }
  1385. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1386. gfp_t allocation)
  1387. {
  1388. struct sk_buff *skb;
  1389. struct sadb_msg *hdr;
  1390. int len, auth_len, enc_len, i;
  1391. auth_len = xfrm_count_pfkey_auth_supported();
  1392. if (auth_len) {
  1393. auth_len *= sizeof(struct sadb_alg);
  1394. auth_len += sizeof(struct sadb_supported);
  1395. }
  1396. enc_len = xfrm_count_pfkey_enc_supported();
  1397. if (enc_len) {
  1398. enc_len *= sizeof(struct sadb_alg);
  1399. enc_len += sizeof(struct sadb_supported);
  1400. }
  1401. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1402. skb = alloc_skb(len + 16, allocation);
  1403. if (!skb)
  1404. goto out_put_algs;
  1405. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1406. pfkey_hdr_dup(hdr, orig);
  1407. hdr->sadb_msg_errno = 0;
  1408. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1409. if (auth_len) {
  1410. struct sadb_supported *sp;
  1411. struct sadb_alg *ap;
  1412. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1413. ap = (struct sadb_alg *) (sp + 1);
  1414. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1415. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1416. for (i = 0; ; i++) {
  1417. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1418. if (!aalg)
  1419. break;
  1420. if (!aalg->pfkey_supported)
  1421. continue;
  1422. if (aalg->available)
  1423. *ap++ = aalg->desc;
  1424. }
  1425. }
  1426. if (enc_len) {
  1427. struct sadb_supported *sp;
  1428. struct sadb_alg *ap;
  1429. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1430. ap = (struct sadb_alg *) (sp + 1);
  1431. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1432. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1433. for (i = 0; ; i++) {
  1434. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1435. if (!ealg)
  1436. break;
  1437. if (!ealg->pfkey_supported)
  1438. continue;
  1439. if (ealg->available)
  1440. *ap++ = ealg->desc;
  1441. }
  1442. }
  1443. out_put_algs:
  1444. return skb;
  1445. }
  1446. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1447. {
  1448. struct pfkey_sock *pfk = pfkey_sk(sk);
  1449. struct sk_buff *supp_skb;
  1450. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1451. return -EINVAL;
  1452. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1453. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1454. return -EEXIST;
  1455. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1456. }
  1457. xfrm_probe_algs();
  1458. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1459. if (!supp_skb) {
  1460. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1461. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1462. return -ENOBUFS;
  1463. }
  1464. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk,
  1465. sock_net(sk));
  1466. return 0;
  1467. }
  1468. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1469. {
  1470. struct sk_buff *skb;
  1471. struct sadb_msg *hdr;
  1472. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1473. if (!skb)
  1474. return -ENOBUFS;
  1475. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1476. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1477. hdr->sadb_msg_errno = (uint8_t) 0;
  1478. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1479. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk,
  1480. sock_net(sk));
  1481. }
  1482. static int key_notify_sa_flush(const struct km_event *c)
  1483. {
  1484. struct sk_buff *skb;
  1485. struct sadb_msg *hdr;
  1486. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1487. if (!skb)
  1488. return -ENOBUFS;
  1489. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1490. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1491. hdr->sadb_msg_type = SADB_FLUSH;
  1492. hdr->sadb_msg_seq = c->seq;
  1493. hdr->sadb_msg_pid = c->portid;
  1494. hdr->sadb_msg_version = PF_KEY_V2;
  1495. hdr->sadb_msg_errno = (uint8_t) 0;
  1496. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1497. hdr->sadb_msg_reserved = 0;
  1498. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1499. return 0;
  1500. }
  1501. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1502. {
  1503. struct net *net = sock_net(sk);
  1504. unsigned int proto;
  1505. struct km_event c;
  1506. int err, err2;
  1507. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1508. if (proto == 0)
  1509. return -EINVAL;
  1510. err = xfrm_state_flush(net, proto, true);
  1511. err2 = unicast_flush_resp(sk, hdr);
  1512. if (err || err2) {
  1513. if (err == -ESRCH) /* empty table - go quietly */
  1514. err = 0;
  1515. return err ? err : err2;
  1516. }
  1517. c.data.proto = proto;
  1518. c.seq = hdr->sadb_msg_seq;
  1519. c.portid = hdr->sadb_msg_pid;
  1520. c.event = XFRM_MSG_FLUSHSA;
  1521. c.net = net;
  1522. km_state_notify(NULL, &c);
  1523. return 0;
  1524. }
  1525. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1526. {
  1527. struct pfkey_sock *pfk = ptr;
  1528. struct sk_buff *out_skb;
  1529. struct sadb_msg *out_hdr;
  1530. if (!pfkey_can_dump(&pfk->sk))
  1531. return -ENOBUFS;
  1532. out_skb = pfkey_xfrm_state2msg(x);
  1533. if (IS_ERR(out_skb))
  1534. return PTR_ERR(out_skb);
  1535. out_hdr = (struct sadb_msg *) out_skb->data;
  1536. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1537. out_hdr->sadb_msg_type = SADB_DUMP;
  1538. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1539. out_hdr->sadb_msg_errno = 0;
  1540. out_hdr->sadb_msg_reserved = 0;
  1541. out_hdr->sadb_msg_seq = count + 1;
  1542. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1543. if (pfk->dump.skb)
  1544. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1545. &pfk->sk, sock_net(&pfk->sk));
  1546. pfk->dump.skb = out_skb;
  1547. return 0;
  1548. }
  1549. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1550. {
  1551. struct net *net = sock_net(&pfk->sk);
  1552. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1553. }
  1554. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1555. {
  1556. struct net *net = sock_net(&pfk->sk);
  1557. xfrm_state_walk_done(&pfk->dump.u.state, net);
  1558. }
  1559. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1560. {
  1561. u8 proto;
  1562. struct xfrm_address_filter *filter = NULL;
  1563. struct pfkey_sock *pfk = pfkey_sk(sk);
  1564. mutex_lock(&pfk->dump_lock);
  1565. if (pfk->dump.dump != NULL) {
  1566. mutex_unlock(&pfk->dump_lock);
  1567. return -EBUSY;
  1568. }
  1569. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1570. if (proto == 0) {
  1571. mutex_unlock(&pfk->dump_lock);
  1572. return -EINVAL;
  1573. }
  1574. if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
  1575. struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
  1576. filter = kmalloc(sizeof(*filter), GFP_KERNEL);
  1577. if (filter == NULL) {
  1578. mutex_unlock(&pfk->dump_lock);
  1579. return -ENOMEM;
  1580. }
  1581. memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
  1582. sizeof(xfrm_address_t));
  1583. memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
  1584. sizeof(xfrm_address_t));
  1585. filter->family = xfilter->sadb_x_filter_family;
  1586. filter->splen = xfilter->sadb_x_filter_splen;
  1587. filter->dplen = xfilter->sadb_x_filter_dplen;
  1588. }
  1589. pfk->dump.msg_version = hdr->sadb_msg_version;
  1590. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1591. pfk->dump.dump = pfkey_dump_sa;
  1592. pfk->dump.done = pfkey_dump_sa_done;
  1593. xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
  1594. mutex_unlock(&pfk->dump_lock);
  1595. return pfkey_do_dump(pfk);
  1596. }
  1597. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1598. {
  1599. struct pfkey_sock *pfk = pfkey_sk(sk);
  1600. int satype = hdr->sadb_msg_satype;
  1601. bool reset_errno = false;
  1602. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1603. reset_errno = true;
  1604. if (satype != 0 && satype != 1)
  1605. return -EINVAL;
  1606. pfk->promisc = satype;
  1607. }
  1608. if (reset_errno && skb_cloned(skb))
  1609. skb = skb_copy(skb, GFP_KERNEL);
  1610. else
  1611. skb = skb_clone(skb, GFP_KERNEL);
  1612. if (reset_errno && skb) {
  1613. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1614. new_hdr->sadb_msg_errno = 0;
  1615. }
  1616. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1617. return 0;
  1618. }
  1619. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1620. {
  1621. int i;
  1622. u32 reqid = *(u32*)ptr;
  1623. for (i=0; i<xp->xfrm_nr; i++) {
  1624. if (xp->xfrm_vec[i].reqid == reqid)
  1625. return -EEXIST;
  1626. }
  1627. return 0;
  1628. }
  1629. static u32 gen_reqid(struct net *net)
  1630. {
  1631. struct xfrm_policy_walk walk;
  1632. u32 start;
  1633. int rc;
  1634. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1635. start = reqid;
  1636. do {
  1637. ++reqid;
  1638. if (reqid == 0)
  1639. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1640. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1641. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1642. xfrm_policy_walk_done(&walk, net);
  1643. if (rc != -EEXIST)
  1644. return reqid;
  1645. } while (reqid != start);
  1646. return 0;
  1647. }
  1648. static int
  1649. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1650. {
  1651. struct net *net = xp_net(xp);
  1652. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1653. int mode;
  1654. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1655. return -ELOOP;
  1656. if (rq->sadb_x_ipsecrequest_mode == 0)
  1657. return -EINVAL;
  1658. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1659. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1660. return -EINVAL;
  1661. t->mode = mode;
  1662. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1663. t->optional = 1;
  1664. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1665. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1666. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1667. t->reqid = 0;
  1668. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1669. return -ENOBUFS;
  1670. }
  1671. /* addresses present only in tunnel mode */
  1672. if (t->mode == XFRM_MODE_TUNNEL) {
  1673. int err;
  1674. err = parse_sockaddr_pair(
  1675. (struct sockaddr *)(rq + 1),
  1676. rq->sadb_x_ipsecrequest_len - sizeof(*rq),
  1677. &t->saddr, &t->id.daddr, &t->encap_family);
  1678. if (err)
  1679. return err;
  1680. } else
  1681. t->encap_family = xp->family;
  1682. /* No way to set this via kame pfkey */
  1683. t->allalgs = 1;
  1684. xp->xfrm_nr++;
  1685. return 0;
  1686. }
  1687. static int
  1688. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1689. {
  1690. int err;
  1691. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1692. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1693. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1694. return -EINVAL;
  1695. while (len >= sizeof(*rq)) {
  1696. if (len < rq->sadb_x_ipsecrequest_len ||
  1697. rq->sadb_x_ipsecrequest_len < sizeof(*rq))
  1698. return -EINVAL;
  1699. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1700. return err;
  1701. len -= rq->sadb_x_ipsecrequest_len;
  1702. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1703. }
  1704. return 0;
  1705. }
  1706. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1707. {
  1708. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1709. if (xfrm_ctx) {
  1710. int len = sizeof(struct sadb_x_sec_ctx);
  1711. len += xfrm_ctx->ctx_len;
  1712. return PFKEY_ALIGN8(len);
  1713. }
  1714. return 0;
  1715. }
  1716. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1717. {
  1718. const struct xfrm_tmpl *t;
  1719. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1720. int socklen = 0;
  1721. int i;
  1722. for (i=0; i<xp->xfrm_nr; i++) {
  1723. t = xp->xfrm_vec + i;
  1724. socklen += pfkey_sockaddr_len(t->encap_family);
  1725. }
  1726. return sizeof(struct sadb_msg) +
  1727. (sizeof(struct sadb_lifetime) * 3) +
  1728. (sizeof(struct sadb_address) * 2) +
  1729. (sockaddr_size * 2) +
  1730. sizeof(struct sadb_x_policy) +
  1731. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1732. (socklen * 2) +
  1733. pfkey_xfrm_policy2sec_ctx_size(xp);
  1734. }
  1735. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1736. {
  1737. struct sk_buff *skb;
  1738. int size;
  1739. size = pfkey_xfrm_policy2msg_size(xp);
  1740. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1741. if (skb == NULL)
  1742. return ERR_PTR(-ENOBUFS);
  1743. return skb;
  1744. }
  1745. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1746. {
  1747. struct sadb_msg *hdr;
  1748. struct sadb_address *addr;
  1749. struct sadb_lifetime *lifetime;
  1750. struct sadb_x_policy *pol;
  1751. struct sadb_x_sec_ctx *sec_ctx;
  1752. struct xfrm_sec_ctx *xfrm_ctx;
  1753. int i;
  1754. int size;
  1755. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1756. int socklen = pfkey_sockaddr_len(xp->family);
  1757. size = pfkey_xfrm_policy2msg_size(xp);
  1758. /* call should fill header later */
  1759. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1760. memset(hdr, 0, size); /* XXX do we need this ? */
  1761. /* src address */
  1762. addr = (struct sadb_address*) skb_put(skb,
  1763. sizeof(struct sadb_address)+sockaddr_size);
  1764. addr->sadb_address_len =
  1765. (sizeof(struct sadb_address)+sockaddr_size)/
  1766. sizeof(uint64_t);
  1767. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1768. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1769. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1770. addr->sadb_address_reserved = 0;
  1771. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1772. xp->selector.sport,
  1773. (struct sockaddr *) (addr + 1),
  1774. xp->family))
  1775. BUG();
  1776. /* dst address */
  1777. addr = (struct sadb_address*) skb_put(skb,
  1778. sizeof(struct sadb_address)+sockaddr_size);
  1779. addr->sadb_address_len =
  1780. (sizeof(struct sadb_address)+sockaddr_size)/
  1781. sizeof(uint64_t);
  1782. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1783. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1784. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1785. addr->sadb_address_reserved = 0;
  1786. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1787. (struct sockaddr *) (addr + 1),
  1788. xp->family);
  1789. /* hard time */
  1790. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1791. sizeof(struct sadb_lifetime));
  1792. lifetime->sadb_lifetime_len =
  1793. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1794. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1795. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1796. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1797. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1798. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1799. /* soft time */
  1800. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1801. sizeof(struct sadb_lifetime));
  1802. lifetime->sadb_lifetime_len =
  1803. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1804. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1805. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1806. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1807. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1808. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1809. /* current time */
  1810. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1811. sizeof(struct sadb_lifetime));
  1812. lifetime->sadb_lifetime_len =
  1813. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1814. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1815. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1816. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1817. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1818. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1819. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1820. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1821. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1822. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1823. if (xp->action == XFRM_POLICY_ALLOW) {
  1824. if (xp->xfrm_nr)
  1825. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1826. else
  1827. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1828. }
  1829. pol->sadb_x_policy_dir = dir+1;
  1830. pol->sadb_x_policy_reserved = 0;
  1831. pol->sadb_x_policy_id = xp->index;
  1832. pol->sadb_x_policy_priority = xp->priority;
  1833. for (i=0; i<xp->xfrm_nr; i++) {
  1834. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1835. struct sadb_x_ipsecrequest *rq;
  1836. int req_size;
  1837. int mode;
  1838. req_size = sizeof(struct sadb_x_ipsecrequest);
  1839. if (t->mode == XFRM_MODE_TUNNEL) {
  1840. socklen = pfkey_sockaddr_len(t->encap_family);
  1841. req_size += socklen * 2;
  1842. } else {
  1843. size -= 2*socklen;
  1844. }
  1845. rq = (void*)skb_put(skb, req_size);
  1846. pol->sadb_x_policy_len += req_size/8;
  1847. memset(rq, 0, sizeof(*rq));
  1848. rq->sadb_x_ipsecrequest_len = req_size;
  1849. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1850. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1851. return -EINVAL;
  1852. rq->sadb_x_ipsecrequest_mode = mode;
  1853. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1854. if (t->reqid)
  1855. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1856. if (t->optional)
  1857. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1858. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1859. if (t->mode == XFRM_MODE_TUNNEL) {
  1860. u8 *sa = (void *)(rq + 1);
  1861. pfkey_sockaddr_fill(&t->saddr, 0,
  1862. (struct sockaddr *)sa,
  1863. t->encap_family);
  1864. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1865. (struct sockaddr *) (sa + socklen),
  1866. t->encap_family);
  1867. }
  1868. }
  1869. /* security context */
  1870. if ((xfrm_ctx = xp->security)) {
  1871. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1872. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1873. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1874. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1875. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1876. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1877. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1878. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1879. xfrm_ctx->ctx_len);
  1880. }
  1881. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1882. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1883. return 0;
  1884. }
  1885. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1886. {
  1887. struct sk_buff *out_skb;
  1888. struct sadb_msg *out_hdr;
  1889. int err;
  1890. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1891. if (IS_ERR(out_skb))
  1892. return PTR_ERR(out_skb);
  1893. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1894. if (err < 0)
  1895. return err;
  1896. out_hdr = (struct sadb_msg *) out_skb->data;
  1897. out_hdr->sadb_msg_version = PF_KEY_V2;
  1898. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1899. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1900. else
  1901. out_hdr->sadb_msg_type = event2poltype(c->event);
  1902. out_hdr->sadb_msg_errno = 0;
  1903. out_hdr->sadb_msg_seq = c->seq;
  1904. out_hdr->sadb_msg_pid = c->portid;
  1905. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1906. return 0;
  1907. }
  1908. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1909. {
  1910. struct net *net = sock_net(sk);
  1911. int err = 0;
  1912. struct sadb_lifetime *lifetime;
  1913. struct sadb_address *sa;
  1914. struct sadb_x_policy *pol;
  1915. struct xfrm_policy *xp;
  1916. struct km_event c;
  1917. struct sadb_x_sec_ctx *sec_ctx;
  1918. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1919. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1920. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1921. return -EINVAL;
  1922. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1923. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1924. return -EINVAL;
  1925. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1926. return -EINVAL;
  1927. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1928. if (xp == NULL)
  1929. return -ENOBUFS;
  1930. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1931. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1932. xp->priority = pol->sadb_x_policy_priority;
  1933. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1934. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1935. xp->selector.family = xp->family;
  1936. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1937. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1938. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1939. if (xp->selector.sport)
  1940. xp->selector.sport_mask = htons(0xffff);
  1941. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1942. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1943. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1944. /* Amusing, we set this twice. KAME apps appear to set same value
  1945. * in both addresses.
  1946. */
  1947. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1948. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1949. if (xp->selector.dport)
  1950. xp->selector.dport_mask = htons(0xffff);
  1951. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1952. if (sec_ctx != NULL) {
  1953. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1954. if (!uctx) {
  1955. err = -ENOBUFS;
  1956. goto out;
  1957. }
  1958. err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
  1959. kfree(uctx);
  1960. if (err)
  1961. goto out;
  1962. }
  1963. xp->lft.soft_byte_limit = XFRM_INF;
  1964. xp->lft.hard_byte_limit = XFRM_INF;
  1965. xp->lft.soft_packet_limit = XFRM_INF;
  1966. xp->lft.hard_packet_limit = XFRM_INF;
  1967. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1968. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1969. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1970. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1971. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1972. }
  1973. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1974. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1975. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1976. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1977. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1978. }
  1979. xp->xfrm_nr = 0;
  1980. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1981. (err = parse_ipsecrequests(xp, pol)) < 0)
  1982. goto out;
  1983. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1984. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1985. xfrm_audit_policy_add(xp, err ? 0 : 1, true);
  1986. if (err)
  1987. goto out;
  1988. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1989. c.event = XFRM_MSG_UPDPOLICY;
  1990. else
  1991. c.event = XFRM_MSG_NEWPOLICY;
  1992. c.seq = hdr->sadb_msg_seq;
  1993. c.portid = hdr->sadb_msg_pid;
  1994. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1995. xfrm_pol_put(xp);
  1996. return 0;
  1997. out:
  1998. xp->walk.dead = 1;
  1999. xfrm_policy_destroy(xp);
  2000. return err;
  2001. }
  2002. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2003. {
  2004. struct net *net = sock_net(sk);
  2005. int err;
  2006. struct sadb_address *sa;
  2007. struct sadb_x_policy *pol;
  2008. struct xfrm_policy *xp;
  2009. struct xfrm_selector sel;
  2010. struct km_event c;
  2011. struct sadb_x_sec_ctx *sec_ctx;
  2012. struct xfrm_sec_ctx *pol_ctx = NULL;
  2013. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2014. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2015. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2016. return -EINVAL;
  2017. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2018. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2019. return -EINVAL;
  2020. memset(&sel, 0, sizeof(sel));
  2021. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  2022. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2023. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2024. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2025. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2026. if (sel.sport)
  2027. sel.sport_mask = htons(0xffff);
  2028. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  2029. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2030. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2031. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2032. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2033. if (sel.dport)
  2034. sel.dport_mask = htons(0xffff);
  2035. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  2036. if (sec_ctx != NULL) {
  2037. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  2038. if (!uctx)
  2039. return -ENOMEM;
  2040. err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
  2041. kfree(uctx);
  2042. if (err)
  2043. return err;
  2044. }
  2045. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2046. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2047. 1, &err);
  2048. security_xfrm_policy_free(pol_ctx);
  2049. if (xp == NULL)
  2050. return -ENOENT;
  2051. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2052. if (err)
  2053. goto out;
  2054. c.seq = hdr->sadb_msg_seq;
  2055. c.portid = hdr->sadb_msg_pid;
  2056. c.data.byid = 0;
  2057. c.event = XFRM_MSG_DELPOLICY;
  2058. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2059. out:
  2060. xfrm_pol_put(xp);
  2061. if (err == 0)
  2062. xfrm_garbage_collect(net);
  2063. return err;
  2064. }
  2065. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2066. {
  2067. int err;
  2068. struct sk_buff *out_skb;
  2069. struct sadb_msg *out_hdr;
  2070. err = 0;
  2071. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2072. if (IS_ERR(out_skb)) {
  2073. err = PTR_ERR(out_skb);
  2074. goto out;
  2075. }
  2076. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2077. if (err < 0)
  2078. goto out;
  2079. out_hdr = (struct sadb_msg *) out_skb->data;
  2080. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2081. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2082. out_hdr->sadb_msg_satype = 0;
  2083. out_hdr->sadb_msg_errno = 0;
  2084. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2085. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2086. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2087. err = 0;
  2088. out:
  2089. return err;
  2090. }
  2091. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2092. {
  2093. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2094. }
  2095. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2096. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2097. u16 *family)
  2098. {
  2099. int af, socklen;
  2100. if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2101. return -EINVAL;
  2102. af = pfkey_sockaddr_extract(sa, saddr);
  2103. if (!af)
  2104. return -EINVAL;
  2105. socklen = pfkey_sockaddr_len(af);
  2106. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2107. daddr) != af)
  2108. return -EINVAL;
  2109. *family = af;
  2110. return 0;
  2111. }
  2112. #ifdef CONFIG_NET_KEY_MIGRATE
  2113. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2114. struct xfrm_migrate *m)
  2115. {
  2116. int err;
  2117. struct sadb_x_ipsecrequest *rq2;
  2118. int mode;
  2119. if (len < sizeof(*rq1) ||
  2120. len < rq1->sadb_x_ipsecrequest_len ||
  2121. rq1->sadb_x_ipsecrequest_len < sizeof(*rq1))
  2122. return -EINVAL;
  2123. /* old endoints */
  2124. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2125. rq1->sadb_x_ipsecrequest_len - sizeof(*rq1),
  2126. &m->old_saddr, &m->old_daddr,
  2127. &m->old_family);
  2128. if (err)
  2129. return err;
  2130. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2131. len -= rq1->sadb_x_ipsecrequest_len;
  2132. if (len <= sizeof(*rq2) ||
  2133. len < rq2->sadb_x_ipsecrequest_len ||
  2134. rq2->sadb_x_ipsecrequest_len < sizeof(*rq2))
  2135. return -EINVAL;
  2136. /* new endpoints */
  2137. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2138. rq2->sadb_x_ipsecrequest_len - sizeof(*rq2),
  2139. &m->new_saddr, &m->new_daddr,
  2140. &m->new_family);
  2141. if (err)
  2142. return err;
  2143. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2144. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2145. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2146. return -EINVAL;
  2147. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2148. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2149. return -EINVAL;
  2150. m->mode = mode;
  2151. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2152. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2153. rq2->sadb_x_ipsecrequest_len));
  2154. }
  2155. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2156. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2157. {
  2158. int i, len, ret, err = -EINVAL;
  2159. u8 dir;
  2160. struct sadb_address *sa;
  2161. struct sadb_x_kmaddress *kma;
  2162. struct sadb_x_policy *pol;
  2163. struct sadb_x_ipsecrequest *rq;
  2164. struct xfrm_selector sel;
  2165. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2166. struct xfrm_kmaddress k;
  2167. struct net *net = sock_net(sk);
  2168. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2169. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2170. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2171. err = -EINVAL;
  2172. goto out;
  2173. }
  2174. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2175. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2176. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2177. err = -EINVAL;
  2178. goto out;
  2179. }
  2180. if (kma) {
  2181. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2182. k.reserved = kma->sadb_x_kmaddress_reserved;
  2183. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2184. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2185. &k.local, &k.remote, &k.family);
  2186. if (ret < 0) {
  2187. err = ret;
  2188. goto out;
  2189. }
  2190. }
  2191. dir = pol->sadb_x_policy_dir - 1;
  2192. memset(&sel, 0, sizeof(sel));
  2193. /* set source address info of selector */
  2194. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2195. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2196. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2197. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2198. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2199. if (sel.sport)
  2200. sel.sport_mask = htons(0xffff);
  2201. /* set destination address info of selector */
  2202. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  2203. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2204. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2205. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2206. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2207. if (sel.dport)
  2208. sel.dport_mask = htons(0xffff);
  2209. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2210. /* extract ipsecrequests */
  2211. i = 0;
  2212. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2213. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2214. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2215. if (ret < 0) {
  2216. err = ret;
  2217. goto out;
  2218. } else {
  2219. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2220. len -= ret;
  2221. i++;
  2222. }
  2223. }
  2224. if (!i || len > 0) {
  2225. err = -EINVAL;
  2226. goto out;
  2227. }
  2228. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2229. kma ? &k : NULL, net);
  2230. out:
  2231. return err;
  2232. }
  2233. #else
  2234. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2235. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2236. {
  2237. return -ENOPROTOOPT;
  2238. }
  2239. #endif
  2240. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2241. {
  2242. struct net *net = sock_net(sk);
  2243. unsigned int dir;
  2244. int err = 0, delete;
  2245. struct sadb_x_policy *pol;
  2246. struct xfrm_policy *xp;
  2247. struct km_event c;
  2248. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2249. return -EINVAL;
  2250. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2251. if (dir >= XFRM_POLICY_MAX)
  2252. return -EINVAL;
  2253. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2254. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2255. dir, pol->sadb_x_policy_id, delete, &err);
  2256. if (xp == NULL)
  2257. return -ENOENT;
  2258. if (delete) {
  2259. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2260. if (err)
  2261. goto out;
  2262. c.seq = hdr->sadb_msg_seq;
  2263. c.portid = hdr->sadb_msg_pid;
  2264. c.data.byid = 1;
  2265. c.event = XFRM_MSG_DELPOLICY;
  2266. km_policy_notify(xp, dir, &c);
  2267. } else {
  2268. err = key_pol_get_resp(sk, xp, hdr, dir);
  2269. }
  2270. out:
  2271. xfrm_pol_put(xp);
  2272. if (delete && err == 0)
  2273. xfrm_garbage_collect(net);
  2274. return err;
  2275. }
  2276. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2277. {
  2278. struct pfkey_sock *pfk = ptr;
  2279. struct sk_buff *out_skb;
  2280. struct sadb_msg *out_hdr;
  2281. int err;
  2282. if (!pfkey_can_dump(&pfk->sk))
  2283. return -ENOBUFS;
  2284. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2285. if (IS_ERR(out_skb))
  2286. return PTR_ERR(out_skb);
  2287. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2288. if (err < 0)
  2289. return err;
  2290. out_hdr = (struct sadb_msg *) out_skb->data;
  2291. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2292. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2293. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2294. out_hdr->sadb_msg_errno = 0;
  2295. out_hdr->sadb_msg_seq = count + 1;
  2296. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2297. if (pfk->dump.skb)
  2298. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2299. &pfk->sk, sock_net(&pfk->sk));
  2300. pfk->dump.skb = out_skb;
  2301. return 0;
  2302. }
  2303. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2304. {
  2305. struct net *net = sock_net(&pfk->sk);
  2306. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2307. }
  2308. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2309. {
  2310. struct net *net = sock_net((struct sock *)pfk);
  2311. xfrm_policy_walk_done(&pfk->dump.u.policy, net);
  2312. }
  2313. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2314. {
  2315. struct pfkey_sock *pfk = pfkey_sk(sk);
  2316. mutex_lock(&pfk->dump_lock);
  2317. if (pfk->dump.dump != NULL) {
  2318. mutex_unlock(&pfk->dump_lock);
  2319. return -EBUSY;
  2320. }
  2321. pfk->dump.msg_version = hdr->sadb_msg_version;
  2322. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2323. pfk->dump.dump = pfkey_dump_sp;
  2324. pfk->dump.done = pfkey_dump_sp_done;
  2325. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2326. mutex_unlock(&pfk->dump_lock);
  2327. return pfkey_do_dump(pfk);
  2328. }
  2329. static int key_notify_policy_flush(const struct km_event *c)
  2330. {
  2331. struct sk_buff *skb_out;
  2332. struct sadb_msg *hdr;
  2333. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2334. if (!skb_out)
  2335. return -ENOBUFS;
  2336. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2337. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2338. hdr->sadb_msg_seq = c->seq;
  2339. hdr->sadb_msg_pid = c->portid;
  2340. hdr->sadb_msg_version = PF_KEY_V2;
  2341. hdr->sadb_msg_errno = (uint8_t) 0;
  2342. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2343. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2344. hdr->sadb_msg_reserved = 0;
  2345. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2346. return 0;
  2347. }
  2348. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2349. {
  2350. struct net *net = sock_net(sk);
  2351. struct km_event c;
  2352. int err, err2;
  2353. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true);
  2354. err2 = unicast_flush_resp(sk, hdr);
  2355. if (err || err2) {
  2356. if (err == -ESRCH) /* empty table - old silent behavior */
  2357. return 0;
  2358. return err;
  2359. }
  2360. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2361. c.event = XFRM_MSG_FLUSHPOLICY;
  2362. c.portid = hdr->sadb_msg_pid;
  2363. c.seq = hdr->sadb_msg_seq;
  2364. c.net = net;
  2365. km_policy_notify(NULL, 0, &c);
  2366. return 0;
  2367. }
  2368. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2369. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2370. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2371. [SADB_RESERVED] = pfkey_reserved,
  2372. [SADB_GETSPI] = pfkey_getspi,
  2373. [SADB_UPDATE] = pfkey_add,
  2374. [SADB_ADD] = pfkey_add,
  2375. [SADB_DELETE] = pfkey_delete,
  2376. [SADB_GET] = pfkey_get,
  2377. [SADB_ACQUIRE] = pfkey_acquire,
  2378. [SADB_REGISTER] = pfkey_register,
  2379. [SADB_EXPIRE] = NULL,
  2380. [SADB_FLUSH] = pfkey_flush,
  2381. [SADB_DUMP] = pfkey_dump,
  2382. [SADB_X_PROMISC] = pfkey_promisc,
  2383. [SADB_X_PCHANGE] = NULL,
  2384. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2385. [SADB_X_SPDADD] = pfkey_spdadd,
  2386. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2387. [SADB_X_SPDGET] = pfkey_spdget,
  2388. [SADB_X_SPDACQUIRE] = NULL,
  2389. [SADB_X_SPDDUMP] = pfkey_spddump,
  2390. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2391. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2392. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2393. [SADB_X_MIGRATE] = pfkey_migrate,
  2394. };
  2395. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2396. {
  2397. void *ext_hdrs[SADB_EXT_MAX];
  2398. int err;
  2399. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2400. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2401. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2402. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2403. if (!err) {
  2404. err = -EOPNOTSUPP;
  2405. if (pfkey_funcs[hdr->sadb_msg_type])
  2406. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2407. }
  2408. return err;
  2409. }
  2410. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2411. {
  2412. struct sadb_msg *hdr = NULL;
  2413. if (skb->len < sizeof(*hdr)) {
  2414. *errp = -EMSGSIZE;
  2415. } else {
  2416. hdr = (struct sadb_msg *) skb->data;
  2417. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2418. hdr->sadb_msg_reserved != 0 ||
  2419. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2420. hdr->sadb_msg_type > SADB_MAX)) {
  2421. hdr = NULL;
  2422. *errp = -EINVAL;
  2423. } else if (hdr->sadb_msg_len != (skb->len /
  2424. sizeof(uint64_t)) ||
  2425. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2426. sizeof(uint64_t))) {
  2427. hdr = NULL;
  2428. *errp = -EMSGSIZE;
  2429. } else {
  2430. *errp = 0;
  2431. }
  2432. }
  2433. return hdr;
  2434. }
  2435. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2436. const struct xfrm_algo_desc *d)
  2437. {
  2438. unsigned int id = d->desc.sadb_alg_id;
  2439. if (id >= sizeof(t->aalgos) * 8)
  2440. return 0;
  2441. return (t->aalgos >> id) & 1;
  2442. }
  2443. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2444. const struct xfrm_algo_desc *d)
  2445. {
  2446. unsigned int id = d->desc.sadb_alg_id;
  2447. if (id >= sizeof(t->ealgos) * 8)
  2448. return 0;
  2449. return (t->ealgos >> id) & 1;
  2450. }
  2451. static int count_ah_combs(const struct xfrm_tmpl *t)
  2452. {
  2453. int i, sz = 0;
  2454. for (i = 0; ; i++) {
  2455. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2456. if (!aalg)
  2457. break;
  2458. if (!aalg->pfkey_supported)
  2459. continue;
  2460. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2461. sz += sizeof(struct sadb_comb);
  2462. }
  2463. return sz + sizeof(struct sadb_prop);
  2464. }
  2465. static int count_esp_combs(const struct xfrm_tmpl *t)
  2466. {
  2467. int i, k, sz = 0;
  2468. for (i = 0; ; i++) {
  2469. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2470. if (!ealg)
  2471. break;
  2472. if (!ealg->pfkey_supported)
  2473. continue;
  2474. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2475. continue;
  2476. for (k = 1; ; k++) {
  2477. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2478. if (!aalg)
  2479. break;
  2480. if (!aalg->pfkey_supported)
  2481. continue;
  2482. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2483. sz += sizeof(struct sadb_comb);
  2484. }
  2485. }
  2486. return sz + sizeof(struct sadb_prop);
  2487. }
  2488. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2489. {
  2490. struct sadb_prop *p;
  2491. int i;
  2492. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2493. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2494. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2495. p->sadb_prop_replay = 32;
  2496. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2497. for (i = 0; ; i++) {
  2498. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2499. if (!aalg)
  2500. break;
  2501. if (!aalg->pfkey_supported)
  2502. continue;
  2503. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2504. struct sadb_comb *c;
  2505. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2506. memset(c, 0, sizeof(*c));
  2507. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2508. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2509. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2510. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2511. c->sadb_comb_hard_addtime = 24*60*60;
  2512. c->sadb_comb_soft_addtime = 20*60*60;
  2513. c->sadb_comb_hard_usetime = 8*60*60;
  2514. c->sadb_comb_soft_usetime = 7*60*60;
  2515. }
  2516. }
  2517. }
  2518. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2519. {
  2520. struct sadb_prop *p;
  2521. int i, k;
  2522. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2523. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2524. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2525. p->sadb_prop_replay = 32;
  2526. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2527. for (i=0; ; i++) {
  2528. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2529. if (!ealg)
  2530. break;
  2531. if (!ealg->pfkey_supported)
  2532. continue;
  2533. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2534. continue;
  2535. for (k = 1; ; k++) {
  2536. struct sadb_comb *c;
  2537. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2538. if (!aalg)
  2539. break;
  2540. if (!aalg->pfkey_supported)
  2541. continue;
  2542. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2543. continue;
  2544. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2545. memset(c, 0, sizeof(*c));
  2546. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2547. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2548. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2549. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2550. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2551. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2552. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2553. c->sadb_comb_hard_addtime = 24*60*60;
  2554. c->sadb_comb_soft_addtime = 20*60*60;
  2555. c->sadb_comb_hard_usetime = 8*60*60;
  2556. c->sadb_comb_soft_usetime = 7*60*60;
  2557. }
  2558. }
  2559. }
  2560. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2561. {
  2562. return 0;
  2563. }
  2564. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2565. {
  2566. struct sk_buff *out_skb;
  2567. struct sadb_msg *out_hdr;
  2568. int hard;
  2569. int hsc;
  2570. hard = c->data.hard;
  2571. if (hard)
  2572. hsc = 2;
  2573. else
  2574. hsc = 1;
  2575. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2576. if (IS_ERR(out_skb))
  2577. return PTR_ERR(out_skb);
  2578. out_hdr = (struct sadb_msg *) out_skb->data;
  2579. out_hdr->sadb_msg_version = PF_KEY_V2;
  2580. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2581. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2582. out_hdr->sadb_msg_errno = 0;
  2583. out_hdr->sadb_msg_reserved = 0;
  2584. out_hdr->sadb_msg_seq = 0;
  2585. out_hdr->sadb_msg_pid = 0;
  2586. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2587. xs_net(x));
  2588. return 0;
  2589. }
  2590. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2591. {
  2592. struct net *net = x ? xs_net(x) : c->net;
  2593. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2594. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2595. return 0;
  2596. switch (c->event) {
  2597. case XFRM_MSG_EXPIRE:
  2598. return key_notify_sa_expire(x, c);
  2599. case XFRM_MSG_DELSA:
  2600. case XFRM_MSG_NEWSA:
  2601. case XFRM_MSG_UPDSA:
  2602. return key_notify_sa(x, c);
  2603. case XFRM_MSG_FLUSHSA:
  2604. return key_notify_sa_flush(c);
  2605. case XFRM_MSG_NEWAE: /* not yet supported */
  2606. break;
  2607. default:
  2608. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2609. break;
  2610. }
  2611. return 0;
  2612. }
  2613. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2614. {
  2615. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2616. return 0;
  2617. switch (c->event) {
  2618. case XFRM_MSG_POLEXPIRE:
  2619. return key_notify_policy_expire(xp, c);
  2620. case XFRM_MSG_DELPOLICY:
  2621. case XFRM_MSG_NEWPOLICY:
  2622. case XFRM_MSG_UPDPOLICY:
  2623. return key_notify_policy(xp, dir, c);
  2624. case XFRM_MSG_FLUSHPOLICY:
  2625. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2626. break;
  2627. return key_notify_policy_flush(c);
  2628. default:
  2629. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2630. break;
  2631. }
  2632. return 0;
  2633. }
  2634. static u32 get_acqseq(void)
  2635. {
  2636. u32 res;
  2637. static atomic_t acqseq;
  2638. do {
  2639. res = atomic_inc_return(&acqseq);
  2640. } while (!res);
  2641. return res;
  2642. }
  2643. static bool pfkey_is_alive(const struct km_event *c)
  2644. {
  2645. struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id);
  2646. struct sock *sk;
  2647. bool is_alive = false;
  2648. rcu_read_lock();
  2649. sk_for_each_rcu(sk, &net_pfkey->table) {
  2650. if (pfkey_sk(sk)->registered) {
  2651. is_alive = true;
  2652. break;
  2653. }
  2654. }
  2655. rcu_read_unlock();
  2656. return is_alive;
  2657. }
  2658. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2659. {
  2660. struct sk_buff *skb;
  2661. struct sadb_msg *hdr;
  2662. struct sadb_address *addr;
  2663. struct sadb_x_policy *pol;
  2664. int sockaddr_size;
  2665. int size;
  2666. struct sadb_x_sec_ctx *sec_ctx;
  2667. struct xfrm_sec_ctx *xfrm_ctx;
  2668. int ctx_size = 0;
  2669. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2670. if (!sockaddr_size)
  2671. return -EINVAL;
  2672. size = sizeof(struct sadb_msg) +
  2673. (sizeof(struct sadb_address) * 2) +
  2674. (sockaddr_size * 2) +
  2675. sizeof(struct sadb_x_policy);
  2676. if (x->id.proto == IPPROTO_AH)
  2677. size += count_ah_combs(t);
  2678. else if (x->id.proto == IPPROTO_ESP)
  2679. size += count_esp_combs(t);
  2680. if ((xfrm_ctx = x->security)) {
  2681. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2682. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2683. }
  2684. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2685. if (skb == NULL)
  2686. return -ENOMEM;
  2687. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2688. hdr->sadb_msg_version = PF_KEY_V2;
  2689. hdr->sadb_msg_type = SADB_ACQUIRE;
  2690. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2691. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2692. hdr->sadb_msg_errno = 0;
  2693. hdr->sadb_msg_reserved = 0;
  2694. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2695. hdr->sadb_msg_pid = 0;
  2696. /* src address */
  2697. addr = (struct sadb_address*) skb_put(skb,
  2698. sizeof(struct sadb_address)+sockaddr_size);
  2699. addr->sadb_address_len =
  2700. (sizeof(struct sadb_address)+sockaddr_size)/
  2701. sizeof(uint64_t);
  2702. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2703. addr->sadb_address_proto = 0;
  2704. addr->sadb_address_reserved = 0;
  2705. addr->sadb_address_prefixlen =
  2706. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2707. (struct sockaddr *) (addr + 1),
  2708. x->props.family);
  2709. if (!addr->sadb_address_prefixlen)
  2710. BUG();
  2711. /* dst address */
  2712. addr = (struct sadb_address*) skb_put(skb,
  2713. sizeof(struct sadb_address)+sockaddr_size);
  2714. addr->sadb_address_len =
  2715. (sizeof(struct sadb_address)+sockaddr_size)/
  2716. sizeof(uint64_t);
  2717. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2718. addr->sadb_address_proto = 0;
  2719. addr->sadb_address_reserved = 0;
  2720. addr->sadb_address_prefixlen =
  2721. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2722. (struct sockaddr *) (addr + 1),
  2723. x->props.family);
  2724. if (!addr->sadb_address_prefixlen)
  2725. BUG();
  2726. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2727. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2728. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2729. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2730. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2731. pol->sadb_x_policy_reserved = 0;
  2732. pol->sadb_x_policy_id = xp->index;
  2733. pol->sadb_x_policy_priority = xp->priority;
  2734. /* Set sadb_comb's. */
  2735. if (x->id.proto == IPPROTO_AH)
  2736. dump_ah_combs(skb, t);
  2737. else if (x->id.proto == IPPROTO_ESP)
  2738. dump_esp_combs(skb, t);
  2739. /* security context */
  2740. if (xfrm_ctx) {
  2741. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2742. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2743. sec_ctx->sadb_x_sec_len =
  2744. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2745. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2746. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2747. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2748. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2749. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2750. xfrm_ctx->ctx_len);
  2751. }
  2752. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2753. xs_net(x));
  2754. }
  2755. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2756. u8 *data, int len, int *dir)
  2757. {
  2758. struct net *net = sock_net(sk);
  2759. struct xfrm_policy *xp;
  2760. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2761. struct sadb_x_sec_ctx *sec_ctx;
  2762. switch (sk->sk_family) {
  2763. case AF_INET:
  2764. if (opt != IP_IPSEC_POLICY) {
  2765. *dir = -EOPNOTSUPP;
  2766. return NULL;
  2767. }
  2768. break;
  2769. #if IS_ENABLED(CONFIG_IPV6)
  2770. case AF_INET6:
  2771. if (opt != IPV6_IPSEC_POLICY) {
  2772. *dir = -EOPNOTSUPP;
  2773. return NULL;
  2774. }
  2775. break;
  2776. #endif
  2777. default:
  2778. *dir = -EINVAL;
  2779. return NULL;
  2780. }
  2781. *dir = -EINVAL;
  2782. if (len < sizeof(struct sadb_x_policy) ||
  2783. pol->sadb_x_policy_len*8 > len ||
  2784. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2785. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2786. return NULL;
  2787. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2788. if (xp == NULL) {
  2789. *dir = -ENOBUFS;
  2790. return NULL;
  2791. }
  2792. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2793. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2794. xp->lft.soft_byte_limit = XFRM_INF;
  2795. xp->lft.hard_byte_limit = XFRM_INF;
  2796. xp->lft.soft_packet_limit = XFRM_INF;
  2797. xp->lft.hard_packet_limit = XFRM_INF;
  2798. xp->family = sk->sk_family;
  2799. xp->xfrm_nr = 0;
  2800. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2801. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2802. goto out;
  2803. /* security context too */
  2804. if (len >= (pol->sadb_x_policy_len*8 +
  2805. sizeof(struct sadb_x_sec_ctx))) {
  2806. char *p = (char *)pol;
  2807. struct xfrm_user_sec_ctx *uctx;
  2808. p += pol->sadb_x_policy_len*8;
  2809. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2810. if (len < pol->sadb_x_policy_len*8 +
  2811. sec_ctx->sadb_x_sec_len) {
  2812. *dir = -EINVAL;
  2813. goto out;
  2814. }
  2815. if ((*dir = verify_sec_ctx_len(p)))
  2816. goto out;
  2817. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC);
  2818. *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC);
  2819. kfree(uctx);
  2820. if (*dir)
  2821. goto out;
  2822. }
  2823. *dir = pol->sadb_x_policy_dir-1;
  2824. return xp;
  2825. out:
  2826. xp->walk.dead = 1;
  2827. xfrm_policy_destroy(xp);
  2828. return NULL;
  2829. }
  2830. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2831. {
  2832. struct sk_buff *skb;
  2833. struct sadb_msg *hdr;
  2834. struct sadb_sa *sa;
  2835. struct sadb_address *addr;
  2836. struct sadb_x_nat_t_port *n_port;
  2837. int sockaddr_size;
  2838. int size;
  2839. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2840. struct xfrm_encap_tmpl *natt = NULL;
  2841. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2842. if (!sockaddr_size)
  2843. return -EINVAL;
  2844. if (!satype)
  2845. return -EINVAL;
  2846. if (!x->encap)
  2847. return -EINVAL;
  2848. natt = x->encap;
  2849. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2850. *
  2851. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2852. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2853. */
  2854. size = sizeof(struct sadb_msg) +
  2855. sizeof(struct sadb_sa) +
  2856. (sizeof(struct sadb_address) * 2) +
  2857. (sockaddr_size * 2) +
  2858. (sizeof(struct sadb_x_nat_t_port) * 2);
  2859. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2860. if (skb == NULL)
  2861. return -ENOMEM;
  2862. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2863. hdr->sadb_msg_version = PF_KEY_V2;
  2864. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2865. hdr->sadb_msg_satype = satype;
  2866. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2867. hdr->sadb_msg_errno = 0;
  2868. hdr->sadb_msg_reserved = 0;
  2869. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2870. hdr->sadb_msg_pid = 0;
  2871. /* SA */
  2872. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2873. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2874. sa->sadb_sa_exttype = SADB_EXT_SA;
  2875. sa->sadb_sa_spi = x->id.spi;
  2876. sa->sadb_sa_replay = 0;
  2877. sa->sadb_sa_state = 0;
  2878. sa->sadb_sa_auth = 0;
  2879. sa->sadb_sa_encrypt = 0;
  2880. sa->sadb_sa_flags = 0;
  2881. /* ADDRESS_SRC (old addr) */
  2882. addr = (struct sadb_address*)
  2883. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2884. addr->sadb_address_len =
  2885. (sizeof(struct sadb_address)+sockaddr_size)/
  2886. sizeof(uint64_t);
  2887. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2888. addr->sadb_address_proto = 0;
  2889. addr->sadb_address_reserved = 0;
  2890. addr->sadb_address_prefixlen =
  2891. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2892. (struct sockaddr *) (addr + 1),
  2893. x->props.family);
  2894. if (!addr->sadb_address_prefixlen)
  2895. BUG();
  2896. /* NAT_T_SPORT (old port) */
  2897. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2898. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2899. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2900. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2901. n_port->sadb_x_nat_t_port_reserved = 0;
  2902. /* ADDRESS_DST (new addr) */
  2903. addr = (struct sadb_address*)
  2904. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2905. addr->sadb_address_len =
  2906. (sizeof(struct sadb_address)+sockaddr_size)/
  2907. sizeof(uint64_t);
  2908. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2909. addr->sadb_address_proto = 0;
  2910. addr->sadb_address_reserved = 0;
  2911. addr->sadb_address_prefixlen =
  2912. pfkey_sockaddr_fill(ipaddr, 0,
  2913. (struct sockaddr *) (addr + 1),
  2914. x->props.family);
  2915. if (!addr->sadb_address_prefixlen)
  2916. BUG();
  2917. /* NAT_T_DPORT (new port) */
  2918. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2919. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2920. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2921. n_port->sadb_x_nat_t_port_port = sport;
  2922. n_port->sadb_x_nat_t_port_reserved = 0;
  2923. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2924. xs_net(x));
  2925. }
  2926. #ifdef CONFIG_NET_KEY_MIGRATE
  2927. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2928. const struct xfrm_selector *sel)
  2929. {
  2930. struct sadb_address *addr;
  2931. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2932. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2933. addr->sadb_address_exttype = type;
  2934. addr->sadb_address_proto = sel->proto;
  2935. addr->sadb_address_reserved = 0;
  2936. switch (type) {
  2937. case SADB_EXT_ADDRESS_SRC:
  2938. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2939. pfkey_sockaddr_fill(&sel->saddr, 0,
  2940. (struct sockaddr *)(addr + 1),
  2941. sel->family);
  2942. break;
  2943. case SADB_EXT_ADDRESS_DST:
  2944. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2945. pfkey_sockaddr_fill(&sel->daddr, 0,
  2946. (struct sockaddr *)(addr + 1),
  2947. sel->family);
  2948. break;
  2949. default:
  2950. return -EINVAL;
  2951. }
  2952. return 0;
  2953. }
  2954. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2955. {
  2956. struct sadb_x_kmaddress *kma;
  2957. u8 *sa;
  2958. int family = k->family;
  2959. int socklen = pfkey_sockaddr_len(family);
  2960. int size_req;
  2961. size_req = (sizeof(struct sadb_x_kmaddress) +
  2962. pfkey_sockaddr_pair_size(family));
  2963. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2964. memset(kma, 0, size_req);
  2965. kma->sadb_x_kmaddress_len = size_req / 8;
  2966. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2967. kma->sadb_x_kmaddress_reserved = k->reserved;
  2968. sa = (u8 *)(kma + 1);
  2969. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2970. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2971. return -EINVAL;
  2972. return 0;
  2973. }
  2974. static int set_ipsecrequest(struct sk_buff *skb,
  2975. uint8_t proto, uint8_t mode, int level,
  2976. uint32_t reqid, uint8_t family,
  2977. const xfrm_address_t *src, const xfrm_address_t *dst)
  2978. {
  2979. struct sadb_x_ipsecrequest *rq;
  2980. u8 *sa;
  2981. int socklen = pfkey_sockaddr_len(family);
  2982. int size_req;
  2983. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2984. pfkey_sockaddr_pair_size(family);
  2985. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2986. memset(rq, 0, size_req);
  2987. rq->sadb_x_ipsecrequest_len = size_req;
  2988. rq->sadb_x_ipsecrequest_proto = proto;
  2989. rq->sadb_x_ipsecrequest_mode = mode;
  2990. rq->sadb_x_ipsecrequest_level = level;
  2991. rq->sadb_x_ipsecrequest_reqid = reqid;
  2992. sa = (u8 *) (rq + 1);
  2993. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2994. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2995. return -EINVAL;
  2996. return 0;
  2997. }
  2998. #endif
  2999. #ifdef CONFIG_NET_KEY_MIGRATE
  3000. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3001. const struct xfrm_migrate *m, int num_bundles,
  3002. const struct xfrm_kmaddress *k)
  3003. {
  3004. int i;
  3005. int sasize_sel;
  3006. int size = 0;
  3007. int size_pol = 0;
  3008. struct sk_buff *skb;
  3009. struct sadb_msg *hdr;
  3010. struct sadb_x_policy *pol;
  3011. const struct xfrm_migrate *mp;
  3012. if (type != XFRM_POLICY_TYPE_MAIN)
  3013. return 0;
  3014. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3015. return -EINVAL;
  3016. if (k != NULL) {
  3017. /* addresses for KM */
  3018. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  3019. pfkey_sockaddr_pair_size(k->family));
  3020. }
  3021. /* selector */
  3022. sasize_sel = pfkey_sockaddr_size(sel->family);
  3023. if (!sasize_sel)
  3024. return -EINVAL;
  3025. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3026. /* policy info */
  3027. size_pol += sizeof(struct sadb_x_policy);
  3028. /* ipsecrequests */
  3029. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3030. /* old locator pair */
  3031. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3032. pfkey_sockaddr_pair_size(mp->old_family);
  3033. /* new locator pair */
  3034. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3035. pfkey_sockaddr_pair_size(mp->new_family);
  3036. }
  3037. size += sizeof(struct sadb_msg) + size_pol;
  3038. /* alloc buffer */
  3039. skb = alloc_skb(size, GFP_ATOMIC);
  3040. if (skb == NULL)
  3041. return -ENOMEM;
  3042. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3043. hdr->sadb_msg_version = PF_KEY_V2;
  3044. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3045. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3046. hdr->sadb_msg_len = size / 8;
  3047. hdr->sadb_msg_errno = 0;
  3048. hdr->sadb_msg_reserved = 0;
  3049. hdr->sadb_msg_seq = 0;
  3050. hdr->sadb_msg_pid = 0;
  3051. /* Addresses to be used by KM for negotiation, if ext is available */
  3052. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  3053. goto err;
  3054. /* selector src */
  3055. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3056. /* selector dst */
  3057. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3058. /* policy information */
  3059. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3060. pol->sadb_x_policy_len = size_pol / 8;
  3061. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3062. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3063. pol->sadb_x_policy_dir = dir + 1;
  3064. pol->sadb_x_policy_reserved = 0;
  3065. pol->sadb_x_policy_id = 0;
  3066. pol->sadb_x_policy_priority = 0;
  3067. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3068. /* old ipsecrequest */
  3069. int mode = pfkey_mode_from_xfrm(mp->mode);
  3070. if (mode < 0)
  3071. goto err;
  3072. if (set_ipsecrequest(skb, mp->proto, mode,
  3073. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3074. mp->reqid, mp->old_family,
  3075. &mp->old_saddr, &mp->old_daddr) < 0)
  3076. goto err;
  3077. /* new ipsecrequest */
  3078. if (set_ipsecrequest(skb, mp->proto, mode,
  3079. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3080. mp->reqid, mp->new_family,
  3081. &mp->new_saddr, &mp->new_daddr) < 0)
  3082. goto err;
  3083. }
  3084. /* broadcast migrate message to sockets */
  3085. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3086. return 0;
  3087. err:
  3088. kfree_skb(skb);
  3089. return -EINVAL;
  3090. }
  3091. #else
  3092. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3093. const struct xfrm_migrate *m, int num_bundles,
  3094. const struct xfrm_kmaddress *k)
  3095. {
  3096. return -ENOPROTOOPT;
  3097. }
  3098. #endif
  3099. static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  3100. {
  3101. struct sock *sk = sock->sk;
  3102. struct sk_buff *skb = NULL;
  3103. struct sadb_msg *hdr = NULL;
  3104. int err;
  3105. struct net *net = sock_net(sk);
  3106. err = -EOPNOTSUPP;
  3107. if (msg->msg_flags & MSG_OOB)
  3108. goto out;
  3109. err = -EMSGSIZE;
  3110. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3111. goto out;
  3112. err = -ENOBUFS;
  3113. skb = alloc_skb(len, GFP_KERNEL);
  3114. if (skb == NULL)
  3115. goto out;
  3116. err = -EFAULT;
  3117. if (memcpy_from_msg(skb_put(skb,len), msg, len))
  3118. goto out;
  3119. hdr = pfkey_get_base_msg(skb, &err);
  3120. if (!hdr)
  3121. goto out;
  3122. mutex_lock(&net->xfrm.xfrm_cfg_mutex);
  3123. err = pfkey_process(sk, skb, hdr);
  3124. mutex_unlock(&net->xfrm.xfrm_cfg_mutex);
  3125. out:
  3126. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3127. err = 0;
  3128. kfree_skb(skb);
  3129. return err ? : len;
  3130. }
  3131. static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  3132. int flags)
  3133. {
  3134. struct sock *sk = sock->sk;
  3135. struct pfkey_sock *pfk = pfkey_sk(sk);
  3136. struct sk_buff *skb;
  3137. int copied, err;
  3138. err = -EINVAL;
  3139. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3140. goto out;
  3141. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3142. if (skb == NULL)
  3143. goto out;
  3144. copied = skb->len;
  3145. if (copied > len) {
  3146. msg->msg_flags |= MSG_TRUNC;
  3147. copied = len;
  3148. }
  3149. skb_reset_transport_header(skb);
  3150. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  3151. if (err)
  3152. goto out_free;
  3153. sock_recv_ts_and_drops(msg, sk, skb);
  3154. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3155. if (pfk->dump.dump != NULL &&
  3156. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3157. pfkey_do_dump(pfk);
  3158. out_free:
  3159. skb_free_datagram(sk, skb);
  3160. out:
  3161. return err;
  3162. }
  3163. static const struct proto_ops pfkey_ops = {
  3164. .family = PF_KEY,
  3165. .owner = THIS_MODULE,
  3166. /* Operations that make no sense on pfkey sockets. */
  3167. .bind = sock_no_bind,
  3168. .connect = sock_no_connect,
  3169. .socketpair = sock_no_socketpair,
  3170. .accept = sock_no_accept,
  3171. .getname = sock_no_getname,
  3172. .ioctl = sock_no_ioctl,
  3173. .listen = sock_no_listen,
  3174. .shutdown = sock_no_shutdown,
  3175. .setsockopt = sock_no_setsockopt,
  3176. .getsockopt = sock_no_getsockopt,
  3177. .mmap = sock_no_mmap,
  3178. .sendpage = sock_no_sendpage,
  3179. /* Now the operations that really occur. */
  3180. .release = pfkey_release,
  3181. .poll = datagram_poll,
  3182. .sendmsg = pfkey_sendmsg,
  3183. .recvmsg = pfkey_recvmsg,
  3184. };
  3185. static const struct net_proto_family pfkey_family_ops = {
  3186. .family = PF_KEY,
  3187. .create = pfkey_create,
  3188. .owner = THIS_MODULE,
  3189. };
  3190. #ifdef CONFIG_PROC_FS
  3191. static int pfkey_seq_show(struct seq_file *f, void *v)
  3192. {
  3193. struct sock *s = sk_entry(v);
  3194. if (v == SEQ_START_TOKEN)
  3195. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3196. else
  3197. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3198. s,
  3199. atomic_read(&s->sk_refcnt),
  3200. sk_rmem_alloc_get(s),
  3201. sk_wmem_alloc_get(s),
  3202. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3203. sock_i_ino(s)
  3204. );
  3205. return 0;
  3206. }
  3207. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3208. __acquires(rcu)
  3209. {
  3210. struct net *net = seq_file_net(f);
  3211. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3212. rcu_read_lock();
  3213. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3214. }
  3215. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3216. {
  3217. struct net *net = seq_file_net(f);
  3218. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3219. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3220. }
  3221. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3222. __releases(rcu)
  3223. {
  3224. rcu_read_unlock();
  3225. }
  3226. static const struct seq_operations pfkey_seq_ops = {
  3227. .start = pfkey_seq_start,
  3228. .next = pfkey_seq_next,
  3229. .stop = pfkey_seq_stop,
  3230. .show = pfkey_seq_show,
  3231. };
  3232. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3233. {
  3234. return seq_open_net(inode, file, &pfkey_seq_ops,
  3235. sizeof(struct seq_net_private));
  3236. }
  3237. static const struct file_operations pfkey_proc_ops = {
  3238. .open = pfkey_seq_open,
  3239. .read = seq_read,
  3240. .llseek = seq_lseek,
  3241. .release = seq_release_net,
  3242. };
  3243. static int __net_init pfkey_init_proc(struct net *net)
  3244. {
  3245. struct proc_dir_entry *e;
  3246. e = proc_create("pfkey", 0, net->proc_net, &pfkey_proc_ops);
  3247. if (e == NULL)
  3248. return -ENOMEM;
  3249. return 0;
  3250. }
  3251. static void __net_exit pfkey_exit_proc(struct net *net)
  3252. {
  3253. remove_proc_entry("pfkey", net->proc_net);
  3254. }
  3255. #else
  3256. static inline int pfkey_init_proc(struct net *net)
  3257. {
  3258. return 0;
  3259. }
  3260. static inline void pfkey_exit_proc(struct net *net)
  3261. {
  3262. }
  3263. #endif
  3264. static struct xfrm_mgr pfkeyv2_mgr =
  3265. {
  3266. .id = "pfkeyv2",
  3267. .notify = pfkey_send_notify,
  3268. .acquire = pfkey_send_acquire,
  3269. .compile_policy = pfkey_compile_policy,
  3270. .new_mapping = pfkey_send_new_mapping,
  3271. .notify_policy = pfkey_send_policy_notify,
  3272. .migrate = pfkey_send_migrate,
  3273. .is_alive = pfkey_is_alive,
  3274. };
  3275. static int __net_init pfkey_net_init(struct net *net)
  3276. {
  3277. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3278. int rv;
  3279. INIT_HLIST_HEAD(&net_pfkey->table);
  3280. atomic_set(&net_pfkey->socks_nr, 0);
  3281. rv = pfkey_init_proc(net);
  3282. return rv;
  3283. }
  3284. static void __net_exit pfkey_net_exit(struct net *net)
  3285. {
  3286. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3287. pfkey_exit_proc(net);
  3288. BUG_ON(!hlist_empty(&net_pfkey->table));
  3289. }
  3290. static struct pernet_operations pfkey_net_ops = {
  3291. .init = pfkey_net_init,
  3292. .exit = pfkey_net_exit,
  3293. .id = &pfkey_net_id,
  3294. .size = sizeof(struct netns_pfkey),
  3295. };
  3296. static void __exit ipsec_pfkey_exit(void)
  3297. {
  3298. xfrm_unregister_km(&pfkeyv2_mgr);
  3299. sock_unregister(PF_KEY);
  3300. unregister_pernet_subsys(&pfkey_net_ops);
  3301. proto_unregister(&key_proto);
  3302. }
  3303. static int __init ipsec_pfkey_init(void)
  3304. {
  3305. int err = proto_register(&key_proto, 0);
  3306. if (err != 0)
  3307. goto out;
  3308. err = register_pernet_subsys(&pfkey_net_ops);
  3309. if (err != 0)
  3310. goto out_unregister_key_proto;
  3311. err = sock_register(&pfkey_family_ops);
  3312. if (err != 0)
  3313. goto out_unregister_pernet;
  3314. err = xfrm_register_km(&pfkeyv2_mgr);
  3315. if (err != 0)
  3316. goto out_sock_unregister;
  3317. out:
  3318. return err;
  3319. out_sock_unregister:
  3320. sock_unregister(PF_KEY);
  3321. out_unregister_pernet:
  3322. unregister_pernet_subsys(&pfkey_net_ops);
  3323. out_unregister_key_proto:
  3324. proto_unregister(&key_proto);
  3325. goto out;
  3326. }
  3327. module_init(ipsec_pfkey_init);
  3328. module_exit(ipsec_pfkey_exit);
  3329. MODULE_LICENSE("GPL");
  3330. MODULE_ALIAS_NETPROTO(PF_KEY);