tcp_output.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. /* People can turn this off for buggy TCP's found in printers etc. */
  41. int sysctl_tcp_retrans_collapse __read_mostly = 1;
  42. /* People can turn this on to work with those rare, broken TCPs that
  43. * interpret the window field as a signed quantity.
  44. */
  45. int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  46. /* Default TSQ limit of four TSO segments */
  47. int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  48. /* This limits the percentage of the congestion window which we
  49. * will allow a single TSO frame to consume. Building TSO frames
  50. * which are too large can cause TCP streams to be bursty.
  51. */
  52. int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  53. /* By default, RFC2861 behavior. */
  54. int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  55. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  56. int push_one, gfp_t gfp);
  57. /* Account for new data that has been sent to the network. */
  58. static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  59. {
  60. struct inet_connection_sock *icsk = inet_csk(sk);
  61. struct tcp_sock *tp = tcp_sk(sk);
  62. unsigned int prior_packets = tp->packets_out;
  63. tcp_advance_send_head(sk, skb);
  64. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  65. tp->packets_out += tcp_skb_pcount(skb);
  66. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  67. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  68. tcp_rearm_rto(sk);
  69. }
  70. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  71. tcp_skb_pcount(skb));
  72. }
  73. /* SND.NXT, if window was not shrunk.
  74. * If window has been shrunk, what should we make? It is not clear at all.
  75. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  76. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  77. * invalid. OK, let's make this for now:
  78. */
  79. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  80. {
  81. const struct tcp_sock *tp = tcp_sk(sk);
  82. if (!before(tcp_wnd_end(tp), tp->snd_nxt))
  83. return tp->snd_nxt;
  84. else
  85. return tcp_wnd_end(tp);
  86. }
  87. /* Calculate mss to advertise in SYN segment.
  88. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  89. *
  90. * 1. It is independent of path mtu.
  91. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  92. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  93. * attached devices, because some buggy hosts are confused by
  94. * large MSS.
  95. * 4. We do not make 3, we advertise MSS, calculated from first
  96. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  97. * This may be overridden via information stored in routing table.
  98. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  99. * probably even Jumbo".
  100. */
  101. static __u16 tcp_advertise_mss(struct sock *sk)
  102. {
  103. struct tcp_sock *tp = tcp_sk(sk);
  104. const struct dst_entry *dst = __sk_dst_get(sk);
  105. int mss = tp->advmss;
  106. if (dst) {
  107. unsigned int metric = dst_metric_advmss(dst);
  108. if (metric < mss) {
  109. mss = metric;
  110. tp->advmss = mss;
  111. }
  112. }
  113. return (__u16)mss;
  114. }
  115. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  116. * This is the first part of cwnd validation mechanism.
  117. */
  118. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  119. {
  120. struct tcp_sock *tp = tcp_sk(sk);
  121. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  122. u32 cwnd = tp->snd_cwnd;
  123. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  124. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  125. restart_cwnd = min(restart_cwnd, cwnd);
  126. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  127. cwnd >>= 1;
  128. tp->snd_cwnd = max(cwnd, restart_cwnd);
  129. tp->snd_cwnd_stamp = tcp_time_stamp;
  130. tp->snd_cwnd_used = 0;
  131. }
  132. /* Congestion state accounting after a packet has been sent. */
  133. static void tcp_event_data_sent(struct tcp_sock *tp,
  134. struct sock *sk)
  135. {
  136. struct inet_connection_sock *icsk = inet_csk(sk);
  137. const u32 now = tcp_time_stamp;
  138. if (tcp_packets_in_flight(tp) == 0)
  139. tcp_ca_event(sk, CA_EVENT_TX_START);
  140. tp->lsndtime = now;
  141. /* If it is a reply for ato after last received
  142. * packet, enter pingpong mode.
  143. */
  144. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  145. icsk->icsk_ack.pingpong = 1;
  146. }
  147. /* Account for an ACK we sent. */
  148. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
  149. {
  150. tcp_dec_quickack_mode(sk, pkts);
  151. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  152. }
  153. u32 tcp_default_init_rwnd(u32 mss)
  154. {
  155. /* Initial receive window should be twice of TCP_INIT_CWND to
  156. * enable proper sending of new unsent data during fast recovery
  157. * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
  158. * limit when mss is larger than 1460.
  159. */
  160. u32 init_rwnd = TCP_INIT_CWND * 2;
  161. if (mss > 1460)
  162. init_rwnd = max((1460 * init_rwnd) / mss, 2U);
  163. return init_rwnd;
  164. }
  165. /* Determine a window scaling and initial window to offer.
  166. * Based on the assumption that the given amount of space
  167. * will be offered. Store the results in the tp structure.
  168. * NOTE: for smooth operation initial space offering should
  169. * be a multiple of mss if possible. We assume here that mss >= 1.
  170. * This MUST be enforced by all callers.
  171. */
  172. void tcp_select_initial_window(int __space, __u32 mss,
  173. __u32 *rcv_wnd, __u32 *window_clamp,
  174. int wscale_ok, __u8 *rcv_wscale,
  175. __u32 init_rcv_wnd)
  176. {
  177. unsigned int space = (__space < 0 ? 0 : __space);
  178. /* If no clamp set the clamp to the max possible scaled window */
  179. if (*window_clamp == 0)
  180. (*window_clamp) = (65535 << 14);
  181. space = min(*window_clamp, space);
  182. /* Quantize space offering to a multiple of mss if possible. */
  183. if (space > mss)
  184. space = (space / mss) * mss;
  185. /* NOTE: offering an initial window larger than 32767
  186. * will break some buggy TCP stacks. If the admin tells us
  187. * it is likely we could be speaking with such a buggy stack
  188. * we will truncate our initial window offering to 32K-1
  189. * unless the remote has sent us a window scaling option,
  190. * which we interpret as a sign the remote TCP is not
  191. * misinterpreting the window field as a signed quantity.
  192. */
  193. if (sysctl_tcp_workaround_signed_windows)
  194. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  195. else
  196. (*rcv_wnd) = space;
  197. (*rcv_wscale) = 0;
  198. if (wscale_ok) {
  199. /* Set window scaling on max possible window
  200. * See RFC1323 for an explanation of the limit to 14
  201. */
  202. space = max_t(u32, space, sysctl_tcp_rmem[2]);
  203. space = max_t(u32, space, sysctl_rmem_max);
  204. space = min_t(u32, space, *window_clamp);
  205. while (space > 65535 && (*rcv_wscale) < 14) {
  206. space >>= 1;
  207. (*rcv_wscale)++;
  208. }
  209. }
  210. if (mss > (1 << *rcv_wscale)) {
  211. if (!init_rcv_wnd) /* Use default unless specified otherwise */
  212. init_rcv_wnd = tcp_default_init_rwnd(mss);
  213. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  214. }
  215. /* Set the clamp no higher than max representable value */
  216. (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
  217. }
  218. EXPORT_SYMBOL(tcp_select_initial_window);
  219. /* Chose a new window to advertise, update state in tcp_sock for the
  220. * socket, and return result with RFC1323 scaling applied. The return
  221. * value can be stuffed directly into th->window for an outgoing
  222. * frame.
  223. */
  224. static u16 tcp_select_window(struct sock *sk)
  225. {
  226. struct tcp_sock *tp = tcp_sk(sk);
  227. u32 old_win = tp->rcv_wnd;
  228. u32 cur_win = tcp_receive_window(tp);
  229. u32 new_win = __tcp_select_window(sk);
  230. /* Never shrink the offered window */
  231. if (new_win < cur_win) {
  232. /* Danger Will Robinson!
  233. * Don't update rcv_wup/rcv_wnd here or else
  234. * we will not be able to advertise a zero
  235. * window in time. --DaveM
  236. *
  237. * Relax Will Robinson.
  238. */
  239. if (new_win == 0)
  240. NET_INC_STATS(sock_net(sk),
  241. LINUX_MIB_TCPWANTZEROWINDOWADV);
  242. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  243. }
  244. tp->rcv_wnd = new_win;
  245. tp->rcv_wup = tp->rcv_nxt;
  246. /* Make sure we do not exceed the maximum possible
  247. * scaled window.
  248. */
  249. if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
  250. new_win = min(new_win, MAX_TCP_WINDOW);
  251. else
  252. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  253. /* RFC1323 scaling applied */
  254. new_win >>= tp->rx_opt.rcv_wscale;
  255. /* If we advertise zero window, disable fast path. */
  256. if (new_win == 0) {
  257. tp->pred_flags = 0;
  258. if (old_win)
  259. NET_INC_STATS(sock_net(sk),
  260. LINUX_MIB_TCPTOZEROWINDOWADV);
  261. } else if (old_win == 0) {
  262. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  263. }
  264. return new_win;
  265. }
  266. /* Packet ECN state for a SYN-ACK */
  267. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  268. {
  269. const struct tcp_sock *tp = tcp_sk(sk);
  270. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  271. if (!(tp->ecn_flags & TCP_ECN_OK))
  272. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  273. else if (tcp_ca_needs_ecn(sk))
  274. INET_ECN_xmit(sk);
  275. }
  276. /* Packet ECN state for a SYN. */
  277. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  278. {
  279. struct tcp_sock *tp = tcp_sk(sk);
  280. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  281. tcp_ca_needs_ecn(sk);
  282. if (!use_ecn) {
  283. const struct dst_entry *dst = __sk_dst_get(sk);
  284. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  285. use_ecn = true;
  286. }
  287. tp->ecn_flags = 0;
  288. if (use_ecn) {
  289. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  290. tp->ecn_flags = TCP_ECN_OK;
  291. if (tcp_ca_needs_ecn(sk))
  292. INET_ECN_xmit(sk);
  293. }
  294. }
  295. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  296. {
  297. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  298. /* tp->ecn_flags are cleared at a later point in time when
  299. * SYN ACK is ultimatively being received.
  300. */
  301. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  302. }
  303. static void
  304. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  305. {
  306. if (inet_rsk(req)->ecn_ok)
  307. th->ece = 1;
  308. }
  309. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  310. * be sent.
  311. */
  312. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  313. struct tcphdr *th, int tcp_header_len)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. if (tp->ecn_flags & TCP_ECN_OK) {
  317. /* Not-retransmitted data segment: set ECT and inject CWR. */
  318. if (skb->len != tcp_header_len &&
  319. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  320. INET_ECN_xmit(sk);
  321. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  322. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  323. th->cwr = 1;
  324. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  325. }
  326. } else if (!tcp_ca_needs_ecn(sk)) {
  327. /* ACK or retransmitted segment: clear ECT|CE */
  328. INET_ECN_dontxmit(sk);
  329. }
  330. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  331. th->ece = 1;
  332. }
  333. }
  334. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  335. * auto increment end seqno.
  336. */
  337. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  338. {
  339. skb->ip_summed = CHECKSUM_PARTIAL;
  340. skb->csum = 0;
  341. TCP_SKB_CB(skb)->tcp_flags = flags;
  342. TCP_SKB_CB(skb)->sacked = 0;
  343. tcp_skb_pcount_set(skb, 1);
  344. TCP_SKB_CB(skb)->seq = seq;
  345. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  346. seq++;
  347. TCP_SKB_CB(skb)->end_seq = seq;
  348. }
  349. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  350. {
  351. return tp->snd_una != tp->snd_up;
  352. }
  353. #define OPTION_SACK_ADVERTISE (1 << 0)
  354. #define OPTION_TS (1 << 1)
  355. #define OPTION_MD5 (1 << 2)
  356. #define OPTION_WSCALE (1 << 3)
  357. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  358. struct tcp_out_options {
  359. u16 options; /* bit field of OPTION_* */
  360. u16 mss; /* 0 to disable */
  361. u8 ws; /* window scale, 0 to disable */
  362. u8 num_sack_blocks; /* number of SACK blocks to include */
  363. u8 hash_size; /* bytes in hash_location */
  364. __u8 *hash_location; /* temporary pointer, overloaded */
  365. __u32 tsval, tsecr; /* need to include OPTION_TS */
  366. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  367. };
  368. /* Write previously computed TCP options to the packet.
  369. *
  370. * Beware: Something in the Internet is very sensitive to the ordering of
  371. * TCP options, we learned this through the hard way, so be careful here.
  372. * Luckily we can at least blame others for their non-compliance but from
  373. * inter-operability perspective it seems that we're somewhat stuck with
  374. * the ordering which we have been using if we want to keep working with
  375. * those broken things (not that it currently hurts anybody as there isn't
  376. * particular reason why the ordering would need to be changed).
  377. *
  378. * At least SACK_PERM as the first option is known to lead to a disaster
  379. * (but it may well be that other scenarios fail similarly).
  380. */
  381. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  382. struct tcp_out_options *opts)
  383. {
  384. u16 options = opts->options; /* mungable copy */
  385. if (unlikely(OPTION_MD5 & options)) {
  386. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  387. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  388. /* overload cookie hash location */
  389. opts->hash_location = (__u8 *)ptr;
  390. ptr += 4;
  391. }
  392. if (unlikely(opts->mss)) {
  393. *ptr++ = htonl((TCPOPT_MSS << 24) |
  394. (TCPOLEN_MSS << 16) |
  395. opts->mss);
  396. }
  397. if (likely(OPTION_TS & options)) {
  398. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  399. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  400. (TCPOLEN_SACK_PERM << 16) |
  401. (TCPOPT_TIMESTAMP << 8) |
  402. TCPOLEN_TIMESTAMP);
  403. options &= ~OPTION_SACK_ADVERTISE;
  404. } else {
  405. *ptr++ = htonl((TCPOPT_NOP << 24) |
  406. (TCPOPT_NOP << 16) |
  407. (TCPOPT_TIMESTAMP << 8) |
  408. TCPOLEN_TIMESTAMP);
  409. }
  410. *ptr++ = htonl(opts->tsval);
  411. *ptr++ = htonl(opts->tsecr);
  412. }
  413. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  414. *ptr++ = htonl((TCPOPT_NOP << 24) |
  415. (TCPOPT_NOP << 16) |
  416. (TCPOPT_SACK_PERM << 8) |
  417. TCPOLEN_SACK_PERM);
  418. }
  419. if (unlikely(OPTION_WSCALE & options)) {
  420. *ptr++ = htonl((TCPOPT_NOP << 24) |
  421. (TCPOPT_WINDOW << 16) |
  422. (TCPOLEN_WINDOW << 8) |
  423. opts->ws);
  424. }
  425. if (unlikely(opts->num_sack_blocks)) {
  426. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  427. tp->duplicate_sack : tp->selective_acks;
  428. int this_sack;
  429. *ptr++ = htonl((TCPOPT_NOP << 24) |
  430. (TCPOPT_NOP << 16) |
  431. (TCPOPT_SACK << 8) |
  432. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  433. TCPOLEN_SACK_PERBLOCK)));
  434. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  435. ++this_sack) {
  436. *ptr++ = htonl(sp[this_sack].start_seq);
  437. *ptr++ = htonl(sp[this_sack].end_seq);
  438. }
  439. tp->rx_opt.dsack = 0;
  440. }
  441. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  442. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  443. u8 *p = (u8 *)ptr;
  444. u32 len; /* Fast Open option length */
  445. if (foc->exp) {
  446. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  447. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  448. TCPOPT_FASTOPEN_MAGIC);
  449. p += TCPOLEN_EXP_FASTOPEN_BASE;
  450. } else {
  451. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  452. *p++ = TCPOPT_FASTOPEN;
  453. *p++ = len;
  454. }
  455. memcpy(p, foc->val, foc->len);
  456. if ((len & 3) == 2) {
  457. p[foc->len] = TCPOPT_NOP;
  458. p[foc->len + 1] = TCPOPT_NOP;
  459. }
  460. ptr += (len + 3) >> 2;
  461. }
  462. }
  463. /* Compute TCP options for SYN packets. This is not the final
  464. * network wire format yet.
  465. */
  466. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  467. struct tcp_out_options *opts,
  468. struct tcp_md5sig_key **md5)
  469. {
  470. struct tcp_sock *tp = tcp_sk(sk);
  471. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  472. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  473. #ifdef CONFIG_TCP_MD5SIG
  474. *md5 = tp->af_specific->md5_lookup(sk, sk);
  475. if (*md5) {
  476. opts->options |= OPTION_MD5;
  477. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  478. }
  479. #else
  480. *md5 = NULL;
  481. #endif
  482. /* We always get an MSS option. The option bytes which will be seen in
  483. * normal data packets should timestamps be used, must be in the MSS
  484. * advertised. But we subtract them from tp->mss_cache so that
  485. * calculations in tcp_sendmsg are simpler etc. So account for this
  486. * fact here if necessary. If we don't do this correctly, as a
  487. * receiver we won't recognize data packets as being full sized when we
  488. * should, and thus we won't abide by the delayed ACK rules correctly.
  489. * SACKs don't matter, we never delay an ACK when we have any of those
  490. * going out. */
  491. opts->mss = tcp_advertise_mss(sk);
  492. remaining -= TCPOLEN_MSS_ALIGNED;
  493. if (likely(sysctl_tcp_timestamps && !*md5)) {
  494. opts->options |= OPTION_TS;
  495. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  496. opts->tsecr = tp->rx_opt.ts_recent;
  497. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  498. }
  499. if (likely(sysctl_tcp_window_scaling)) {
  500. opts->ws = tp->rx_opt.rcv_wscale;
  501. opts->options |= OPTION_WSCALE;
  502. remaining -= TCPOLEN_WSCALE_ALIGNED;
  503. }
  504. if (likely(sysctl_tcp_sack)) {
  505. opts->options |= OPTION_SACK_ADVERTISE;
  506. if (unlikely(!(OPTION_TS & opts->options)))
  507. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  508. }
  509. if (fastopen && fastopen->cookie.len >= 0) {
  510. u32 need = fastopen->cookie.len;
  511. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  512. TCPOLEN_FASTOPEN_BASE;
  513. need = (need + 3) & ~3U; /* Align to 32 bits */
  514. if (remaining >= need) {
  515. opts->options |= OPTION_FAST_OPEN_COOKIE;
  516. opts->fastopen_cookie = &fastopen->cookie;
  517. remaining -= need;
  518. tp->syn_fastopen = 1;
  519. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  520. }
  521. }
  522. return MAX_TCP_OPTION_SPACE - remaining;
  523. }
  524. /* Set up TCP options for SYN-ACKs. */
  525. static unsigned int tcp_synack_options(struct request_sock *req,
  526. unsigned int mss, struct sk_buff *skb,
  527. struct tcp_out_options *opts,
  528. const struct tcp_md5sig_key *md5,
  529. struct tcp_fastopen_cookie *foc)
  530. {
  531. struct inet_request_sock *ireq = inet_rsk(req);
  532. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  533. #ifdef CONFIG_TCP_MD5SIG
  534. if (md5) {
  535. opts->options |= OPTION_MD5;
  536. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  537. /* We can't fit any SACK blocks in a packet with MD5 + TS
  538. * options. There was discussion about disabling SACK
  539. * rather than TS in order to fit in better with old,
  540. * buggy kernels, but that was deemed to be unnecessary.
  541. */
  542. ireq->tstamp_ok &= !ireq->sack_ok;
  543. }
  544. #endif
  545. /* We always send an MSS option. */
  546. opts->mss = mss;
  547. remaining -= TCPOLEN_MSS_ALIGNED;
  548. if (likely(ireq->wscale_ok)) {
  549. opts->ws = ireq->rcv_wscale;
  550. opts->options |= OPTION_WSCALE;
  551. remaining -= TCPOLEN_WSCALE_ALIGNED;
  552. }
  553. if (likely(ireq->tstamp_ok)) {
  554. opts->options |= OPTION_TS;
  555. opts->tsval = tcp_skb_timestamp(skb);
  556. opts->tsecr = req->ts_recent;
  557. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  558. }
  559. if (likely(ireq->sack_ok)) {
  560. opts->options |= OPTION_SACK_ADVERTISE;
  561. if (unlikely(!ireq->tstamp_ok))
  562. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  563. }
  564. if (foc != NULL && foc->len >= 0) {
  565. u32 need = foc->len;
  566. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  567. TCPOLEN_FASTOPEN_BASE;
  568. need = (need + 3) & ~3U; /* Align to 32 bits */
  569. if (remaining >= need) {
  570. opts->options |= OPTION_FAST_OPEN_COOKIE;
  571. opts->fastopen_cookie = foc;
  572. remaining -= need;
  573. }
  574. }
  575. return MAX_TCP_OPTION_SPACE - remaining;
  576. }
  577. /* Compute TCP options for ESTABLISHED sockets. This is not the
  578. * final wire format yet.
  579. */
  580. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  581. struct tcp_out_options *opts,
  582. struct tcp_md5sig_key **md5)
  583. {
  584. struct tcp_sock *tp = tcp_sk(sk);
  585. unsigned int size = 0;
  586. unsigned int eff_sacks;
  587. opts->options = 0;
  588. #ifdef CONFIG_TCP_MD5SIG
  589. *md5 = tp->af_specific->md5_lookup(sk, sk);
  590. if (unlikely(*md5)) {
  591. opts->options |= OPTION_MD5;
  592. size += TCPOLEN_MD5SIG_ALIGNED;
  593. }
  594. #else
  595. *md5 = NULL;
  596. #endif
  597. if (likely(tp->rx_opt.tstamp_ok)) {
  598. opts->options |= OPTION_TS;
  599. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  600. opts->tsecr = tp->rx_opt.ts_recent;
  601. size += TCPOLEN_TSTAMP_ALIGNED;
  602. }
  603. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  604. if (unlikely(eff_sacks)) {
  605. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  606. opts->num_sack_blocks =
  607. min_t(unsigned int, eff_sacks,
  608. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  609. TCPOLEN_SACK_PERBLOCK);
  610. size += TCPOLEN_SACK_BASE_ALIGNED +
  611. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  612. }
  613. return size;
  614. }
  615. /* TCP SMALL QUEUES (TSQ)
  616. *
  617. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  618. * to reduce RTT and bufferbloat.
  619. * We do this using a special skb destructor (tcp_wfree).
  620. *
  621. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  622. * needs to be reallocated in a driver.
  623. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  624. *
  625. * Since transmit from skb destructor is forbidden, we use a tasklet
  626. * to process all sockets that eventually need to send more skbs.
  627. * We use one tasklet per cpu, with its own queue of sockets.
  628. */
  629. struct tsq_tasklet {
  630. struct tasklet_struct tasklet;
  631. struct list_head head; /* queue of tcp sockets */
  632. };
  633. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  634. static void tcp_tsq_handler(struct sock *sk)
  635. {
  636. if ((1 << sk->sk_state) &
  637. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  638. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  639. struct tcp_sock *tp = tcp_sk(sk);
  640. if (tp->lost_out > tp->retrans_out &&
  641. tp->snd_cwnd > tcp_packets_in_flight(tp))
  642. tcp_xmit_retransmit_queue(sk);
  643. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  644. 0, GFP_ATOMIC);
  645. }
  646. }
  647. /*
  648. * One tasklet per cpu tries to send more skbs.
  649. * We run in tasklet context but need to disable irqs when
  650. * transferring tsq->head because tcp_wfree() might
  651. * interrupt us (non NAPI drivers)
  652. */
  653. static void tcp_tasklet_func(unsigned long data)
  654. {
  655. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  656. LIST_HEAD(list);
  657. unsigned long flags;
  658. struct list_head *q, *n;
  659. struct tcp_sock *tp;
  660. struct sock *sk;
  661. local_irq_save(flags);
  662. list_splice_init(&tsq->head, &list);
  663. local_irq_restore(flags);
  664. list_for_each_safe(q, n, &list) {
  665. tp = list_entry(q, struct tcp_sock, tsq_node);
  666. list_del(&tp->tsq_node);
  667. sk = (struct sock *)tp;
  668. bh_lock_sock(sk);
  669. if (!sock_owned_by_user(sk)) {
  670. tcp_tsq_handler(sk);
  671. } else {
  672. /* defer the work to tcp_release_cb() */
  673. set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
  674. }
  675. bh_unlock_sock(sk);
  676. clear_bit(TSQ_QUEUED, &tp->tsq_flags);
  677. sk_free(sk);
  678. }
  679. }
  680. #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
  681. (1UL << TCP_WRITE_TIMER_DEFERRED) | \
  682. (1UL << TCP_DELACK_TIMER_DEFERRED) | \
  683. (1UL << TCP_MTU_REDUCED_DEFERRED))
  684. /**
  685. * tcp_release_cb - tcp release_sock() callback
  686. * @sk: socket
  687. *
  688. * called from release_sock() to perform protocol dependent
  689. * actions before socket release.
  690. */
  691. void tcp_release_cb(struct sock *sk)
  692. {
  693. struct tcp_sock *tp = tcp_sk(sk);
  694. unsigned long flags, nflags;
  695. /* perform an atomic operation only if at least one flag is set */
  696. do {
  697. flags = tp->tsq_flags;
  698. if (!(flags & TCP_DEFERRED_ALL))
  699. return;
  700. nflags = flags & ~TCP_DEFERRED_ALL;
  701. } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
  702. if (flags & (1UL << TCP_TSQ_DEFERRED))
  703. tcp_tsq_handler(sk);
  704. /* Here begins the tricky part :
  705. * We are called from release_sock() with :
  706. * 1) BH disabled
  707. * 2) sk_lock.slock spinlock held
  708. * 3) socket owned by us (sk->sk_lock.owned == 1)
  709. *
  710. * But following code is meant to be called from BH handlers,
  711. * so we should keep BH disabled, but early release socket ownership
  712. */
  713. sock_release_ownership(sk);
  714. if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
  715. tcp_write_timer_handler(sk);
  716. __sock_put(sk);
  717. }
  718. if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
  719. tcp_delack_timer_handler(sk);
  720. __sock_put(sk);
  721. }
  722. if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
  723. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  724. __sock_put(sk);
  725. }
  726. }
  727. EXPORT_SYMBOL(tcp_release_cb);
  728. void __init tcp_tasklet_init(void)
  729. {
  730. int i;
  731. for_each_possible_cpu(i) {
  732. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  733. INIT_LIST_HEAD(&tsq->head);
  734. tasklet_init(&tsq->tasklet,
  735. tcp_tasklet_func,
  736. (unsigned long)tsq);
  737. }
  738. }
  739. /*
  740. * Write buffer destructor automatically called from kfree_skb.
  741. * We can't xmit new skbs from this context, as we might already
  742. * hold qdisc lock.
  743. */
  744. void tcp_wfree(struct sk_buff *skb)
  745. {
  746. struct sock *sk = skb->sk;
  747. struct tcp_sock *tp = tcp_sk(sk);
  748. int wmem;
  749. /* Keep one reference on sk_wmem_alloc.
  750. * Will be released by sk_free() from here or tcp_tasklet_func()
  751. */
  752. wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
  753. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  754. * Wait until our queues (qdisc + devices) are drained.
  755. * This gives :
  756. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  757. * - chance for incoming ACK (processed by another cpu maybe)
  758. * to migrate this flow (skb->ooo_okay will be eventually set)
  759. */
  760. if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  761. goto out;
  762. if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
  763. !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
  764. unsigned long flags;
  765. struct tsq_tasklet *tsq;
  766. /* queue this socket to tasklet queue */
  767. local_irq_save(flags);
  768. tsq = this_cpu_ptr(&tsq_tasklet);
  769. list_add(&tp->tsq_node, &tsq->head);
  770. tasklet_schedule(&tsq->tasklet);
  771. local_irq_restore(flags);
  772. return;
  773. }
  774. out:
  775. sk_free(sk);
  776. }
  777. /* This routine actually transmits TCP packets queued in by
  778. * tcp_do_sendmsg(). This is used by both the initial
  779. * transmission and possible later retransmissions.
  780. * All SKB's seen here are completely headerless. It is our
  781. * job to build the TCP header, and pass the packet down to
  782. * IP so it can do the same plus pass the packet off to the
  783. * device.
  784. *
  785. * We are working here with either a clone of the original
  786. * SKB, or a fresh unique copy made by the retransmit engine.
  787. */
  788. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  789. gfp_t gfp_mask)
  790. {
  791. const struct inet_connection_sock *icsk = inet_csk(sk);
  792. struct inet_sock *inet;
  793. struct tcp_sock *tp;
  794. struct tcp_skb_cb *tcb;
  795. struct tcp_out_options opts;
  796. unsigned int tcp_options_size, tcp_header_size;
  797. struct sk_buff *oskb = NULL;
  798. struct tcp_md5sig_key *md5;
  799. struct tcphdr *th;
  800. int err;
  801. BUG_ON(!skb || !tcp_skb_pcount(skb));
  802. tp = tcp_sk(sk);
  803. if (clone_it) {
  804. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  805. - tp->snd_una;
  806. oskb = skb;
  807. if (unlikely(skb_cloned(skb)))
  808. skb = pskb_copy(skb, gfp_mask);
  809. else
  810. skb = skb_clone(skb, gfp_mask);
  811. if (unlikely(!skb))
  812. return -ENOBUFS;
  813. }
  814. skb_mstamp_get(&skb->skb_mstamp);
  815. inet = inet_sk(sk);
  816. tcb = TCP_SKB_CB(skb);
  817. memset(&opts, 0, sizeof(opts));
  818. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  819. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  820. else
  821. tcp_options_size = tcp_established_options(sk, skb, &opts,
  822. &md5);
  823. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  824. /* if no packet is in qdisc/device queue, then allow XPS to select
  825. * another queue. We can be called from tcp_tsq_handler()
  826. * which holds one reference to sk_wmem_alloc.
  827. *
  828. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  829. * One way to get this would be to set skb->truesize = 2 on them.
  830. */
  831. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  832. skb_push(skb, tcp_header_size);
  833. skb_reset_transport_header(skb);
  834. skb_orphan(skb);
  835. skb->sk = sk;
  836. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  837. skb_set_hash_from_sk(skb, sk);
  838. atomic_add(skb->truesize, &sk->sk_wmem_alloc);
  839. /* Build TCP header and checksum it. */
  840. th = (struct tcphdr *)skb->data;
  841. th->source = inet->inet_sport;
  842. th->dest = inet->inet_dport;
  843. th->seq = htonl(tcb->seq);
  844. th->ack_seq = htonl(tp->rcv_nxt);
  845. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  846. tcb->tcp_flags);
  847. th->check = 0;
  848. th->urg_ptr = 0;
  849. /* The urg_mode check is necessary during a below snd_una win probe */
  850. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  851. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  852. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  853. th->urg = 1;
  854. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  855. th->urg_ptr = htons(0xFFFF);
  856. th->urg = 1;
  857. }
  858. }
  859. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  860. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  861. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  862. th->window = htons(tcp_select_window(sk));
  863. tcp_ecn_send(sk, skb, th, tcp_header_size);
  864. } else {
  865. /* RFC1323: The window in SYN & SYN/ACK segments
  866. * is never scaled.
  867. */
  868. th->window = htons(min(tp->rcv_wnd, 65535U));
  869. }
  870. #ifdef CONFIG_TCP_MD5SIG
  871. /* Calculate the MD5 hash, as we have all we need now */
  872. if (md5) {
  873. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  874. tp->af_specific->calc_md5_hash(opts.hash_location,
  875. md5, sk, skb);
  876. }
  877. #endif
  878. icsk->icsk_af_ops->send_check(sk, skb);
  879. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  880. tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
  881. if (skb->len != tcp_header_size) {
  882. tcp_event_data_sent(tp, sk);
  883. tp->data_segs_out += tcp_skb_pcount(skb);
  884. }
  885. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  886. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  887. tcp_skb_pcount(skb));
  888. tp->segs_out += tcp_skb_pcount(skb);
  889. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  890. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  891. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  892. /* Our usage of tstamp should remain private */
  893. skb->tstamp.tv64 = 0;
  894. /* Cleanup our debris for IP stacks */
  895. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  896. sizeof(struct inet6_skb_parm)));
  897. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  898. if (unlikely(err > 0)) {
  899. tcp_enter_cwr(sk);
  900. err = net_xmit_eval(err);
  901. }
  902. if (!err && oskb) {
  903. skb_mstamp_get(&oskb->skb_mstamp);
  904. tcp_rate_skb_sent(sk, oskb);
  905. }
  906. return err;
  907. }
  908. /* This routine just queues the buffer for sending.
  909. *
  910. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  911. * otherwise socket can stall.
  912. */
  913. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  914. {
  915. struct tcp_sock *tp = tcp_sk(sk);
  916. /* Advance write_seq and place onto the write_queue. */
  917. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  918. __skb_header_release(skb);
  919. tcp_add_write_queue_tail(sk, skb);
  920. sk->sk_wmem_queued += skb->truesize;
  921. sk_mem_charge(sk, skb->truesize);
  922. }
  923. /* Initialize TSO segments for a packet. */
  924. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  925. {
  926. if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
  927. /* Avoid the costly divide in the normal
  928. * non-TSO case.
  929. */
  930. tcp_skb_pcount_set(skb, 1);
  931. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  932. } else {
  933. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  934. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  935. }
  936. }
  937. /* When a modification to fackets out becomes necessary, we need to check
  938. * skb is counted to fackets_out or not.
  939. */
  940. static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
  941. int decr)
  942. {
  943. struct tcp_sock *tp = tcp_sk(sk);
  944. if (!tp->sacked_out || tcp_is_reno(tp))
  945. return;
  946. if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
  947. tp->fackets_out -= decr;
  948. }
  949. /* Pcount in the middle of the write queue got changed, we need to do various
  950. * tweaks to fix counters
  951. */
  952. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  953. {
  954. struct tcp_sock *tp = tcp_sk(sk);
  955. tp->packets_out -= decr;
  956. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  957. tp->sacked_out -= decr;
  958. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  959. tp->retrans_out -= decr;
  960. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  961. tp->lost_out -= decr;
  962. /* Reno case is special. Sigh... */
  963. if (tcp_is_reno(tp) && decr > 0)
  964. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  965. tcp_adjust_fackets_out(sk, skb, decr);
  966. if (tp->lost_skb_hint &&
  967. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  968. (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
  969. tp->lost_cnt_hint -= decr;
  970. tcp_verify_left_out(tp);
  971. }
  972. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  973. {
  974. return TCP_SKB_CB(skb)->txstamp_ack ||
  975. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  976. }
  977. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  978. {
  979. struct skb_shared_info *shinfo = skb_shinfo(skb);
  980. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  981. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  982. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  983. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  984. shinfo->tx_flags &= ~tsflags;
  985. shinfo2->tx_flags |= tsflags;
  986. swap(shinfo->tskey, shinfo2->tskey);
  987. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  988. TCP_SKB_CB(skb)->txstamp_ack = 0;
  989. }
  990. }
  991. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  992. {
  993. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  994. TCP_SKB_CB(skb)->eor = 0;
  995. }
  996. /* Function to create two new TCP segments. Shrinks the given segment
  997. * to the specified size and appends a new segment with the rest of the
  998. * packet to the list. This won't be called frequently, I hope.
  999. * Remember, these are still headerless SKBs at this point.
  1000. */
  1001. int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
  1002. unsigned int mss_now, gfp_t gfp)
  1003. {
  1004. struct tcp_sock *tp = tcp_sk(sk);
  1005. struct sk_buff *buff;
  1006. int nsize, old_factor;
  1007. int nlen;
  1008. u8 flags;
  1009. if (WARN_ON(len > skb->len))
  1010. return -EINVAL;
  1011. nsize = skb_headlen(skb) - len;
  1012. if (nsize < 0)
  1013. nsize = 0;
  1014. if (skb_unclone(skb, gfp))
  1015. return -ENOMEM;
  1016. /* Get a new skb... force flag on. */
  1017. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1018. if (!buff)
  1019. return -ENOMEM; /* We'll just try again later. */
  1020. sk->sk_wmem_queued += buff->truesize;
  1021. sk_mem_charge(sk, buff->truesize);
  1022. nlen = skb->len - len - nsize;
  1023. buff->truesize += nlen;
  1024. skb->truesize -= nlen;
  1025. /* Correct the sequence numbers. */
  1026. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1027. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1028. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1029. /* PSH and FIN should only be set in the second packet. */
  1030. flags = TCP_SKB_CB(skb)->tcp_flags;
  1031. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1032. TCP_SKB_CB(buff)->tcp_flags = flags;
  1033. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1034. tcp_skb_fragment_eor(skb, buff);
  1035. if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
  1036. /* Copy and checksum data tail into the new buffer. */
  1037. buff->csum = csum_partial_copy_nocheck(skb->data + len,
  1038. skb_put(buff, nsize),
  1039. nsize, 0);
  1040. skb_trim(skb, len);
  1041. skb->csum = csum_block_sub(skb->csum, buff->csum, len);
  1042. } else {
  1043. skb->ip_summed = CHECKSUM_PARTIAL;
  1044. skb_split(skb, buff, len);
  1045. }
  1046. buff->ip_summed = skb->ip_summed;
  1047. buff->tstamp = skb->tstamp;
  1048. tcp_fragment_tstamp(skb, buff);
  1049. old_factor = tcp_skb_pcount(skb);
  1050. /* Fix up tso_factor for both original and new SKB. */
  1051. tcp_set_skb_tso_segs(skb, mss_now);
  1052. tcp_set_skb_tso_segs(buff, mss_now);
  1053. /* Update delivered info for the new segment */
  1054. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1055. /* If this packet has been sent out already, we must
  1056. * adjust the various packet counters.
  1057. */
  1058. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1059. int diff = old_factor - tcp_skb_pcount(skb) -
  1060. tcp_skb_pcount(buff);
  1061. if (diff)
  1062. tcp_adjust_pcount(sk, skb, diff);
  1063. }
  1064. /* Link BUFF into the send queue. */
  1065. __skb_header_release(buff);
  1066. tcp_insert_write_queue_after(skb, buff, sk);
  1067. return 0;
  1068. }
  1069. /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
  1070. * eventually). The difference is that pulled data not copied, but
  1071. * immediately discarded.
  1072. */
  1073. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1074. {
  1075. struct skb_shared_info *shinfo;
  1076. int i, k, eat;
  1077. eat = min_t(int, len, skb_headlen(skb));
  1078. if (eat) {
  1079. __skb_pull(skb, eat);
  1080. len -= eat;
  1081. if (!len)
  1082. return 0;
  1083. }
  1084. eat = len;
  1085. k = 0;
  1086. shinfo = skb_shinfo(skb);
  1087. for (i = 0; i < shinfo->nr_frags; i++) {
  1088. int size = skb_frag_size(&shinfo->frags[i]);
  1089. if (size <= eat) {
  1090. skb_frag_unref(skb, i);
  1091. eat -= size;
  1092. } else {
  1093. shinfo->frags[k] = shinfo->frags[i];
  1094. if (eat) {
  1095. shinfo->frags[k].page_offset += eat;
  1096. skb_frag_size_sub(&shinfo->frags[k], eat);
  1097. eat = 0;
  1098. }
  1099. k++;
  1100. }
  1101. }
  1102. shinfo->nr_frags = k;
  1103. skb_reset_tail_pointer(skb);
  1104. skb->data_len -= len;
  1105. skb->len = skb->data_len;
  1106. return len;
  1107. }
  1108. /* Remove acked data from a packet in the transmit queue. */
  1109. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1110. {
  1111. u32 delta_truesize;
  1112. if (skb_unclone(skb, GFP_ATOMIC))
  1113. return -ENOMEM;
  1114. delta_truesize = __pskb_trim_head(skb, len);
  1115. TCP_SKB_CB(skb)->seq += len;
  1116. skb->ip_summed = CHECKSUM_PARTIAL;
  1117. if (delta_truesize) {
  1118. skb->truesize -= delta_truesize;
  1119. sk->sk_wmem_queued -= delta_truesize;
  1120. sk_mem_uncharge(sk, delta_truesize);
  1121. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1122. }
  1123. /* Any change of skb->len requires recalculation of tso factor. */
  1124. if (tcp_skb_pcount(skb) > 1)
  1125. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1126. return 0;
  1127. }
  1128. /* Calculate MSS not accounting any TCP options. */
  1129. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1130. {
  1131. const struct tcp_sock *tp = tcp_sk(sk);
  1132. const struct inet_connection_sock *icsk = inet_csk(sk);
  1133. int mss_now;
  1134. /* Calculate base mss without TCP options:
  1135. It is MMS_S - sizeof(tcphdr) of rfc1122
  1136. */
  1137. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1138. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1139. if (icsk->icsk_af_ops->net_frag_header_len) {
  1140. const struct dst_entry *dst = __sk_dst_get(sk);
  1141. if (dst && dst_allfrag(dst))
  1142. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1143. }
  1144. /* Clamp it (mss_clamp does not include tcp options) */
  1145. if (mss_now > tp->rx_opt.mss_clamp)
  1146. mss_now = tp->rx_opt.mss_clamp;
  1147. /* Now subtract optional transport overhead */
  1148. mss_now -= icsk->icsk_ext_hdr_len;
  1149. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1150. if (mss_now < 48)
  1151. mss_now = 48;
  1152. return mss_now;
  1153. }
  1154. /* Calculate MSS. Not accounting for SACKs here. */
  1155. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1156. {
  1157. /* Subtract TCP options size, not including SACKs */
  1158. return __tcp_mtu_to_mss(sk, pmtu) -
  1159. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1160. }
  1161. /* Inverse of above */
  1162. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1163. {
  1164. const struct tcp_sock *tp = tcp_sk(sk);
  1165. const struct inet_connection_sock *icsk = inet_csk(sk);
  1166. int mtu;
  1167. mtu = mss +
  1168. tp->tcp_header_len +
  1169. icsk->icsk_ext_hdr_len +
  1170. icsk->icsk_af_ops->net_header_len;
  1171. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1172. if (icsk->icsk_af_ops->net_frag_header_len) {
  1173. const struct dst_entry *dst = __sk_dst_get(sk);
  1174. if (dst && dst_allfrag(dst))
  1175. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1176. }
  1177. return mtu;
  1178. }
  1179. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1180. /* MTU probing init per socket */
  1181. void tcp_mtup_init(struct sock *sk)
  1182. {
  1183. struct tcp_sock *tp = tcp_sk(sk);
  1184. struct inet_connection_sock *icsk = inet_csk(sk);
  1185. struct net *net = sock_net(sk);
  1186. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1187. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1188. icsk->icsk_af_ops->net_header_len;
  1189. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1190. icsk->icsk_mtup.probe_size = 0;
  1191. if (icsk->icsk_mtup.enabled)
  1192. icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
  1193. }
  1194. EXPORT_SYMBOL(tcp_mtup_init);
  1195. /* This function synchronize snd mss to current pmtu/exthdr set.
  1196. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1197. for TCP options, but includes only bare TCP header.
  1198. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1199. It is minimum of user_mss and mss received with SYN.
  1200. It also does not include TCP options.
  1201. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1202. tp->mss_cache is current effective sending mss, including
  1203. all tcp options except for SACKs. It is evaluated,
  1204. taking into account current pmtu, but never exceeds
  1205. tp->rx_opt.mss_clamp.
  1206. NOTE1. rfc1122 clearly states that advertised MSS
  1207. DOES NOT include either tcp or ip options.
  1208. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1209. are READ ONLY outside this function. --ANK (980731)
  1210. */
  1211. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1212. {
  1213. struct tcp_sock *tp = tcp_sk(sk);
  1214. struct inet_connection_sock *icsk = inet_csk(sk);
  1215. int mss_now;
  1216. if (icsk->icsk_mtup.search_high > pmtu)
  1217. icsk->icsk_mtup.search_high = pmtu;
  1218. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1219. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1220. /* And store cached results */
  1221. icsk->icsk_pmtu_cookie = pmtu;
  1222. if (icsk->icsk_mtup.enabled)
  1223. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1224. tp->mss_cache = mss_now;
  1225. return mss_now;
  1226. }
  1227. EXPORT_SYMBOL(tcp_sync_mss);
  1228. /* Compute the current effective MSS, taking SACKs and IP options,
  1229. * and even PMTU discovery events into account.
  1230. */
  1231. unsigned int tcp_current_mss(struct sock *sk)
  1232. {
  1233. const struct tcp_sock *tp = tcp_sk(sk);
  1234. const struct dst_entry *dst = __sk_dst_get(sk);
  1235. u32 mss_now;
  1236. unsigned int header_len;
  1237. struct tcp_out_options opts;
  1238. struct tcp_md5sig_key *md5;
  1239. mss_now = tp->mss_cache;
  1240. if (dst) {
  1241. u32 mtu = dst_mtu(dst);
  1242. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1243. mss_now = tcp_sync_mss(sk, mtu);
  1244. }
  1245. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1246. sizeof(struct tcphdr);
  1247. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1248. * some common options. If this is an odd packet (because we have SACK
  1249. * blocks etc) then our calculated header_len will be different, and
  1250. * we have to adjust mss_now correspondingly */
  1251. if (header_len != tp->tcp_header_len) {
  1252. int delta = (int) header_len - tp->tcp_header_len;
  1253. mss_now -= delta;
  1254. }
  1255. return mss_now;
  1256. }
  1257. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1258. * As additional protections, we do not touch cwnd in retransmission phases,
  1259. * and if application hit its sndbuf limit recently.
  1260. */
  1261. static void tcp_cwnd_application_limited(struct sock *sk)
  1262. {
  1263. struct tcp_sock *tp = tcp_sk(sk);
  1264. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1265. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1266. /* Limited by application or receiver window. */
  1267. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1268. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1269. if (win_used < tp->snd_cwnd) {
  1270. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1271. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1272. }
  1273. tp->snd_cwnd_used = 0;
  1274. }
  1275. tp->snd_cwnd_stamp = tcp_time_stamp;
  1276. }
  1277. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1278. {
  1279. struct tcp_sock *tp = tcp_sk(sk);
  1280. /* Track the maximum number of outstanding packets in each
  1281. * window, and remember whether we were cwnd-limited then.
  1282. */
  1283. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1284. tp->packets_out > tp->max_packets_out) {
  1285. tp->max_packets_out = tp->packets_out;
  1286. tp->max_packets_seq = tp->snd_nxt;
  1287. tp->is_cwnd_limited = is_cwnd_limited;
  1288. }
  1289. if (tcp_is_cwnd_limited(sk)) {
  1290. /* Network is feed fully. */
  1291. tp->snd_cwnd_used = 0;
  1292. tp->snd_cwnd_stamp = tcp_time_stamp;
  1293. } else {
  1294. /* Network starves. */
  1295. if (tp->packets_out > tp->snd_cwnd_used)
  1296. tp->snd_cwnd_used = tp->packets_out;
  1297. if (sysctl_tcp_slow_start_after_idle &&
  1298. (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
  1299. tcp_cwnd_application_limited(sk);
  1300. }
  1301. }
  1302. /* Minshall's variant of the Nagle send check. */
  1303. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1304. {
  1305. return after(tp->snd_sml, tp->snd_una) &&
  1306. !after(tp->snd_sml, tp->snd_nxt);
  1307. }
  1308. /* Update snd_sml if this skb is under mss
  1309. * Note that a TSO packet might end with a sub-mss segment
  1310. * The test is really :
  1311. * if ((skb->len % mss) != 0)
  1312. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1313. * But we can avoid doing the divide again given we already have
  1314. * skb_pcount = skb->len / mss_now
  1315. */
  1316. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1317. const struct sk_buff *skb)
  1318. {
  1319. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1320. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1321. }
  1322. /* Return false, if packet can be sent now without violation Nagle's rules:
  1323. * 1. It is full sized. (provided by caller in %partial bool)
  1324. * 2. Or it contains FIN. (already checked by caller)
  1325. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1326. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1327. * With Minshall's modification: all sent small packets are ACKed.
  1328. */
  1329. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1330. int nonagle)
  1331. {
  1332. return partial &&
  1333. ((nonagle & TCP_NAGLE_CORK) ||
  1334. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1335. }
  1336. /* Return how many segs we'd like on a TSO packet,
  1337. * to send one TSO packet per ms
  1338. */
  1339. u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1340. int min_tso_segs)
  1341. {
  1342. u32 bytes, segs;
  1343. bytes = min(sk->sk_pacing_rate >> 10,
  1344. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1345. /* Goal is to send at least one packet per ms,
  1346. * not one big TSO packet every 100 ms.
  1347. * This preserves ACK clocking and is consistent
  1348. * with tcp_tso_should_defer() heuristic.
  1349. */
  1350. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1351. return min_t(u32, segs, sk->sk_gso_max_segs);
  1352. }
  1353. EXPORT_SYMBOL(tcp_tso_autosize);
  1354. /* Return the number of segments we want in the skb we are transmitting.
  1355. * See if congestion control module wants to decide; otherwise, autosize.
  1356. */
  1357. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1358. {
  1359. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1360. u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
  1361. return tso_segs ? :
  1362. tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
  1363. }
  1364. /* Returns the portion of skb which can be sent right away */
  1365. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1366. const struct sk_buff *skb,
  1367. unsigned int mss_now,
  1368. unsigned int max_segs,
  1369. int nonagle)
  1370. {
  1371. const struct tcp_sock *tp = tcp_sk(sk);
  1372. u32 partial, needed, window, max_len;
  1373. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1374. max_len = mss_now * max_segs;
  1375. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1376. return max_len;
  1377. needed = min(skb->len, window);
  1378. if (max_len <= needed)
  1379. return max_len;
  1380. partial = needed % mss_now;
  1381. /* If last segment is not a full MSS, check if Nagle rules allow us
  1382. * to include this last segment in this skb.
  1383. * Otherwise, we'll split the skb at last MSS boundary
  1384. */
  1385. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1386. return needed - partial;
  1387. return needed;
  1388. }
  1389. /* Can at least one segment of SKB be sent right now, according to the
  1390. * congestion window rules? If so, return how many segments are allowed.
  1391. */
  1392. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1393. const struct sk_buff *skb)
  1394. {
  1395. u32 in_flight, cwnd, halfcwnd;
  1396. /* Don't be strict about the congestion window for the final FIN. */
  1397. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1398. tcp_skb_pcount(skb) == 1)
  1399. return 1;
  1400. in_flight = tcp_packets_in_flight(tp);
  1401. cwnd = tp->snd_cwnd;
  1402. if (in_flight >= cwnd)
  1403. return 0;
  1404. /* For better scheduling, ensure we have at least
  1405. * 2 GSO packets in flight.
  1406. */
  1407. halfcwnd = max(cwnd >> 1, 1U);
  1408. return min(halfcwnd, cwnd - in_flight);
  1409. }
  1410. /* Initialize TSO state of a skb.
  1411. * This must be invoked the first time we consider transmitting
  1412. * SKB onto the wire.
  1413. */
  1414. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1415. {
  1416. int tso_segs = tcp_skb_pcount(skb);
  1417. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1418. tcp_set_skb_tso_segs(skb, mss_now);
  1419. tso_segs = tcp_skb_pcount(skb);
  1420. }
  1421. return tso_segs;
  1422. }
  1423. /* Return true if the Nagle test allows this packet to be
  1424. * sent now.
  1425. */
  1426. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1427. unsigned int cur_mss, int nonagle)
  1428. {
  1429. /* Nagle rule does not apply to frames, which sit in the middle of the
  1430. * write_queue (they have no chances to get new data).
  1431. *
  1432. * This is implemented in the callers, where they modify the 'nonagle'
  1433. * argument based upon the location of SKB in the send queue.
  1434. */
  1435. if (nonagle & TCP_NAGLE_PUSH)
  1436. return true;
  1437. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1438. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1439. return true;
  1440. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1441. return true;
  1442. return false;
  1443. }
  1444. /* Does at least the first segment of SKB fit into the send window? */
  1445. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1446. const struct sk_buff *skb,
  1447. unsigned int cur_mss)
  1448. {
  1449. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1450. if (skb->len > cur_mss)
  1451. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1452. return !after(end_seq, tcp_wnd_end(tp));
  1453. }
  1454. /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
  1455. * should be put on the wire right now. If so, it returns the number of
  1456. * packets allowed by the congestion window.
  1457. */
  1458. static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
  1459. unsigned int cur_mss, int nonagle)
  1460. {
  1461. const struct tcp_sock *tp = tcp_sk(sk);
  1462. unsigned int cwnd_quota;
  1463. tcp_init_tso_segs(skb, cur_mss);
  1464. if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
  1465. return 0;
  1466. cwnd_quota = tcp_cwnd_test(tp, skb);
  1467. if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
  1468. cwnd_quota = 0;
  1469. return cwnd_quota;
  1470. }
  1471. /* Test if sending is allowed right now. */
  1472. bool tcp_may_send_now(struct sock *sk)
  1473. {
  1474. const struct tcp_sock *tp = tcp_sk(sk);
  1475. struct sk_buff *skb = tcp_send_head(sk);
  1476. return skb &&
  1477. tcp_snd_test(sk, skb, tcp_current_mss(sk),
  1478. (tcp_skb_is_last(sk, skb) ?
  1479. tp->nonagle : TCP_NAGLE_PUSH));
  1480. }
  1481. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1482. * which is put after SKB on the list. It is very much like
  1483. * tcp_fragment() except that it may make several kinds of assumptions
  1484. * in order to speed up the splitting operation. In particular, we
  1485. * know that all the data is in scatter-gather pages, and that the
  1486. * packet has never been sent out before (and thus is not cloned).
  1487. */
  1488. static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
  1489. unsigned int mss_now, gfp_t gfp)
  1490. {
  1491. struct sk_buff *buff;
  1492. int nlen = skb->len - len;
  1493. u8 flags;
  1494. /* All of a TSO frame must be composed of paged data. */
  1495. if (skb->len != skb->data_len)
  1496. return tcp_fragment(sk, skb, len, mss_now, gfp);
  1497. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1498. if (unlikely(!buff))
  1499. return -ENOMEM;
  1500. sk->sk_wmem_queued += buff->truesize;
  1501. sk_mem_charge(sk, buff->truesize);
  1502. buff->truesize += nlen;
  1503. skb->truesize -= nlen;
  1504. /* Correct the sequence numbers. */
  1505. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1506. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1507. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1508. /* PSH and FIN should only be set in the second packet. */
  1509. flags = TCP_SKB_CB(skb)->tcp_flags;
  1510. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1511. TCP_SKB_CB(buff)->tcp_flags = flags;
  1512. /* This packet was never sent out yet, so no SACK bits. */
  1513. TCP_SKB_CB(buff)->sacked = 0;
  1514. tcp_skb_fragment_eor(skb, buff);
  1515. buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
  1516. skb_split(skb, buff, len);
  1517. tcp_fragment_tstamp(skb, buff);
  1518. /* Fix up tso_factor for both original and new SKB. */
  1519. tcp_set_skb_tso_segs(skb, mss_now);
  1520. tcp_set_skb_tso_segs(buff, mss_now);
  1521. /* Link BUFF into the send queue. */
  1522. __skb_header_release(buff);
  1523. tcp_insert_write_queue_after(skb, buff, sk);
  1524. return 0;
  1525. }
  1526. /* Try to defer sending, if possible, in order to minimize the amount
  1527. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1528. *
  1529. * This algorithm is from John Heffner.
  1530. */
  1531. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1532. bool *is_cwnd_limited, u32 max_segs)
  1533. {
  1534. const struct inet_connection_sock *icsk = inet_csk(sk);
  1535. u32 age, send_win, cong_win, limit, in_flight;
  1536. struct tcp_sock *tp = tcp_sk(sk);
  1537. struct skb_mstamp now;
  1538. struct sk_buff *head;
  1539. int win_divisor;
  1540. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1541. goto send_now;
  1542. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1543. goto send_now;
  1544. /* Avoid bursty behavior by allowing defer
  1545. * only if the last write was recent.
  1546. */
  1547. if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
  1548. goto send_now;
  1549. in_flight = tcp_packets_in_flight(tp);
  1550. BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
  1551. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1552. /* From in_flight test above, we know that cwnd > in_flight. */
  1553. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1554. limit = min(send_win, cong_win);
  1555. /* If a full-sized TSO skb can be sent, do it. */
  1556. if (limit >= max_segs * tp->mss_cache)
  1557. goto send_now;
  1558. /* Middle in queue won't get any more data, full sendable already? */
  1559. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1560. goto send_now;
  1561. win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
  1562. if (win_divisor) {
  1563. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1564. /* If at least some fraction of a window is available,
  1565. * just use it.
  1566. */
  1567. chunk /= win_divisor;
  1568. if (limit >= chunk)
  1569. goto send_now;
  1570. } else {
  1571. /* Different approach, try not to defer past a single
  1572. * ACK. Receiver should ACK every other full sized
  1573. * frame, so if we have space for more than 3 frames
  1574. * then send now.
  1575. */
  1576. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1577. goto send_now;
  1578. }
  1579. head = tcp_write_queue_head(sk);
  1580. skb_mstamp_get(&now);
  1581. age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
  1582. /* If next ACK is likely to come too late (half srtt), do not defer */
  1583. if (age < (tp->srtt_us >> 4))
  1584. goto send_now;
  1585. /* Ok, it looks like it is advisable to defer. */
  1586. if (cong_win < send_win && cong_win <= skb->len)
  1587. *is_cwnd_limited = true;
  1588. return true;
  1589. send_now:
  1590. return false;
  1591. }
  1592. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1593. {
  1594. struct inet_connection_sock *icsk = inet_csk(sk);
  1595. struct tcp_sock *tp = tcp_sk(sk);
  1596. struct net *net = sock_net(sk);
  1597. u32 interval;
  1598. s32 delta;
  1599. interval = net->ipv4.sysctl_tcp_probe_interval;
  1600. delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
  1601. if (unlikely(delta >= interval * HZ)) {
  1602. int mss = tcp_current_mss(sk);
  1603. /* Update current search range */
  1604. icsk->icsk_mtup.probe_size = 0;
  1605. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1606. sizeof(struct tcphdr) +
  1607. icsk->icsk_af_ops->net_header_len;
  1608. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1609. /* Update probe time stamp */
  1610. icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
  1611. }
  1612. }
  1613. /* Create a new MTU probe if we are ready.
  1614. * MTU probe is regularly attempting to increase the path MTU by
  1615. * deliberately sending larger packets. This discovers routing
  1616. * changes resulting in larger path MTUs.
  1617. *
  1618. * Returns 0 if we should wait to probe (no cwnd available),
  1619. * 1 if a probe was sent,
  1620. * -1 otherwise
  1621. */
  1622. static int tcp_mtu_probe(struct sock *sk)
  1623. {
  1624. struct tcp_sock *tp = tcp_sk(sk);
  1625. struct inet_connection_sock *icsk = inet_csk(sk);
  1626. struct sk_buff *skb, *nskb, *next;
  1627. struct net *net = sock_net(sk);
  1628. int len;
  1629. int probe_size;
  1630. int size_needed;
  1631. int copy;
  1632. int mss_now;
  1633. int interval;
  1634. /* Not currently probing/verifying,
  1635. * not in recovery,
  1636. * have enough cwnd, and
  1637. * not SACKing (the variable headers throw things off) */
  1638. if (!icsk->icsk_mtup.enabled ||
  1639. icsk->icsk_mtup.probe_size ||
  1640. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1641. tp->snd_cwnd < 11 ||
  1642. tp->rx_opt.num_sacks || tp->rx_opt.dsack)
  1643. return -1;
  1644. /* Use binary search for probe_size between tcp_mss_base,
  1645. * and current mss_clamp. if (search_high - search_low)
  1646. * smaller than a threshold, backoff from probing.
  1647. */
  1648. mss_now = tcp_current_mss(sk);
  1649. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1650. icsk->icsk_mtup.search_low) >> 1);
  1651. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1652. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1653. /* When misfortune happens, we are reprobing actively,
  1654. * and then reprobe timer has expired. We stick with current
  1655. * probing process by not resetting search range to its orignal.
  1656. */
  1657. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1658. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1659. /* Check whether enough time has elaplased for
  1660. * another round of probing.
  1661. */
  1662. tcp_mtu_check_reprobe(sk);
  1663. return -1;
  1664. }
  1665. /* Have enough data in the send queue to probe? */
  1666. if (tp->write_seq - tp->snd_nxt < size_needed)
  1667. return -1;
  1668. if (tp->snd_wnd < size_needed)
  1669. return -1;
  1670. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1671. return 0;
  1672. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1673. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1674. if (!tcp_packets_in_flight(tp))
  1675. return -1;
  1676. else
  1677. return 0;
  1678. }
  1679. /* We're allowed to probe. Build it now. */
  1680. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1681. if (!nskb)
  1682. return -1;
  1683. sk->sk_wmem_queued += nskb->truesize;
  1684. sk_mem_charge(sk, nskb->truesize);
  1685. skb = tcp_send_head(sk);
  1686. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1687. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1688. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1689. TCP_SKB_CB(nskb)->sacked = 0;
  1690. nskb->csum = 0;
  1691. nskb->ip_summed = skb->ip_summed;
  1692. tcp_insert_write_queue_before(nskb, skb, sk);
  1693. len = 0;
  1694. tcp_for_write_queue_from_safe(skb, next, sk) {
  1695. copy = min_t(int, skb->len, probe_size - len);
  1696. if (nskb->ip_summed) {
  1697. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1698. } else {
  1699. __wsum csum = skb_copy_and_csum_bits(skb, 0,
  1700. skb_put(nskb, copy),
  1701. copy, 0);
  1702. nskb->csum = csum_block_add(nskb->csum, csum, len);
  1703. }
  1704. if (skb->len <= copy) {
  1705. /* We've eaten all the data from this skb.
  1706. * Throw it away. */
  1707. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1708. tcp_unlink_write_queue(skb, sk);
  1709. sk_wmem_free_skb(sk, skb);
  1710. } else {
  1711. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1712. ~(TCPHDR_FIN|TCPHDR_PSH);
  1713. if (!skb_shinfo(skb)->nr_frags) {
  1714. skb_pull(skb, copy);
  1715. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1716. skb->csum = csum_partial(skb->data,
  1717. skb->len, 0);
  1718. } else {
  1719. __pskb_trim_head(skb, copy);
  1720. tcp_set_skb_tso_segs(skb, mss_now);
  1721. }
  1722. TCP_SKB_CB(skb)->seq += copy;
  1723. }
  1724. len += copy;
  1725. if (len >= probe_size)
  1726. break;
  1727. }
  1728. tcp_init_tso_segs(nskb, nskb->len);
  1729. /* We're ready to send. If this fails, the probe will
  1730. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1731. */
  1732. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1733. /* Decrement cwnd here because we are sending
  1734. * effectively two packets. */
  1735. tp->snd_cwnd--;
  1736. tcp_event_new_data_sent(sk, nskb);
  1737. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1738. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1739. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1740. return 1;
  1741. }
  1742. return -1;
  1743. }
  1744. /* TCP Small Queues :
  1745. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1746. * (These limits are doubled for retransmits)
  1747. * This allows for :
  1748. * - better RTT estimation and ACK scheduling
  1749. * - faster recovery
  1750. * - high rates
  1751. * Alas, some drivers / subsystems require a fair amount
  1752. * of queued bytes to ensure line rate.
  1753. * One example is wifi aggregation (802.11 AMPDU)
  1754. */
  1755. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1756. unsigned int factor)
  1757. {
  1758. unsigned int limit;
  1759. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
  1760. limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
  1761. limit <<= factor;
  1762. if (atomic_read(&sk->sk_wmem_alloc) > limit) {
  1763. set_bit(TSQ_THROTTLED, &tcp_sk(sk)->tsq_flags);
  1764. /* It is possible TX completion already happened
  1765. * before we set TSQ_THROTTLED, so we must
  1766. * test again the condition.
  1767. */
  1768. smp_mb__after_atomic();
  1769. if (atomic_read(&sk->sk_wmem_alloc) > limit)
  1770. return true;
  1771. }
  1772. return false;
  1773. }
  1774. /* This routine writes packets to the network. It advances the
  1775. * send_head. This happens as incoming acks open up the remote
  1776. * window for us.
  1777. *
  1778. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1779. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1780. * account rare use of URG, this is not a big flaw.
  1781. *
  1782. * Send at most one packet when push_one > 0. Temporarily ignore
  1783. * cwnd limit to force at most one packet out when push_one == 2.
  1784. * Returns true, if no segments are in flight and we have queued segments,
  1785. * but cannot send anything now because of SWS or another problem.
  1786. */
  1787. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1788. int push_one, gfp_t gfp)
  1789. {
  1790. struct tcp_sock *tp = tcp_sk(sk);
  1791. struct sk_buff *skb;
  1792. unsigned int tso_segs, sent_pkts;
  1793. int cwnd_quota;
  1794. int result;
  1795. bool is_cwnd_limited = false;
  1796. u32 max_segs;
  1797. sent_pkts = 0;
  1798. if (!push_one) {
  1799. /* Do MTU probing. */
  1800. result = tcp_mtu_probe(sk);
  1801. if (!result) {
  1802. return false;
  1803. } else if (result > 0) {
  1804. sent_pkts = 1;
  1805. }
  1806. }
  1807. max_segs = tcp_tso_segs(sk, mss_now);
  1808. while ((skb = tcp_send_head(sk))) {
  1809. unsigned int limit;
  1810. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1811. BUG_ON(!tso_segs);
  1812. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1813. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1814. skb_mstamp_get(&skb->skb_mstamp);
  1815. goto repair; /* Skip network transmission */
  1816. }
  1817. cwnd_quota = tcp_cwnd_test(tp, skb);
  1818. if (!cwnd_quota) {
  1819. if (push_one == 2)
  1820. /* Force out a loss probe pkt. */
  1821. cwnd_quota = 1;
  1822. else
  1823. break;
  1824. }
  1825. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
  1826. break;
  1827. if (tso_segs == 1) {
  1828. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  1829. (tcp_skb_is_last(sk, skb) ?
  1830. nonagle : TCP_NAGLE_PUSH))))
  1831. break;
  1832. } else {
  1833. if (!push_one &&
  1834. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  1835. max_segs))
  1836. break;
  1837. }
  1838. limit = mss_now;
  1839. if (tso_segs > 1 && !tcp_urg_mode(tp))
  1840. limit = tcp_mss_split_point(sk, skb, mss_now,
  1841. min_t(unsigned int,
  1842. cwnd_quota,
  1843. max_segs),
  1844. nonagle);
  1845. if (skb->len > limit &&
  1846. unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
  1847. break;
  1848. if (tcp_small_queue_check(sk, skb, 0))
  1849. break;
  1850. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  1851. break;
  1852. repair:
  1853. /* Advance the send_head. This one is sent out.
  1854. * This call will increment packets_out.
  1855. */
  1856. tcp_event_new_data_sent(sk, skb);
  1857. tcp_minshall_update(tp, mss_now, skb);
  1858. sent_pkts += tcp_skb_pcount(skb);
  1859. if (push_one)
  1860. break;
  1861. }
  1862. if (likely(sent_pkts)) {
  1863. if (tcp_in_cwnd_reduction(sk))
  1864. tp->prr_out += sent_pkts;
  1865. /* Send one loss probe per tail loss episode. */
  1866. if (push_one != 2)
  1867. tcp_schedule_loss_probe(sk);
  1868. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  1869. tcp_cwnd_validate(sk, is_cwnd_limited);
  1870. return false;
  1871. }
  1872. return !tp->packets_out && tcp_send_head(sk);
  1873. }
  1874. bool tcp_schedule_loss_probe(struct sock *sk)
  1875. {
  1876. struct inet_connection_sock *icsk = inet_csk(sk);
  1877. struct tcp_sock *tp = tcp_sk(sk);
  1878. u32 timeout, tlp_time_stamp, rto_time_stamp;
  1879. u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
  1880. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
  1881. return false;
  1882. /* No consecutive loss probes. */
  1883. if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
  1884. tcp_rearm_rto(sk);
  1885. return false;
  1886. }
  1887. /* Don't do any loss probe on a Fast Open connection before 3WHS
  1888. * finishes.
  1889. */
  1890. if (tp->fastopen_rsk)
  1891. return false;
  1892. /* TLP is only scheduled when next timer event is RTO. */
  1893. if (icsk->icsk_pending != ICSK_TIME_RETRANS)
  1894. return false;
  1895. /* Schedule a loss probe in 2*RTT for SACK capable connections
  1896. * in Open state, that are either limited by cwnd or application.
  1897. */
  1898. if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
  1899. !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  1900. return false;
  1901. if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
  1902. tcp_send_head(sk))
  1903. return false;
  1904. /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
  1905. * for delayed ack when there's one outstanding packet. If no RTT
  1906. * sample is available then probe after TCP_TIMEOUT_INIT.
  1907. */
  1908. timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
  1909. if (tp->packets_out == 1)
  1910. timeout = max_t(u32, timeout,
  1911. (rtt + (rtt >> 1) + TCP_DELACK_MAX));
  1912. timeout = max_t(u32, timeout, msecs_to_jiffies(10));
  1913. /* If RTO is shorter, just schedule TLP in its place. */
  1914. tlp_time_stamp = tcp_time_stamp + timeout;
  1915. rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
  1916. if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
  1917. s32 delta = rto_time_stamp - tcp_time_stamp;
  1918. if (delta > 0)
  1919. timeout = delta;
  1920. }
  1921. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  1922. TCP_RTO_MAX);
  1923. return true;
  1924. }
  1925. /* Thanks to skb fast clones, we can detect if a prior transmit of
  1926. * a packet is still in a qdisc or driver queue.
  1927. * In this case, there is very little point doing a retransmit !
  1928. */
  1929. static bool skb_still_in_host_queue(const struct sock *sk,
  1930. const struct sk_buff *skb)
  1931. {
  1932. if (unlikely(skb_fclone_busy(sk, skb))) {
  1933. NET_INC_STATS(sock_net(sk),
  1934. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  1935. return true;
  1936. }
  1937. return false;
  1938. }
  1939. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  1940. * retransmit the last segment.
  1941. */
  1942. void tcp_send_loss_probe(struct sock *sk)
  1943. {
  1944. struct tcp_sock *tp = tcp_sk(sk);
  1945. struct sk_buff *skb;
  1946. int pcount;
  1947. int mss = tcp_current_mss(sk);
  1948. skb = tcp_send_head(sk);
  1949. if (skb) {
  1950. if (tcp_snd_wnd_test(tp, skb, mss)) {
  1951. pcount = tp->packets_out;
  1952. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  1953. if (tp->packets_out > pcount)
  1954. goto probe_sent;
  1955. goto rearm_timer;
  1956. }
  1957. skb = tcp_write_queue_prev(sk, skb);
  1958. } else {
  1959. skb = tcp_write_queue_tail(sk);
  1960. }
  1961. /* At most one outstanding TLP retransmission. */
  1962. if (tp->tlp_high_seq)
  1963. goto rearm_timer;
  1964. /* Retransmit last segment. */
  1965. if (WARN_ON(!skb))
  1966. goto rearm_timer;
  1967. if (skb_still_in_host_queue(sk, skb))
  1968. goto rearm_timer;
  1969. pcount = tcp_skb_pcount(skb);
  1970. if (WARN_ON(!pcount))
  1971. goto rearm_timer;
  1972. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  1973. if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
  1974. GFP_ATOMIC)))
  1975. goto rearm_timer;
  1976. skb = tcp_write_queue_next(sk, skb);
  1977. }
  1978. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  1979. goto rearm_timer;
  1980. if (__tcp_retransmit_skb(sk, skb, 1))
  1981. goto rearm_timer;
  1982. /* Record snd_nxt for loss detection. */
  1983. tp->tlp_high_seq = tp->snd_nxt;
  1984. probe_sent:
  1985. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  1986. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  1987. inet_csk(sk)->icsk_pending = 0;
  1988. rearm_timer:
  1989. tcp_rearm_rto(sk);
  1990. }
  1991. /* Push out any pending frames which were held back due to
  1992. * TCP_CORK or attempt at coalescing tiny packets.
  1993. * The socket must be locked by the caller.
  1994. */
  1995. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  1996. int nonagle)
  1997. {
  1998. /* If we are closed, the bytes will have to remain here.
  1999. * In time closedown will finish, we empty the write queue and
  2000. * all will be happy.
  2001. */
  2002. if (unlikely(sk->sk_state == TCP_CLOSE))
  2003. return;
  2004. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2005. sk_gfp_mask(sk, GFP_ATOMIC)))
  2006. tcp_check_probe_timer(sk);
  2007. }
  2008. /* Send _single_ skb sitting at the send head. This function requires
  2009. * true push pending frames to setup probe timer etc.
  2010. */
  2011. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2012. {
  2013. struct sk_buff *skb = tcp_send_head(sk);
  2014. BUG_ON(!skb || skb->len < mss_now);
  2015. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2016. }
  2017. /* This function returns the amount that we can raise the
  2018. * usable window based on the following constraints
  2019. *
  2020. * 1. The window can never be shrunk once it is offered (RFC 793)
  2021. * 2. We limit memory per socket
  2022. *
  2023. * RFC 1122:
  2024. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2025. * RECV.NEXT + RCV.WIN fixed until:
  2026. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2027. *
  2028. * i.e. don't raise the right edge of the window until you can raise
  2029. * it at least MSS bytes.
  2030. *
  2031. * Unfortunately, the recommended algorithm breaks header prediction,
  2032. * since header prediction assumes th->window stays fixed.
  2033. *
  2034. * Strictly speaking, keeping th->window fixed violates the receiver
  2035. * side SWS prevention criteria. The problem is that under this rule
  2036. * a stream of single byte packets will cause the right side of the
  2037. * window to always advance by a single byte.
  2038. *
  2039. * Of course, if the sender implements sender side SWS prevention
  2040. * then this will not be a problem.
  2041. *
  2042. * BSD seems to make the following compromise:
  2043. *
  2044. * If the free space is less than the 1/4 of the maximum
  2045. * space available and the free space is less than 1/2 mss,
  2046. * then set the window to 0.
  2047. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2048. * Otherwise, just prevent the window from shrinking
  2049. * and from being larger than the largest representable value.
  2050. *
  2051. * This prevents incremental opening of the window in the regime
  2052. * where TCP is limited by the speed of the reader side taking
  2053. * data out of the TCP receive queue. It does nothing about
  2054. * those cases where the window is constrained on the sender side
  2055. * because the pipeline is full.
  2056. *
  2057. * BSD also seems to "accidentally" limit itself to windows that are a
  2058. * multiple of MSS, at least until the free space gets quite small.
  2059. * This would appear to be a side effect of the mbuf implementation.
  2060. * Combining these two algorithms results in the observed behavior
  2061. * of having a fixed window size at almost all times.
  2062. *
  2063. * Below we obtain similar behavior by forcing the offered window to
  2064. * a multiple of the mss when it is feasible to do so.
  2065. *
  2066. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2067. * Regular options like TIMESTAMP are taken into account.
  2068. */
  2069. u32 __tcp_select_window(struct sock *sk)
  2070. {
  2071. struct inet_connection_sock *icsk = inet_csk(sk);
  2072. struct tcp_sock *tp = tcp_sk(sk);
  2073. /* MSS for the peer's data. Previous versions used mss_clamp
  2074. * here. I don't know if the value based on our guesses
  2075. * of peer's MSS is better for the performance. It's more correct
  2076. * but may be worse for the performance because of rcv_mss
  2077. * fluctuations. --SAW 1998/11/1
  2078. */
  2079. int mss = icsk->icsk_ack.rcv_mss;
  2080. int free_space = tcp_space(sk);
  2081. int allowed_space = tcp_full_space(sk);
  2082. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2083. int window;
  2084. if (unlikely(mss > full_space)) {
  2085. mss = full_space;
  2086. if (mss <= 0)
  2087. return 0;
  2088. }
  2089. if (free_space < (full_space >> 1)) {
  2090. icsk->icsk_ack.quick = 0;
  2091. if (tcp_under_memory_pressure(sk))
  2092. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2093. 4U * tp->advmss);
  2094. /* free_space might become our new window, make sure we don't
  2095. * increase it due to wscale.
  2096. */
  2097. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2098. /* if free space is less than mss estimate, or is below 1/16th
  2099. * of the maximum allowed, try to move to zero-window, else
  2100. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2101. * new incoming data is dropped due to memory limits.
  2102. * With large window, mss test triggers way too late in order
  2103. * to announce zero window in time before rmem limit kicks in.
  2104. */
  2105. if (free_space < (allowed_space >> 4) || free_space < mss)
  2106. return 0;
  2107. }
  2108. if (free_space > tp->rcv_ssthresh)
  2109. free_space = tp->rcv_ssthresh;
  2110. /* Don't do rounding if we are using window scaling, since the
  2111. * scaled window will not line up with the MSS boundary anyway.
  2112. */
  2113. window = tp->rcv_wnd;
  2114. if (tp->rx_opt.rcv_wscale) {
  2115. window = free_space;
  2116. /* Advertise enough space so that it won't get scaled away.
  2117. * Import case: prevent zero window announcement if
  2118. * 1<<rcv_wscale > mss.
  2119. */
  2120. if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
  2121. window = (((window >> tp->rx_opt.rcv_wscale) + 1)
  2122. << tp->rx_opt.rcv_wscale);
  2123. } else {
  2124. /* Get the largest window that is a nice multiple of mss.
  2125. * Window clamp already applied above.
  2126. * If our current window offering is within 1 mss of the
  2127. * free space we just keep it. This prevents the divide
  2128. * and multiply from happening most of the time.
  2129. * We also don't do any window rounding when the free space
  2130. * is too small.
  2131. */
  2132. if (window <= free_space - mss || window > free_space)
  2133. window = (free_space / mss) * mss;
  2134. else if (mss == full_space &&
  2135. free_space > window + (full_space >> 1))
  2136. window = free_space;
  2137. }
  2138. return window;
  2139. }
  2140. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2141. const struct sk_buff *next_skb)
  2142. {
  2143. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2144. const struct skb_shared_info *next_shinfo =
  2145. skb_shinfo(next_skb);
  2146. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2147. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2148. shinfo->tskey = next_shinfo->tskey;
  2149. TCP_SKB_CB(skb)->txstamp_ack |=
  2150. TCP_SKB_CB(next_skb)->txstamp_ack;
  2151. }
  2152. }
  2153. /* Collapses two adjacent SKB's during retransmission. */
  2154. static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2155. {
  2156. struct tcp_sock *tp = tcp_sk(sk);
  2157. struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
  2158. int skb_size, next_skb_size;
  2159. skb_size = skb->len;
  2160. next_skb_size = next_skb->len;
  2161. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2162. tcp_highest_sack_combine(sk, next_skb, skb);
  2163. tcp_unlink_write_queue(next_skb, sk);
  2164. skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
  2165. next_skb_size);
  2166. if (next_skb->ip_summed == CHECKSUM_PARTIAL)
  2167. skb->ip_summed = CHECKSUM_PARTIAL;
  2168. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2169. skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
  2170. /* Update sequence range on original skb. */
  2171. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2172. /* Merge over control information. This moves PSH/FIN etc. over */
  2173. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2174. /* All done, get rid of second SKB and account for it so
  2175. * packet counting does not break.
  2176. */
  2177. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2178. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2179. /* changed transmit queue under us so clear hints */
  2180. tcp_clear_retrans_hints_partial(tp);
  2181. if (next_skb == tp->retransmit_skb_hint)
  2182. tp->retransmit_skb_hint = skb;
  2183. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2184. tcp_skb_collapse_tstamp(skb, next_skb);
  2185. sk_wmem_free_skb(sk, next_skb);
  2186. }
  2187. /* Check if coalescing SKBs is legal. */
  2188. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2189. {
  2190. if (tcp_skb_pcount(skb) > 1)
  2191. return false;
  2192. /* TODO: SACK collapsing could be used to remove this condition */
  2193. if (skb_shinfo(skb)->nr_frags != 0)
  2194. return false;
  2195. if (skb_cloned(skb))
  2196. return false;
  2197. if (skb == tcp_send_head(sk))
  2198. return false;
  2199. /* Some heurestics for collapsing over SACK'd could be invented */
  2200. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2201. return false;
  2202. return true;
  2203. }
  2204. /* Collapse packets in the retransmit queue to make to create
  2205. * less packets on the wire. This is only done on retransmission.
  2206. */
  2207. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2208. int space)
  2209. {
  2210. struct tcp_sock *tp = tcp_sk(sk);
  2211. struct sk_buff *skb = to, *tmp;
  2212. bool first = true;
  2213. if (!sysctl_tcp_retrans_collapse)
  2214. return;
  2215. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2216. return;
  2217. tcp_for_write_queue_from_safe(skb, tmp, sk) {
  2218. if (!tcp_can_collapse(sk, skb))
  2219. break;
  2220. if (!tcp_skb_can_collapse_to(to))
  2221. break;
  2222. space -= skb->len;
  2223. if (first) {
  2224. first = false;
  2225. continue;
  2226. }
  2227. if (space < 0)
  2228. break;
  2229. /* Punt if not enough space exists in the first SKB for
  2230. * the data in the second
  2231. */
  2232. if (skb->len > skb_availroom(to))
  2233. break;
  2234. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2235. break;
  2236. tcp_collapse_retrans(sk, to);
  2237. }
  2238. }
  2239. /* This retransmits one SKB. Policy decisions and retransmit queue
  2240. * state updates are done by the caller. Returns non-zero if an
  2241. * error occurred which prevented the send.
  2242. */
  2243. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2244. {
  2245. struct inet_connection_sock *icsk = inet_csk(sk);
  2246. struct tcp_sock *tp = tcp_sk(sk);
  2247. unsigned int cur_mss;
  2248. int diff, len, err;
  2249. /* Inconclusive MTU probe */
  2250. if (icsk->icsk_mtup.probe_size)
  2251. icsk->icsk_mtup.probe_size = 0;
  2252. /* Do not sent more than we queued. 1/4 is reserved for possible
  2253. * copying overhead: fragmentation, tunneling, mangling etc.
  2254. */
  2255. if (atomic_read(&sk->sk_wmem_alloc) >
  2256. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2257. sk->sk_sndbuf))
  2258. return -EAGAIN;
  2259. if (skb_still_in_host_queue(sk, skb))
  2260. return -EBUSY;
  2261. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2262. if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  2263. BUG();
  2264. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2265. return -ENOMEM;
  2266. }
  2267. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2268. return -EHOSTUNREACH; /* Routing failure or similar. */
  2269. cur_mss = tcp_current_mss(sk);
  2270. /* If receiver has shrunk his window, and skb is out of
  2271. * new window, do not retransmit it. The exception is the
  2272. * case, when window is shrunk to zero. In this case
  2273. * our retransmit serves as a zero window probe.
  2274. */
  2275. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2276. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2277. return -EAGAIN;
  2278. len = cur_mss * segs;
  2279. if (skb->len > len) {
  2280. if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
  2281. return -ENOMEM; /* We'll try again later. */
  2282. } else {
  2283. if (skb_unclone(skb, GFP_ATOMIC))
  2284. return -ENOMEM;
  2285. diff = tcp_skb_pcount(skb);
  2286. tcp_set_skb_tso_segs(skb, cur_mss);
  2287. diff -= tcp_skb_pcount(skb);
  2288. if (diff)
  2289. tcp_adjust_pcount(sk, skb, diff);
  2290. if (skb->len < cur_mss)
  2291. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2292. }
  2293. /* RFC3168, section 6.1.1.1. ECN fallback */
  2294. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2295. tcp_ecn_clear_syn(sk, skb);
  2296. /* make sure skb->data is aligned on arches that require it
  2297. * and check if ack-trimming & collapsing extended the headroom
  2298. * beyond what csum_start can cover.
  2299. */
  2300. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2301. skb_headroom(skb) >= 0xFFFF)) {
  2302. struct sk_buff *nskb;
  2303. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2304. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2305. -ENOBUFS;
  2306. if (!err)
  2307. skb_mstamp_get(&skb->skb_mstamp);
  2308. } else {
  2309. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2310. }
  2311. if (likely(!err)) {
  2312. segs = tcp_skb_pcount(skb);
  2313. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2314. /* Update global TCP statistics. */
  2315. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2316. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2317. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2318. tp->total_retrans += segs;
  2319. }
  2320. return err;
  2321. }
  2322. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2323. {
  2324. struct tcp_sock *tp = tcp_sk(sk);
  2325. int err = __tcp_retransmit_skb(sk, skb, segs);
  2326. if (err == 0) {
  2327. #if FASTRETRANS_DEBUG > 0
  2328. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2329. net_dbg_ratelimited("retrans_out leaked\n");
  2330. }
  2331. #endif
  2332. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2333. tp->retrans_out += tcp_skb_pcount(skb);
  2334. /* Save stamp of the first retransmit. */
  2335. if (!tp->retrans_stamp)
  2336. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2337. } else if (err != -EBUSY) {
  2338. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
  2339. }
  2340. if (tp->undo_retrans < 0)
  2341. tp->undo_retrans = 0;
  2342. tp->undo_retrans += tcp_skb_pcount(skb);
  2343. return err;
  2344. }
  2345. /* Check if we forward retransmits are possible in the current
  2346. * window/congestion state.
  2347. */
  2348. static bool tcp_can_forward_retransmit(struct sock *sk)
  2349. {
  2350. const struct inet_connection_sock *icsk = inet_csk(sk);
  2351. const struct tcp_sock *tp = tcp_sk(sk);
  2352. /* Forward retransmissions are possible only during Recovery. */
  2353. if (icsk->icsk_ca_state != TCP_CA_Recovery)
  2354. return false;
  2355. /* No forward retransmissions in Reno are possible. */
  2356. if (tcp_is_reno(tp))
  2357. return false;
  2358. /* Yeah, we have to make difficult choice between forward transmission
  2359. * and retransmission... Both ways have their merits...
  2360. *
  2361. * For now we do not retransmit anything, while we have some new
  2362. * segments to send. In the other cases, follow rule 3 for
  2363. * NextSeg() specified in RFC3517.
  2364. */
  2365. if (tcp_may_send_now(sk))
  2366. return false;
  2367. return true;
  2368. }
  2369. /* This gets called after a retransmit timeout, and the initially
  2370. * retransmitted data is acknowledged. It tries to continue
  2371. * resending the rest of the retransmit queue, until either
  2372. * we've sent it all or the congestion window limit is reached.
  2373. * If doing SACK, the first ACK which comes back for a timeout
  2374. * based retransmit packet might feed us FACK information again.
  2375. * If so, we use it to avoid unnecessarily retransmissions.
  2376. */
  2377. void tcp_xmit_retransmit_queue(struct sock *sk)
  2378. {
  2379. const struct inet_connection_sock *icsk = inet_csk(sk);
  2380. struct tcp_sock *tp = tcp_sk(sk);
  2381. struct sk_buff *skb;
  2382. struct sk_buff *hole = NULL;
  2383. u32 max_segs, last_lost;
  2384. int mib_idx;
  2385. int fwd_rexmitting = 0;
  2386. if (!tp->packets_out)
  2387. return;
  2388. if (!tp->lost_out)
  2389. tp->retransmit_high = tp->snd_una;
  2390. if (tp->retransmit_skb_hint) {
  2391. skb = tp->retransmit_skb_hint;
  2392. last_lost = TCP_SKB_CB(skb)->end_seq;
  2393. if (after(last_lost, tp->retransmit_high))
  2394. last_lost = tp->retransmit_high;
  2395. } else {
  2396. skb = tcp_write_queue_head(sk);
  2397. last_lost = tp->snd_una;
  2398. }
  2399. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2400. tcp_for_write_queue_from(skb, sk) {
  2401. __u8 sacked;
  2402. int segs;
  2403. if (skb == tcp_send_head(sk))
  2404. break;
  2405. /* we could do better than to assign each time */
  2406. if (!hole)
  2407. tp->retransmit_skb_hint = skb;
  2408. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2409. if (segs <= 0)
  2410. return;
  2411. sacked = TCP_SKB_CB(skb)->sacked;
  2412. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2413. * we need to make sure not sending too bigs TSO packets
  2414. */
  2415. segs = min_t(int, segs, max_segs);
  2416. if (fwd_rexmitting) {
  2417. begin_fwd:
  2418. if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  2419. break;
  2420. mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
  2421. } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
  2422. tp->retransmit_high = last_lost;
  2423. if (!tcp_can_forward_retransmit(sk))
  2424. break;
  2425. /* Backtrack if necessary to non-L'ed skb */
  2426. if (hole) {
  2427. skb = hole;
  2428. hole = NULL;
  2429. }
  2430. fwd_rexmitting = 1;
  2431. goto begin_fwd;
  2432. } else if (!(sacked & TCPCB_LOST)) {
  2433. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2434. hole = skb;
  2435. continue;
  2436. } else {
  2437. last_lost = TCP_SKB_CB(skb)->end_seq;
  2438. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2439. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2440. else
  2441. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2442. }
  2443. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2444. continue;
  2445. if (tcp_small_queue_check(sk, skb, 1))
  2446. return;
  2447. if (tcp_retransmit_skb(sk, skb, segs))
  2448. return;
  2449. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2450. if (tcp_in_cwnd_reduction(sk))
  2451. tp->prr_out += tcp_skb_pcount(skb);
  2452. if (skb == tcp_write_queue_head(sk))
  2453. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2454. inet_csk(sk)->icsk_rto,
  2455. TCP_RTO_MAX);
  2456. }
  2457. }
  2458. /* We allow to exceed memory limits for FIN packets to expedite
  2459. * connection tear down and (memory) recovery.
  2460. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2461. * or even be forced to close flow without any FIN.
  2462. * In general, we want to allow one skb per socket to avoid hangs
  2463. * with edge trigger epoll()
  2464. */
  2465. void sk_forced_mem_schedule(struct sock *sk, int size)
  2466. {
  2467. int amt;
  2468. if (size <= sk->sk_forward_alloc)
  2469. return;
  2470. amt = sk_mem_pages(size);
  2471. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2472. sk_memory_allocated_add(sk, amt);
  2473. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2474. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2475. }
  2476. /* Send a FIN. The caller locks the socket for us.
  2477. * We should try to send a FIN packet really hard, but eventually give up.
  2478. */
  2479. void tcp_send_fin(struct sock *sk)
  2480. {
  2481. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2482. struct tcp_sock *tp = tcp_sk(sk);
  2483. /* Optimization, tack on the FIN if we have one skb in write queue and
  2484. * this skb was not yet sent, or we are under memory pressure.
  2485. * Note: in the latter case, FIN packet will be sent after a timeout,
  2486. * as TCP stack thinks it has already been transmitted.
  2487. */
  2488. if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
  2489. coalesce:
  2490. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2491. TCP_SKB_CB(tskb)->end_seq++;
  2492. tp->write_seq++;
  2493. if (!tcp_send_head(sk)) {
  2494. /* This means tskb was already sent.
  2495. * Pretend we included the FIN on previous transmit.
  2496. * We need to set tp->snd_nxt to the value it would have
  2497. * if FIN had been sent. This is because retransmit path
  2498. * does not change tp->snd_nxt.
  2499. */
  2500. tp->snd_nxt++;
  2501. return;
  2502. }
  2503. } else {
  2504. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2505. if (unlikely(!skb)) {
  2506. if (tskb)
  2507. goto coalesce;
  2508. return;
  2509. }
  2510. skb_reserve(skb, MAX_TCP_HEADER);
  2511. sk_forced_mem_schedule(sk, skb->truesize);
  2512. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2513. tcp_init_nondata_skb(skb, tp->write_seq,
  2514. TCPHDR_ACK | TCPHDR_FIN);
  2515. tcp_queue_skb(sk, skb);
  2516. }
  2517. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2518. }
  2519. /* We get here when a process closes a file descriptor (either due to
  2520. * an explicit close() or as a byproduct of exit()'ing) and there
  2521. * was unread data in the receive queue. This behavior is recommended
  2522. * by RFC 2525, section 2.17. -DaveM
  2523. */
  2524. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2525. {
  2526. struct sk_buff *skb;
  2527. /* NOTE: No TCP options attached and we never retransmit this. */
  2528. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2529. if (!skb) {
  2530. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2531. return;
  2532. }
  2533. /* Reserve space for headers and prepare control bits. */
  2534. skb_reserve(skb, MAX_TCP_HEADER);
  2535. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2536. TCPHDR_ACK | TCPHDR_RST);
  2537. skb_mstamp_get(&skb->skb_mstamp);
  2538. /* Send it off. */
  2539. if (tcp_transmit_skb(sk, skb, 0, priority))
  2540. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2541. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2542. }
  2543. /* Send a crossed SYN-ACK during socket establishment.
  2544. * WARNING: This routine must only be called when we have already sent
  2545. * a SYN packet that crossed the incoming SYN that caused this routine
  2546. * to get called. If this assumption fails then the initial rcv_wnd
  2547. * and rcv_wscale values will not be correct.
  2548. */
  2549. int tcp_send_synack(struct sock *sk)
  2550. {
  2551. struct sk_buff *skb;
  2552. skb = tcp_write_queue_head(sk);
  2553. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2554. pr_debug("%s: wrong queue state\n", __func__);
  2555. return -EFAULT;
  2556. }
  2557. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2558. if (skb_cloned(skb)) {
  2559. struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
  2560. if (!nskb)
  2561. return -ENOMEM;
  2562. tcp_unlink_write_queue(skb, sk);
  2563. __skb_header_release(nskb);
  2564. __tcp_add_write_queue_head(sk, nskb);
  2565. sk_wmem_free_skb(sk, skb);
  2566. sk->sk_wmem_queued += nskb->truesize;
  2567. sk_mem_charge(sk, nskb->truesize);
  2568. skb = nskb;
  2569. }
  2570. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2571. tcp_ecn_send_synack(sk, skb);
  2572. }
  2573. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2574. }
  2575. /**
  2576. * tcp_make_synack - Prepare a SYN-ACK.
  2577. * sk: listener socket
  2578. * dst: dst entry attached to the SYNACK
  2579. * req: request_sock pointer
  2580. *
  2581. * Allocate one skb and build a SYNACK packet.
  2582. * @dst is consumed : Caller should not use it again.
  2583. */
  2584. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2585. struct request_sock *req,
  2586. struct tcp_fastopen_cookie *foc,
  2587. enum tcp_synack_type synack_type)
  2588. {
  2589. struct inet_request_sock *ireq = inet_rsk(req);
  2590. const struct tcp_sock *tp = tcp_sk(sk);
  2591. struct tcp_md5sig_key *md5 = NULL;
  2592. struct tcp_out_options opts;
  2593. struct sk_buff *skb;
  2594. int tcp_header_size;
  2595. struct tcphdr *th;
  2596. u16 user_mss;
  2597. int mss;
  2598. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2599. if (unlikely(!skb)) {
  2600. dst_release(dst);
  2601. return NULL;
  2602. }
  2603. /* Reserve space for headers. */
  2604. skb_reserve(skb, MAX_TCP_HEADER);
  2605. switch (synack_type) {
  2606. case TCP_SYNACK_NORMAL:
  2607. skb_set_owner_w(skb, req_to_sk(req));
  2608. break;
  2609. case TCP_SYNACK_COOKIE:
  2610. /* Under synflood, we do not attach skb to a socket,
  2611. * to avoid false sharing.
  2612. */
  2613. break;
  2614. case TCP_SYNACK_FASTOPEN:
  2615. /* sk is a const pointer, because we want to express multiple
  2616. * cpu might call us concurrently.
  2617. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2618. */
  2619. skb_set_owner_w(skb, (struct sock *)sk);
  2620. break;
  2621. }
  2622. skb_dst_set(skb, dst);
  2623. mss = dst_metric_advmss(dst);
  2624. user_mss = READ_ONCE(tp->rx_opt.user_mss);
  2625. if (user_mss && user_mss < mss)
  2626. mss = user_mss;
  2627. memset(&opts, 0, sizeof(opts));
  2628. #ifdef CONFIG_SYN_COOKIES
  2629. if (unlikely(req->cookie_ts))
  2630. skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
  2631. else
  2632. #endif
  2633. skb_mstamp_get(&skb->skb_mstamp);
  2634. #ifdef CONFIG_TCP_MD5SIG
  2635. rcu_read_lock();
  2636. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2637. #endif
  2638. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2639. tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
  2640. sizeof(*th);
  2641. skb_push(skb, tcp_header_size);
  2642. skb_reset_transport_header(skb);
  2643. th = (struct tcphdr *)skb->data;
  2644. memset(th, 0, sizeof(struct tcphdr));
  2645. th->syn = 1;
  2646. th->ack = 1;
  2647. tcp_ecn_make_synack(req, th);
  2648. th->source = htons(ireq->ir_num);
  2649. th->dest = ireq->ir_rmt_port;
  2650. /* Setting of flags are superfluous here for callers (and ECE is
  2651. * not even correctly set)
  2652. */
  2653. tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
  2654. TCPHDR_SYN | TCPHDR_ACK);
  2655. th->seq = htonl(TCP_SKB_CB(skb)->seq);
  2656. /* XXX data is queued and acked as is. No buffer/window check */
  2657. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2658. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2659. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2660. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2661. th->doff = (tcp_header_size >> 2);
  2662. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2663. #ifdef CONFIG_TCP_MD5SIG
  2664. /* Okay, we have all we need - do the md5 hash if needed */
  2665. if (md5)
  2666. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2667. md5, req_to_sk(req), skb);
  2668. rcu_read_unlock();
  2669. #endif
  2670. /* Do not fool tcpdump (if any), clean our debris */
  2671. skb->tstamp.tv64 = 0;
  2672. return skb;
  2673. }
  2674. EXPORT_SYMBOL(tcp_make_synack);
  2675. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2676. {
  2677. struct inet_connection_sock *icsk = inet_csk(sk);
  2678. const struct tcp_congestion_ops *ca;
  2679. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2680. if (ca_key == TCP_CA_UNSPEC)
  2681. return;
  2682. rcu_read_lock();
  2683. ca = tcp_ca_find_key(ca_key);
  2684. if (likely(ca && try_module_get(ca->owner))) {
  2685. module_put(icsk->icsk_ca_ops->owner);
  2686. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2687. icsk->icsk_ca_ops = ca;
  2688. }
  2689. rcu_read_unlock();
  2690. }
  2691. /* Do all connect socket setups that can be done AF independent. */
  2692. static void tcp_connect_init(struct sock *sk)
  2693. {
  2694. const struct dst_entry *dst = __sk_dst_get(sk);
  2695. struct tcp_sock *tp = tcp_sk(sk);
  2696. __u8 rcv_wscale;
  2697. /* We'll fix this up when we get a response from the other end.
  2698. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2699. */
  2700. tp->tcp_header_len = sizeof(struct tcphdr) +
  2701. (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
  2702. #ifdef CONFIG_TCP_MD5SIG
  2703. if (tp->af_specific->md5_lookup(sk, sk))
  2704. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2705. #endif
  2706. /* If user gave his TCP_MAXSEG, record it to clamp */
  2707. if (tp->rx_opt.user_mss)
  2708. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2709. tp->max_window = 0;
  2710. tcp_mtup_init(sk);
  2711. tcp_sync_mss(sk, dst_mtu(dst));
  2712. tcp_ca_dst_init(sk, dst);
  2713. if (!tp->window_clamp)
  2714. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2715. tp->advmss = dst_metric_advmss(dst);
  2716. if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
  2717. tp->advmss = tp->rx_opt.user_mss;
  2718. tcp_initialize_rcv_mss(sk);
  2719. /* limit the window selection if the user enforce a smaller rx buffer */
  2720. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2721. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2722. tp->window_clamp = tcp_full_space(sk);
  2723. tcp_select_initial_window(tcp_full_space(sk),
  2724. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2725. &tp->rcv_wnd,
  2726. &tp->window_clamp,
  2727. sysctl_tcp_window_scaling,
  2728. &rcv_wscale,
  2729. dst_metric(dst, RTAX_INITRWND));
  2730. tp->rx_opt.rcv_wscale = rcv_wscale;
  2731. tp->rcv_ssthresh = tp->rcv_wnd;
  2732. sk->sk_err = 0;
  2733. sock_reset_flag(sk, SOCK_DONE);
  2734. tp->snd_wnd = 0;
  2735. tcp_init_wl(tp, 0);
  2736. tp->snd_una = tp->write_seq;
  2737. tp->snd_sml = tp->write_seq;
  2738. tp->snd_up = tp->write_seq;
  2739. tp->snd_nxt = tp->write_seq;
  2740. if (likely(!tp->repair))
  2741. tp->rcv_nxt = 0;
  2742. else
  2743. tp->rcv_tstamp = tcp_time_stamp;
  2744. tp->rcv_wup = tp->rcv_nxt;
  2745. tp->copied_seq = tp->rcv_nxt;
  2746. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  2747. inet_csk(sk)->icsk_retransmits = 0;
  2748. tcp_clear_retrans(tp);
  2749. }
  2750. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2751. {
  2752. struct tcp_sock *tp = tcp_sk(sk);
  2753. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2754. tcb->end_seq += skb->len;
  2755. __skb_header_release(skb);
  2756. __tcp_add_write_queue_tail(sk, skb);
  2757. sk->sk_wmem_queued += skb->truesize;
  2758. sk_mem_charge(sk, skb->truesize);
  2759. tp->write_seq = tcb->end_seq;
  2760. tp->packets_out += tcp_skb_pcount(skb);
  2761. }
  2762. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2763. * queue a data-only packet after the regular SYN, such that regular SYNs
  2764. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2765. * only the SYN sequence, the data are retransmitted in the first ACK.
  2766. * If cookie is not cached or other error occurs, falls back to send a
  2767. * regular SYN with Fast Open cookie request option.
  2768. */
  2769. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2770. {
  2771. struct tcp_sock *tp = tcp_sk(sk);
  2772. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2773. int syn_loss = 0, space, err = 0;
  2774. unsigned long last_syn_loss = 0;
  2775. struct sk_buff *syn_data;
  2776. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2777. tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
  2778. &syn_loss, &last_syn_loss);
  2779. /* Recurring FO SYN losses: revert to regular handshake temporarily */
  2780. if (syn_loss > 1 &&
  2781. time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
  2782. fo->cookie.len = -1;
  2783. goto fallback;
  2784. }
  2785. if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
  2786. fo->cookie.len = -1;
  2787. else if (fo->cookie.len <= 0)
  2788. goto fallback;
  2789. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2790. * user-MSS. Reserve maximum option space for middleboxes that add
  2791. * private TCP options. The cost is reduced data space in SYN :(
  2792. */
  2793. if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
  2794. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2795. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2796. MAX_TCP_OPTION_SPACE;
  2797. space = min_t(size_t, space, fo->size);
  2798. /* limit to order-0 allocations */
  2799. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2800. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2801. if (!syn_data)
  2802. goto fallback;
  2803. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2804. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2805. if (space) {
  2806. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2807. &fo->data->msg_iter);
  2808. if (unlikely(!copied)) {
  2809. kfree_skb(syn_data);
  2810. goto fallback;
  2811. }
  2812. if (copied != space) {
  2813. skb_trim(syn_data, copied);
  2814. space = copied;
  2815. }
  2816. }
  2817. /* No more data pending in inet_wait_for_connect() */
  2818. if (space == fo->size)
  2819. fo->data = NULL;
  2820. fo->copied = space;
  2821. tcp_connect_queue_skb(sk, syn_data);
  2822. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2823. syn->skb_mstamp = syn_data->skb_mstamp;
  2824. /* Now full SYN+DATA was cloned and sent (or not),
  2825. * remove the SYN from the original skb (syn_data)
  2826. * we keep in write queue in case of a retransmit, as we
  2827. * also have the SYN packet (with no data) in the same queue.
  2828. */
  2829. TCP_SKB_CB(syn_data)->seq++;
  2830. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2831. if (!err) {
  2832. tp->syn_data = (fo->copied > 0);
  2833. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2834. goto done;
  2835. }
  2836. /* data was not sent, this is our new send_head */
  2837. sk->sk_send_head = syn_data;
  2838. tp->packets_out -= tcp_skb_pcount(syn_data);
  2839. fallback:
  2840. /* Send a regular SYN with Fast Open cookie request option */
  2841. if (fo->cookie.len > 0)
  2842. fo->cookie.len = 0;
  2843. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2844. if (err)
  2845. tp->syn_fastopen = 0;
  2846. done:
  2847. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2848. return err;
  2849. }
  2850. /* Build a SYN and send it off. */
  2851. int tcp_connect(struct sock *sk)
  2852. {
  2853. struct tcp_sock *tp = tcp_sk(sk);
  2854. struct sk_buff *buff;
  2855. int err;
  2856. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2857. return -EHOSTUNREACH; /* Routing failure or similar. */
  2858. tcp_connect_init(sk);
  2859. if (unlikely(tp->repair)) {
  2860. tcp_finish_connect(sk, NULL);
  2861. return 0;
  2862. }
  2863. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2864. if (unlikely(!buff))
  2865. return -ENOBUFS;
  2866. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2867. tp->retrans_stamp = tcp_time_stamp;
  2868. tcp_connect_queue_skb(sk, buff);
  2869. tcp_ecn_send_syn(sk, buff);
  2870. /* Send off SYN; include data in Fast Open. */
  2871. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  2872. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  2873. if (err == -ECONNREFUSED)
  2874. return err;
  2875. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  2876. * in order to make this packet get counted in tcpOutSegs.
  2877. */
  2878. tp->snd_nxt = tp->write_seq;
  2879. tp->pushed_seq = tp->write_seq;
  2880. buff = tcp_send_head(sk);
  2881. if (unlikely(buff)) {
  2882. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  2883. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  2884. }
  2885. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  2886. /* Timer for repeating the SYN until an answer. */
  2887. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2888. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2889. return 0;
  2890. }
  2891. EXPORT_SYMBOL(tcp_connect);
  2892. /* Send out a delayed ack, the caller does the policy checking
  2893. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  2894. * for details.
  2895. */
  2896. void tcp_send_delayed_ack(struct sock *sk)
  2897. {
  2898. struct inet_connection_sock *icsk = inet_csk(sk);
  2899. int ato = icsk->icsk_ack.ato;
  2900. unsigned long timeout;
  2901. tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
  2902. if (ato > TCP_DELACK_MIN) {
  2903. const struct tcp_sock *tp = tcp_sk(sk);
  2904. int max_ato = HZ / 2;
  2905. if (icsk->icsk_ack.pingpong ||
  2906. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  2907. max_ato = TCP_DELACK_MAX;
  2908. /* Slow path, intersegment interval is "high". */
  2909. /* If some rtt estimate is known, use it to bound delayed ack.
  2910. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  2911. * directly.
  2912. */
  2913. if (tp->srtt_us) {
  2914. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  2915. TCP_DELACK_MIN);
  2916. if (rtt < max_ato)
  2917. max_ato = rtt;
  2918. }
  2919. ato = min(ato, max_ato);
  2920. }
  2921. /* Stay within the limit we were given */
  2922. timeout = jiffies + ato;
  2923. /* Use new timeout only if there wasn't a older one earlier. */
  2924. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  2925. /* If delack timer was blocked or is about to expire,
  2926. * send ACK now.
  2927. */
  2928. if (icsk->icsk_ack.blocked ||
  2929. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  2930. tcp_send_ack(sk);
  2931. return;
  2932. }
  2933. if (!time_before(timeout, icsk->icsk_ack.timeout))
  2934. timeout = icsk->icsk_ack.timeout;
  2935. }
  2936. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  2937. icsk->icsk_ack.timeout = timeout;
  2938. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  2939. }
  2940. /* This routine sends an ack and also updates the window. */
  2941. void tcp_send_ack(struct sock *sk)
  2942. {
  2943. struct sk_buff *buff;
  2944. /* If we have been reset, we may not send again. */
  2945. if (sk->sk_state == TCP_CLOSE)
  2946. return;
  2947. tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
  2948. /* We are not putting this on the write queue, so
  2949. * tcp_transmit_skb() will set the ownership to this
  2950. * sock.
  2951. */
  2952. buff = alloc_skb(MAX_TCP_HEADER,
  2953. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  2954. if (unlikely(!buff)) {
  2955. inet_csk_schedule_ack(sk);
  2956. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  2957. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  2958. TCP_DELACK_MAX, TCP_RTO_MAX);
  2959. return;
  2960. }
  2961. /* Reserve space for headers and prepare control bits. */
  2962. skb_reserve(buff, MAX_TCP_HEADER);
  2963. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  2964. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  2965. * too much.
  2966. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  2967. * We also avoid tcp_wfree() overhead (cache line miss accessing
  2968. * tp->tsq_flags) by using regular sock_wfree()
  2969. */
  2970. skb_set_tcp_pure_ack(buff);
  2971. /* Send it off, this clears delayed acks for us. */
  2972. skb_mstamp_get(&buff->skb_mstamp);
  2973. tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
  2974. }
  2975. EXPORT_SYMBOL_GPL(tcp_send_ack);
  2976. /* This routine sends a packet with an out of date sequence
  2977. * number. It assumes the other end will try to ack it.
  2978. *
  2979. * Question: what should we make while urgent mode?
  2980. * 4.4BSD forces sending single byte of data. We cannot send
  2981. * out of window data, because we have SND.NXT==SND.MAX...
  2982. *
  2983. * Current solution: to send TWO zero-length segments in urgent mode:
  2984. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  2985. * out-of-date with SND.UNA-1 to probe window.
  2986. */
  2987. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  2988. {
  2989. struct tcp_sock *tp = tcp_sk(sk);
  2990. struct sk_buff *skb;
  2991. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  2992. skb = alloc_skb(MAX_TCP_HEADER,
  2993. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  2994. if (!skb)
  2995. return -1;
  2996. /* Reserve space for headers and set control bits. */
  2997. skb_reserve(skb, MAX_TCP_HEADER);
  2998. /* Use a previous sequence. This should cause the other
  2999. * end to send an ack. Don't queue or clone SKB, just
  3000. * send it.
  3001. */
  3002. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3003. skb_mstamp_get(&skb->skb_mstamp);
  3004. NET_INC_STATS(sock_net(sk), mib);
  3005. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3006. }
  3007. void tcp_send_window_probe(struct sock *sk)
  3008. {
  3009. if (sk->sk_state == TCP_ESTABLISHED) {
  3010. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3011. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3012. }
  3013. }
  3014. /* Initiate keepalive or window probe from timer. */
  3015. int tcp_write_wakeup(struct sock *sk, int mib)
  3016. {
  3017. struct tcp_sock *tp = tcp_sk(sk);
  3018. struct sk_buff *skb;
  3019. if (sk->sk_state == TCP_CLOSE)
  3020. return -1;
  3021. skb = tcp_send_head(sk);
  3022. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3023. int err;
  3024. unsigned int mss = tcp_current_mss(sk);
  3025. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3026. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3027. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3028. /* We are probing the opening of a window
  3029. * but the window size is != 0
  3030. * must have been a result SWS avoidance ( sender )
  3031. */
  3032. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3033. skb->len > mss) {
  3034. seg_size = min(seg_size, mss);
  3035. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3036. if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
  3037. return -1;
  3038. } else if (!tcp_skb_pcount(skb))
  3039. tcp_set_skb_tso_segs(skb, mss);
  3040. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3041. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3042. if (!err)
  3043. tcp_event_new_data_sent(sk, skb);
  3044. return err;
  3045. } else {
  3046. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3047. tcp_xmit_probe_skb(sk, 1, mib);
  3048. return tcp_xmit_probe_skb(sk, 0, mib);
  3049. }
  3050. }
  3051. /* A window probe timeout has occurred. If window is not closed send
  3052. * a partial packet else a zero probe.
  3053. */
  3054. void tcp_send_probe0(struct sock *sk)
  3055. {
  3056. struct inet_connection_sock *icsk = inet_csk(sk);
  3057. struct tcp_sock *tp = tcp_sk(sk);
  3058. struct net *net = sock_net(sk);
  3059. unsigned long probe_max;
  3060. int err;
  3061. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3062. if (tp->packets_out || !tcp_send_head(sk)) {
  3063. /* Cancel probe timer, if it is not required. */
  3064. icsk->icsk_probes_out = 0;
  3065. icsk->icsk_backoff = 0;
  3066. return;
  3067. }
  3068. if (err <= 0) {
  3069. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3070. icsk->icsk_backoff++;
  3071. icsk->icsk_probes_out++;
  3072. probe_max = TCP_RTO_MAX;
  3073. } else {
  3074. /* If packet was not sent due to local congestion,
  3075. * do not backoff and do not remember icsk_probes_out.
  3076. * Let local senders to fight for local resources.
  3077. *
  3078. * Use accumulated backoff yet.
  3079. */
  3080. if (!icsk->icsk_probes_out)
  3081. icsk->icsk_probes_out = 1;
  3082. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3083. }
  3084. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3085. tcp_probe0_when(sk, probe_max),
  3086. TCP_RTO_MAX);
  3087. }
  3088. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3089. {
  3090. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3091. struct flowi fl;
  3092. int res;
  3093. tcp_rsk(req)->txhash = net_tx_rndhash();
  3094. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3095. if (!res) {
  3096. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3097. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3098. if (unlikely(tcp_passive_fastopen(sk)))
  3099. tcp_sk(sk)->total_retrans++;
  3100. }
  3101. return res;
  3102. }
  3103. EXPORT_SYMBOL(tcp_rtx_synack);