khugepaged.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/mm.h>
  3. #include <linux/sched.h>
  4. #include <linux/mmu_notifier.h>
  5. #include <linux/rmap.h>
  6. #include <linux/swap.h>
  7. #include <linux/mm_inline.h>
  8. #include <linux/kthread.h>
  9. #include <linux/khugepaged.h>
  10. #include <linux/freezer.h>
  11. #include <linux/mman.h>
  12. #include <linux/hashtable.h>
  13. #include <linux/userfaultfd_k.h>
  14. #include <linux/page_idle.h>
  15. #include <linux/swapops.h>
  16. #include <linux/shmem_fs.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. enum scan_result {
  21. SCAN_FAIL,
  22. SCAN_SUCCEED,
  23. SCAN_PMD_NULL,
  24. SCAN_EXCEED_NONE_PTE,
  25. SCAN_PTE_NON_PRESENT,
  26. SCAN_PAGE_RO,
  27. SCAN_LACK_REFERENCED_PAGE,
  28. SCAN_PAGE_NULL,
  29. SCAN_SCAN_ABORT,
  30. SCAN_PAGE_COUNT,
  31. SCAN_PAGE_LRU,
  32. SCAN_PAGE_LOCK,
  33. SCAN_PAGE_ANON,
  34. SCAN_PAGE_COMPOUND,
  35. SCAN_ANY_PROCESS,
  36. SCAN_VMA_NULL,
  37. SCAN_VMA_CHECK,
  38. SCAN_ADDRESS_RANGE,
  39. SCAN_SWAP_CACHE_PAGE,
  40. SCAN_DEL_PAGE_LRU,
  41. SCAN_ALLOC_HUGE_PAGE_FAIL,
  42. SCAN_CGROUP_CHARGE_FAIL,
  43. SCAN_EXCEED_SWAP_PTE,
  44. SCAN_TRUNCATED,
  45. };
  46. #define CREATE_TRACE_POINTS
  47. #include <trace/events/huge_memory.h>
  48. /* default scan 8*512 pte (or vmas) every 30 second */
  49. static unsigned int khugepaged_pages_to_scan __read_mostly;
  50. static unsigned int khugepaged_pages_collapsed;
  51. static unsigned int khugepaged_full_scans;
  52. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53. /* during fragmentation poll the hugepage allocator once every minute */
  54. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55. static unsigned long khugepaged_sleep_expire;
  56. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  57. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  58. /*
  59. * default collapse hugepages if there is at least one pte mapped like
  60. * it would have happened if the vma was large enough during page
  61. * fault.
  62. */
  63. static unsigned int khugepaged_max_ptes_none __read_mostly;
  64. static unsigned int khugepaged_max_ptes_swap __read_mostly;
  65. #define MM_SLOTS_HASH_BITS 10
  66. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  67. static struct kmem_cache *mm_slot_cache __read_mostly;
  68. /**
  69. * struct mm_slot - hash lookup from mm to mm_slot
  70. * @hash: hash collision list
  71. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72. * @mm: the mm that this information is valid for
  73. */
  74. struct mm_slot {
  75. struct hlist_node hash;
  76. struct list_head mm_node;
  77. struct mm_struct *mm;
  78. };
  79. /**
  80. * struct khugepaged_scan - cursor for scanning
  81. * @mm_head: the head of the mm list to scan
  82. * @mm_slot: the current mm_slot we are scanning
  83. * @address: the next address inside that to be scanned
  84. *
  85. * There is only the one khugepaged_scan instance of this cursor structure.
  86. */
  87. struct khugepaged_scan {
  88. struct list_head mm_head;
  89. struct mm_slot *mm_slot;
  90. unsigned long address;
  91. };
  92. static struct khugepaged_scan khugepaged_scan = {
  93. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94. };
  95. #ifdef CONFIG_SYSFS
  96. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  97. struct kobj_attribute *attr,
  98. char *buf)
  99. {
  100. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  101. }
  102. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  103. struct kobj_attribute *attr,
  104. const char *buf, size_t count)
  105. {
  106. unsigned long msecs;
  107. int err;
  108. err = kstrtoul(buf, 10, &msecs);
  109. if (err || msecs > UINT_MAX)
  110. return -EINVAL;
  111. khugepaged_scan_sleep_millisecs = msecs;
  112. khugepaged_sleep_expire = 0;
  113. wake_up_interruptible(&khugepaged_wait);
  114. return count;
  115. }
  116. static struct kobj_attribute scan_sleep_millisecs_attr =
  117. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  118. scan_sleep_millisecs_store);
  119. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  120. struct kobj_attribute *attr,
  121. char *buf)
  122. {
  123. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  124. }
  125. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  126. struct kobj_attribute *attr,
  127. const char *buf, size_t count)
  128. {
  129. unsigned long msecs;
  130. int err;
  131. err = kstrtoul(buf, 10, &msecs);
  132. if (err || msecs > UINT_MAX)
  133. return -EINVAL;
  134. khugepaged_alloc_sleep_millisecs = msecs;
  135. khugepaged_sleep_expire = 0;
  136. wake_up_interruptible(&khugepaged_wait);
  137. return count;
  138. }
  139. static struct kobj_attribute alloc_sleep_millisecs_attr =
  140. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  141. alloc_sleep_millisecs_store);
  142. static ssize_t pages_to_scan_show(struct kobject *kobj,
  143. struct kobj_attribute *attr,
  144. char *buf)
  145. {
  146. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  147. }
  148. static ssize_t pages_to_scan_store(struct kobject *kobj,
  149. struct kobj_attribute *attr,
  150. const char *buf, size_t count)
  151. {
  152. int err;
  153. unsigned long pages;
  154. err = kstrtoul(buf, 10, &pages);
  155. if (err || !pages || pages > UINT_MAX)
  156. return -EINVAL;
  157. khugepaged_pages_to_scan = pages;
  158. return count;
  159. }
  160. static struct kobj_attribute pages_to_scan_attr =
  161. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  162. pages_to_scan_store);
  163. static ssize_t pages_collapsed_show(struct kobject *kobj,
  164. struct kobj_attribute *attr,
  165. char *buf)
  166. {
  167. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  168. }
  169. static struct kobj_attribute pages_collapsed_attr =
  170. __ATTR_RO(pages_collapsed);
  171. static ssize_t full_scans_show(struct kobject *kobj,
  172. struct kobj_attribute *attr,
  173. char *buf)
  174. {
  175. return sprintf(buf, "%u\n", khugepaged_full_scans);
  176. }
  177. static struct kobj_attribute full_scans_attr =
  178. __ATTR_RO(full_scans);
  179. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  180. struct kobj_attribute *attr, char *buf)
  181. {
  182. return single_hugepage_flag_show(kobj, attr, buf,
  183. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  184. }
  185. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  186. struct kobj_attribute *attr,
  187. const char *buf, size_t count)
  188. {
  189. return single_hugepage_flag_store(kobj, attr, buf, count,
  190. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  191. }
  192. static struct kobj_attribute khugepaged_defrag_attr =
  193. __ATTR(defrag, 0644, khugepaged_defrag_show,
  194. khugepaged_defrag_store);
  195. /*
  196. * max_ptes_none controls if khugepaged should collapse hugepages over
  197. * any unmapped ptes in turn potentially increasing the memory
  198. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  199. * reduce the available free memory in the system as it
  200. * runs. Increasing max_ptes_none will instead potentially reduce the
  201. * free memory in the system during the khugepaged scan.
  202. */
  203. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  204. struct kobj_attribute *attr,
  205. char *buf)
  206. {
  207. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  208. }
  209. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  210. struct kobj_attribute *attr,
  211. const char *buf, size_t count)
  212. {
  213. int err;
  214. unsigned long max_ptes_none;
  215. err = kstrtoul(buf, 10, &max_ptes_none);
  216. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  217. return -EINVAL;
  218. khugepaged_max_ptes_none = max_ptes_none;
  219. return count;
  220. }
  221. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  222. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  223. khugepaged_max_ptes_none_store);
  224. static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
  225. struct kobj_attribute *attr,
  226. char *buf)
  227. {
  228. return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
  229. }
  230. static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
  231. struct kobj_attribute *attr,
  232. const char *buf, size_t count)
  233. {
  234. int err;
  235. unsigned long max_ptes_swap;
  236. err = kstrtoul(buf, 10, &max_ptes_swap);
  237. if (err || max_ptes_swap > HPAGE_PMD_NR-1)
  238. return -EINVAL;
  239. khugepaged_max_ptes_swap = max_ptes_swap;
  240. return count;
  241. }
  242. static struct kobj_attribute khugepaged_max_ptes_swap_attr =
  243. __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
  244. khugepaged_max_ptes_swap_store);
  245. static struct attribute *khugepaged_attr[] = {
  246. &khugepaged_defrag_attr.attr,
  247. &khugepaged_max_ptes_none_attr.attr,
  248. &pages_to_scan_attr.attr,
  249. &pages_collapsed_attr.attr,
  250. &full_scans_attr.attr,
  251. &scan_sleep_millisecs_attr.attr,
  252. &alloc_sleep_millisecs_attr.attr,
  253. &khugepaged_max_ptes_swap_attr.attr,
  254. NULL,
  255. };
  256. struct attribute_group khugepaged_attr_group = {
  257. .attrs = khugepaged_attr,
  258. .name = "khugepaged",
  259. };
  260. #endif /* CONFIG_SYSFS */
  261. #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
  262. int hugepage_madvise(struct vm_area_struct *vma,
  263. unsigned long *vm_flags, int advice)
  264. {
  265. switch (advice) {
  266. case MADV_HUGEPAGE:
  267. #ifdef CONFIG_S390
  268. /*
  269. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  270. * can't handle this properly after s390_enable_sie, so we simply
  271. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  272. */
  273. if (mm_has_pgste(vma->vm_mm))
  274. return 0;
  275. #endif
  276. *vm_flags &= ~VM_NOHUGEPAGE;
  277. *vm_flags |= VM_HUGEPAGE;
  278. /*
  279. * If the vma become good for khugepaged to scan,
  280. * register it here without waiting a page fault that
  281. * may not happen any time soon.
  282. */
  283. if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
  284. khugepaged_enter_vma_merge(vma, *vm_flags))
  285. return -ENOMEM;
  286. break;
  287. case MADV_NOHUGEPAGE:
  288. *vm_flags &= ~VM_HUGEPAGE;
  289. *vm_flags |= VM_NOHUGEPAGE;
  290. /*
  291. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  292. * this vma even if we leave the mm registered in khugepaged if
  293. * it got registered before VM_NOHUGEPAGE was set.
  294. */
  295. break;
  296. }
  297. return 0;
  298. }
  299. int __init khugepaged_init(void)
  300. {
  301. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  302. sizeof(struct mm_slot),
  303. __alignof__(struct mm_slot), 0, NULL);
  304. if (!mm_slot_cache)
  305. return -ENOMEM;
  306. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  307. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  308. khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
  309. return 0;
  310. }
  311. void __init khugepaged_destroy(void)
  312. {
  313. kmem_cache_destroy(mm_slot_cache);
  314. }
  315. static inline struct mm_slot *alloc_mm_slot(void)
  316. {
  317. if (!mm_slot_cache) /* initialization failed */
  318. return NULL;
  319. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  320. }
  321. static inline void free_mm_slot(struct mm_slot *mm_slot)
  322. {
  323. kmem_cache_free(mm_slot_cache, mm_slot);
  324. }
  325. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  326. {
  327. struct mm_slot *mm_slot;
  328. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  329. if (mm == mm_slot->mm)
  330. return mm_slot;
  331. return NULL;
  332. }
  333. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  334. struct mm_slot *mm_slot)
  335. {
  336. mm_slot->mm = mm;
  337. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  338. }
  339. static inline int khugepaged_test_exit(struct mm_struct *mm)
  340. {
  341. return atomic_read(&mm->mm_users) == 0;
  342. }
  343. int __khugepaged_enter(struct mm_struct *mm)
  344. {
  345. struct mm_slot *mm_slot;
  346. int wakeup;
  347. mm_slot = alloc_mm_slot();
  348. if (!mm_slot)
  349. return -ENOMEM;
  350. /* __khugepaged_exit() must not run from under us */
  351. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  352. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  353. free_mm_slot(mm_slot);
  354. return 0;
  355. }
  356. spin_lock(&khugepaged_mm_lock);
  357. insert_to_mm_slots_hash(mm, mm_slot);
  358. /*
  359. * Insert just behind the scanning cursor, to let the area settle
  360. * down a little.
  361. */
  362. wakeup = list_empty(&khugepaged_scan.mm_head);
  363. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  364. spin_unlock(&khugepaged_mm_lock);
  365. atomic_inc(&mm->mm_count);
  366. if (wakeup)
  367. wake_up_interruptible(&khugepaged_wait);
  368. return 0;
  369. }
  370. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  371. unsigned long vm_flags)
  372. {
  373. unsigned long hstart, hend;
  374. if (!vma->anon_vma)
  375. /*
  376. * Not yet faulted in so we will register later in the
  377. * page fault if needed.
  378. */
  379. return 0;
  380. if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
  381. /* khugepaged not yet working on file or special mappings */
  382. return 0;
  383. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  384. hend = vma->vm_end & HPAGE_PMD_MASK;
  385. if (hstart < hend)
  386. return khugepaged_enter(vma, vm_flags);
  387. return 0;
  388. }
  389. void __khugepaged_exit(struct mm_struct *mm)
  390. {
  391. struct mm_slot *mm_slot;
  392. int free = 0;
  393. spin_lock(&khugepaged_mm_lock);
  394. mm_slot = get_mm_slot(mm);
  395. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  396. hash_del(&mm_slot->hash);
  397. list_del(&mm_slot->mm_node);
  398. free = 1;
  399. }
  400. spin_unlock(&khugepaged_mm_lock);
  401. if (free) {
  402. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  403. free_mm_slot(mm_slot);
  404. mmdrop(mm);
  405. } else if (mm_slot) {
  406. /*
  407. * This is required to serialize against
  408. * khugepaged_test_exit() (which is guaranteed to run
  409. * under mmap sem read mode). Stop here (after we
  410. * return all pagetables will be destroyed) until
  411. * khugepaged has finished working on the pagetables
  412. * under the mmap_sem.
  413. */
  414. down_write(&mm->mmap_sem);
  415. up_write(&mm->mmap_sem);
  416. }
  417. }
  418. static void release_pte_page(struct page *page)
  419. {
  420. /* 0 stands for page_is_file_cache(page) == false */
  421. dec_node_page_state(page, NR_ISOLATED_ANON + 0);
  422. unlock_page(page);
  423. putback_lru_page(page);
  424. }
  425. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  426. {
  427. while (--_pte >= pte) {
  428. pte_t pteval = *_pte;
  429. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  430. release_pte_page(pte_page(pteval));
  431. }
  432. }
  433. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  434. unsigned long address,
  435. pte_t *pte)
  436. {
  437. struct page *page = NULL;
  438. pte_t *_pte;
  439. int none_or_zero = 0, result = 0, referenced = 0;
  440. bool writable = false;
  441. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  442. _pte++, address += PAGE_SIZE) {
  443. pte_t pteval = *_pte;
  444. if (pte_none(pteval) || (pte_present(pteval) &&
  445. is_zero_pfn(pte_pfn(pteval)))) {
  446. if (!userfaultfd_armed(vma) &&
  447. ++none_or_zero <= khugepaged_max_ptes_none) {
  448. continue;
  449. } else {
  450. result = SCAN_EXCEED_NONE_PTE;
  451. goto out;
  452. }
  453. }
  454. if (!pte_present(pteval)) {
  455. result = SCAN_PTE_NON_PRESENT;
  456. goto out;
  457. }
  458. page = vm_normal_page(vma, address, pteval);
  459. if (unlikely(!page)) {
  460. result = SCAN_PAGE_NULL;
  461. goto out;
  462. }
  463. VM_BUG_ON_PAGE(PageCompound(page), page);
  464. VM_BUG_ON_PAGE(!PageAnon(page), page);
  465. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  466. /*
  467. * We can do it before isolate_lru_page because the
  468. * page can't be freed from under us. NOTE: PG_lock
  469. * is needed to serialize against split_huge_page
  470. * when invoked from the VM.
  471. */
  472. if (!trylock_page(page)) {
  473. result = SCAN_PAGE_LOCK;
  474. goto out;
  475. }
  476. /*
  477. * cannot use mapcount: can't collapse if there's a gup pin.
  478. * The page must only be referenced by the scanned process
  479. * and page swap cache.
  480. */
  481. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  482. unlock_page(page);
  483. result = SCAN_PAGE_COUNT;
  484. goto out;
  485. }
  486. if (pte_write(pteval)) {
  487. writable = true;
  488. } else {
  489. if (PageSwapCache(page) &&
  490. !reuse_swap_page(page, NULL)) {
  491. unlock_page(page);
  492. result = SCAN_SWAP_CACHE_PAGE;
  493. goto out;
  494. }
  495. /*
  496. * Page is not in the swap cache. It can be collapsed
  497. * into a THP.
  498. */
  499. }
  500. /*
  501. * Isolate the page to avoid collapsing an hugepage
  502. * currently in use by the VM.
  503. */
  504. if (isolate_lru_page(page)) {
  505. unlock_page(page);
  506. result = SCAN_DEL_PAGE_LRU;
  507. goto out;
  508. }
  509. /* 0 stands for page_is_file_cache(page) == false */
  510. inc_node_page_state(page, NR_ISOLATED_ANON + 0);
  511. VM_BUG_ON_PAGE(!PageLocked(page), page);
  512. VM_BUG_ON_PAGE(PageLRU(page), page);
  513. /* There should be enough young pte to collapse the page */
  514. if (pte_young(pteval) ||
  515. page_is_young(page) || PageReferenced(page) ||
  516. mmu_notifier_test_young(vma->vm_mm, address))
  517. referenced++;
  518. }
  519. if (likely(writable)) {
  520. if (likely(referenced)) {
  521. result = SCAN_SUCCEED;
  522. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  523. referenced, writable, result);
  524. return 1;
  525. }
  526. } else {
  527. result = SCAN_PAGE_RO;
  528. }
  529. out:
  530. release_pte_pages(pte, _pte);
  531. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  532. referenced, writable, result);
  533. return 0;
  534. }
  535. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  536. struct vm_area_struct *vma,
  537. unsigned long address,
  538. spinlock_t *ptl)
  539. {
  540. pte_t *_pte;
  541. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  542. pte_t pteval = *_pte;
  543. struct page *src_page;
  544. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  545. clear_user_highpage(page, address);
  546. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  547. if (is_zero_pfn(pte_pfn(pteval))) {
  548. /*
  549. * ptl mostly unnecessary.
  550. */
  551. spin_lock(ptl);
  552. /*
  553. * paravirt calls inside pte_clear here are
  554. * superfluous.
  555. */
  556. pte_clear(vma->vm_mm, address, _pte);
  557. spin_unlock(ptl);
  558. }
  559. } else {
  560. src_page = pte_page(pteval);
  561. copy_user_highpage(page, src_page, address, vma);
  562. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  563. release_pte_page(src_page);
  564. /*
  565. * ptl mostly unnecessary, but preempt has to
  566. * be disabled to update the per-cpu stats
  567. * inside page_remove_rmap().
  568. */
  569. spin_lock(ptl);
  570. /*
  571. * paravirt calls inside pte_clear here are
  572. * superfluous.
  573. */
  574. pte_clear(vma->vm_mm, address, _pte);
  575. page_remove_rmap(src_page, false);
  576. spin_unlock(ptl);
  577. free_page_and_swap_cache(src_page);
  578. }
  579. address += PAGE_SIZE;
  580. page++;
  581. }
  582. }
  583. static void khugepaged_alloc_sleep(void)
  584. {
  585. DEFINE_WAIT(wait);
  586. add_wait_queue(&khugepaged_wait, &wait);
  587. freezable_schedule_timeout_interruptible(
  588. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  589. remove_wait_queue(&khugepaged_wait, &wait);
  590. }
  591. static int khugepaged_node_load[MAX_NUMNODES];
  592. static bool khugepaged_scan_abort(int nid)
  593. {
  594. int i;
  595. /*
  596. * If node_reclaim_mode is disabled, then no extra effort is made to
  597. * allocate memory locally.
  598. */
  599. if (!node_reclaim_mode)
  600. return false;
  601. /* If there is a count for this node already, it must be acceptable */
  602. if (khugepaged_node_load[nid])
  603. return false;
  604. for (i = 0; i < MAX_NUMNODES; i++) {
  605. if (!khugepaged_node_load[i])
  606. continue;
  607. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  608. return true;
  609. }
  610. return false;
  611. }
  612. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  613. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  614. {
  615. return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
  616. }
  617. #ifdef CONFIG_NUMA
  618. static int khugepaged_find_target_node(void)
  619. {
  620. static int last_khugepaged_target_node = NUMA_NO_NODE;
  621. int nid, target_node = 0, max_value = 0;
  622. /* find first node with max normal pages hit */
  623. for (nid = 0; nid < MAX_NUMNODES; nid++)
  624. if (khugepaged_node_load[nid] > max_value) {
  625. max_value = khugepaged_node_load[nid];
  626. target_node = nid;
  627. }
  628. /* do some balance if several nodes have the same hit record */
  629. if (target_node <= last_khugepaged_target_node)
  630. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  631. nid++)
  632. if (max_value == khugepaged_node_load[nid]) {
  633. target_node = nid;
  634. break;
  635. }
  636. last_khugepaged_target_node = target_node;
  637. return target_node;
  638. }
  639. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  640. {
  641. if (IS_ERR(*hpage)) {
  642. if (!*wait)
  643. return false;
  644. *wait = false;
  645. *hpage = NULL;
  646. khugepaged_alloc_sleep();
  647. } else if (*hpage) {
  648. put_page(*hpage);
  649. *hpage = NULL;
  650. }
  651. return true;
  652. }
  653. static struct page *
  654. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  655. {
  656. VM_BUG_ON_PAGE(*hpage, *hpage);
  657. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  658. if (unlikely(!*hpage)) {
  659. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  660. *hpage = ERR_PTR(-ENOMEM);
  661. return NULL;
  662. }
  663. prep_transhuge_page(*hpage);
  664. count_vm_event(THP_COLLAPSE_ALLOC);
  665. return *hpage;
  666. }
  667. #else
  668. static int khugepaged_find_target_node(void)
  669. {
  670. return 0;
  671. }
  672. static inline struct page *alloc_khugepaged_hugepage(void)
  673. {
  674. struct page *page;
  675. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  676. HPAGE_PMD_ORDER);
  677. if (page)
  678. prep_transhuge_page(page);
  679. return page;
  680. }
  681. static struct page *khugepaged_alloc_hugepage(bool *wait)
  682. {
  683. struct page *hpage;
  684. do {
  685. hpage = alloc_khugepaged_hugepage();
  686. if (!hpage) {
  687. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  688. if (!*wait)
  689. return NULL;
  690. *wait = false;
  691. khugepaged_alloc_sleep();
  692. } else
  693. count_vm_event(THP_COLLAPSE_ALLOC);
  694. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  695. return hpage;
  696. }
  697. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  698. {
  699. if (!*hpage)
  700. *hpage = khugepaged_alloc_hugepage(wait);
  701. if (unlikely(!*hpage))
  702. return false;
  703. return true;
  704. }
  705. static struct page *
  706. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
  707. {
  708. VM_BUG_ON(!*hpage);
  709. return *hpage;
  710. }
  711. #endif
  712. static bool hugepage_vma_check(struct vm_area_struct *vma)
  713. {
  714. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  715. (vma->vm_flags & VM_NOHUGEPAGE))
  716. return false;
  717. if (shmem_file(vma->vm_file)) {
  718. if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
  719. return false;
  720. return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
  721. HPAGE_PMD_NR);
  722. }
  723. if (!vma->anon_vma || vma->vm_ops)
  724. return false;
  725. if (is_vma_temporary_stack(vma))
  726. return false;
  727. return !(vma->vm_flags & VM_NO_KHUGEPAGED);
  728. }
  729. /*
  730. * If mmap_sem temporarily dropped, revalidate vma
  731. * before taking mmap_sem.
  732. * Return 0 if succeeds, otherwise return none-zero
  733. * value (scan code).
  734. */
  735. static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
  736. struct vm_area_struct **vmap)
  737. {
  738. struct vm_area_struct *vma;
  739. unsigned long hstart, hend;
  740. if (unlikely(khugepaged_test_exit(mm)))
  741. return SCAN_ANY_PROCESS;
  742. *vmap = vma = find_vma(mm, address);
  743. if (!vma)
  744. return SCAN_VMA_NULL;
  745. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  746. hend = vma->vm_end & HPAGE_PMD_MASK;
  747. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  748. return SCAN_ADDRESS_RANGE;
  749. if (!hugepage_vma_check(vma))
  750. return SCAN_VMA_CHECK;
  751. return 0;
  752. }
  753. /*
  754. * Bring missing pages in from swap, to complete THP collapse.
  755. * Only done if khugepaged_scan_pmd believes it is worthwhile.
  756. *
  757. * Called and returns without pte mapped or spinlocks held,
  758. * but with mmap_sem held to protect against vma changes.
  759. */
  760. static bool __collapse_huge_page_swapin(struct mm_struct *mm,
  761. struct vm_area_struct *vma,
  762. unsigned long address, pmd_t *pmd,
  763. int referenced)
  764. {
  765. pte_t pteval;
  766. int swapped_in = 0, ret = 0;
  767. struct fault_env fe = {
  768. .vma = vma,
  769. .address = address,
  770. .flags = FAULT_FLAG_ALLOW_RETRY,
  771. .pmd = pmd,
  772. };
  773. /* we only decide to swapin, if there is enough young ptes */
  774. if (referenced < HPAGE_PMD_NR/2) {
  775. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  776. return false;
  777. }
  778. fe.pte = pte_offset_map(pmd, address);
  779. for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
  780. fe.pte++, fe.address += PAGE_SIZE) {
  781. pteval = *fe.pte;
  782. if (!is_swap_pte(pteval))
  783. continue;
  784. swapped_in++;
  785. ret = do_swap_page(&fe, pteval);
  786. /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
  787. if (ret & VM_FAULT_RETRY) {
  788. down_read(&mm->mmap_sem);
  789. if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
  790. /* vma is no longer available, don't continue to swapin */
  791. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  792. return false;
  793. }
  794. /* check if the pmd is still valid */
  795. if (mm_find_pmd(mm, address) != pmd)
  796. return false;
  797. }
  798. if (ret & VM_FAULT_ERROR) {
  799. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
  800. return false;
  801. }
  802. /* pte is unmapped now, we need to map it */
  803. fe.pte = pte_offset_map(pmd, fe.address);
  804. }
  805. fe.pte--;
  806. pte_unmap(fe.pte);
  807. trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
  808. return true;
  809. }
  810. static void collapse_huge_page(struct mm_struct *mm,
  811. unsigned long address,
  812. struct page **hpage,
  813. int node, int referenced)
  814. {
  815. pmd_t *pmd, _pmd;
  816. pte_t *pte;
  817. pgtable_t pgtable;
  818. struct page *new_page;
  819. spinlock_t *pmd_ptl, *pte_ptl;
  820. int isolated = 0, result = 0;
  821. struct mem_cgroup *memcg;
  822. struct vm_area_struct *vma;
  823. unsigned long mmun_start; /* For mmu_notifiers */
  824. unsigned long mmun_end; /* For mmu_notifiers */
  825. gfp_t gfp;
  826. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  827. /* Only allocate from the target node */
  828. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  829. /*
  830. * Before allocating the hugepage, release the mmap_sem read lock.
  831. * The allocation can take potentially a long time if it involves
  832. * sync compaction, and we do not need to hold the mmap_sem during
  833. * that. We will recheck the vma after taking it again in write mode.
  834. */
  835. up_read(&mm->mmap_sem);
  836. new_page = khugepaged_alloc_page(hpage, gfp, node);
  837. if (!new_page) {
  838. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  839. goto out_nolock;
  840. }
  841. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  842. result = SCAN_CGROUP_CHARGE_FAIL;
  843. goto out_nolock;
  844. }
  845. down_read(&mm->mmap_sem);
  846. result = hugepage_vma_revalidate(mm, address, &vma);
  847. if (result) {
  848. mem_cgroup_cancel_charge(new_page, memcg, true);
  849. up_read(&mm->mmap_sem);
  850. goto out_nolock;
  851. }
  852. pmd = mm_find_pmd(mm, address);
  853. if (!pmd) {
  854. result = SCAN_PMD_NULL;
  855. mem_cgroup_cancel_charge(new_page, memcg, true);
  856. up_read(&mm->mmap_sem);
  857. goto out_nolock;
  858. }
  859. /*
  860. * __collapse_huge_page_swapin always returns with mmap_sem locked.
  861. * If it fails, we release mmap_sem and jump out_nolock.
  862. * Continuing to collapse causes inconsistency.
  863. */
  864. if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
  865. mem_cgroup_cancel_charge(new_page, memcg, true);
  866. up_read(&mm->mmap_sem);
  867. goto out_nolock;
  868. }
  869. up_read(&mm->mmap_sem);
  870. /*
  871. * Prevent all access to pagetables with the exception of
  872. * gup_fast later handled by the ptep_clear_flush and the VM
  873. * handled by the anon_vma lock + PG_lock.
  874. */
  875. down_write(&mm->mmap_sem);
  876. result = hugepage_vma_revalidate(mm, address, &vma);
  877. if (result)
  878. goto out;
  879. /* check if the pmd is still valid */
  880. if (mm_find_pmd(mm, address) != pmd)
  881. goto out;
  882. anon_vma_lock_write(vma->anon_vma);
  883. pte = pte_offset_map(pmd, address);
  884. pte_ptl = pte_lockptr(mm, pmd);
  885. mmun_start = address;
  886. mmun_end = address + HPAGE_PMD_SIZE;
  887. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  888. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  889. /*
  890. * After this gup_fast can't run anymore. This also removes
  891. * any huge TLB entry from the CPU so we won't allow
  892. * huge and small TLB entries for the same virtual address
  893. * to avoid the risk of CPU bugs in that area.
  894. */
  895. _pmd = pmdp_collapse_flush(vma, address, pmd);
  896. spin_unlock(pmd_ptl);
  897. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  898. spin_lock(pte_ptl);
  899. isolated = __collapse_huge_page_isolate(vma, address, pte);
  900. spin_unlock(pte_ptl);
  901. if (unlikely(!isolated)) {
  902. pte_unmap(pte);
  903. spin_lock(pmd_ptl);
  904. BUG_ON(!pmd_none(*pmd));
  905. /*
  906. * We can only use set_pmd_at when establishing
  907. * hugepmds and never for establishing regular pmds that
  908. * points to regular pagetables. Use pmd_populate for that
  909. */
  910. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  911. spin_unlock(pmd_ptl);
  912. anon_vma_unlock_write(vma->anon_vma);
  913. result = SCAN_FAIL;
  914. goto out;
  915. }
  916. /*
  917. * All pages are isolated and locked so anon_vma rmap
  918. * can't run anymore.
  919. */
  920. anon_vma_unlock_write(vma->anon_vma);
  921. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  922. pte_unmap(pte);
  923. __SetPageUptodate(new_page);
  924. pgtable = pmd_pgtable(_pmd);
  925. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  926. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  927. /*
  928. * spin_lock() below is not the equivalent of smp_wmb(), so
  929. * this is needed to avoid the copy_huge_page writes to become
  930. * visible after the set_pmd_at() write.
  931. */
  932. smp_wmb();
  933. spin_lock(pmd_ptl);
  934. BUG_ON(!pmd_none(*pmd));
  935. page_add_new_anon_rmap(new_page, vma, address, true);
  936. mem_cgroup_commit_charge(new_page, memcg, false, true);
  937. lru_cache_add_active_or_unevictable(new_page, vma);
  938. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  939. set_pmd_at(mm, address, pmd, _pmd);
  940. update_mmu_cache_pmd(vma, address, pmd);
  941. spin_unlock(pmd_ptl);
  942. *hpage = NULL;
  943. khugepaged_pages_collapsed++;
  944. result = SCAN_SUCCEED;
  945. out_up_write:
  946. up_write(&mm->mmap_sem);
  947. out_nolock:
  948. trace_mm_collapse_huge_page(mm, isolated, result);
  949. return;
  950. out:
  951. mem_cgroup_cancel_charge(new_page, memcg, true);
  952. goto out_up_write;
  953. }
  954. static int khugepaged_scan_pmd(struct mm_struct *mm,
  955. struct vm_area_struct *vma,
  956. unsigned long address,
  957. struct page **hpage)
  958. {
  959. pmd_t *pmd;
  960. pte_t *pte, *_pte;
  961. int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
  962. struct page *page = NULL;
  963. unsigned long _address;
  964. spinlock_t *ptl;
  965. int node = NUMA_NO_NODE, unmapped = 0;
  966. bool writable = false;
  967. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  968. pmd = mm_find_pmd(mm, address);
  969. if (!pmd) {
  970. result = SCAN_PMD_NULL;
  971. goto out;
  972. }
  973. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  974. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  975. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  976. _pte++, _address += PAGE_SIZE) {
  977. pte_t pteval = *_pte;
  978. if (is_swap_pte(pteval)) {
  979. if (++unmapped <= khugepaged_max_ptes_swap) {
  980. continue;
  981. } else {
  982. result = SCAN_EXCEED_SWAP_PTE;
  983. goto out_unmap;
  984. }
  985. }
  986. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  987. if (!userfaultfd_armed(vma) &&
  988. ++none_or_zero <= khugepaged_max_ptes_none) {
  989. continue;
  990. } else {
  991. result = SCAN_EXCEED_NONE_PTE;
  992. goto out_unmap;
  993. }
  994. }
  995. if (!pte_present(pteval)) {
  996. result = SCAN_PTE_NON_PRESENT;
  997. goto out_unmap;
  998. }
  999. if (pte_write(pteval))
  1000. writable = true;
  1001. page = vm_normal_page(vma, _address, pteval);
  1002. if (unlikely(!page)) {
  1003. result = SCAN_PAGE_NULL;
  1004. goto out_unmap;
  1005. }
  1006. /* TODO: teach khugepaged to collapse THP mapped with pte */
  1007. if (PageCompound(page)) {
  1008. result = SCAN_PAGE_COMPOUND;
  1009. goto out_unmap;
  1010. }
  1011. /*
  1012. * Record which node the original page is from and save this
  1013. * information to khugepaged_node_load[].
  1014. * Khupaged will allocate hugepage from the node has the max
  1015. * hit record.
  1016. */
  1017. node = page_to_nid(page);
  1018. if (khugepaged_scan_abort(node)) {
  1019. result = SCAN_SCAN_ABORT;
  1020. goto out_unmap;
  1021. }
  1022. khugepaged_node_load[node]++;
  1023. if (!PageLRU(page)) {
  1024. result = SCAN_PAGE_LRU;
  1025. goto out_unmap;
  1026. }
  1027. if (PageLocked(page)) {
  1028. result = SCAN_PAGE_LOCK;
  1029. goto out_unmap;
  1030. }
  1031. if (!PageAnon(page)) {
  1032. result = SCAN_PAGE_ANON;
  1033. goto out_unmap;
  1034. }
  1035. /*
  1036. * cannot use mapcount: can't collapse if there's a gup pin.
  1037. * The page must only be referenced by the scanned process
  1038. * and page swap cache.
  1039. */
  1040. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1041. result = SCAN_PAGE_COUNT;
  1042. goto out_unmap;
  1043. }
  1044. if (pte_young(pteval) ||
  1045. page_is_young(page) || PageReferenced(page) ||
  1046. mmu_notifier_test_young(vma->vm_mm, address))
  1047. referenced++;
  1048. }
  1049. if (writable) {
  1050. if (referenced) {
  1051. result = SCAN_SUCCEED;
  1052. ret = 1;
  1053. } else {
  1054. result = SCAN_LACK_REFERENCED_PAGE;
  1055. }
  1056. } else {
  1057. result = SCAN_PAGE_RO;
  1058. }
  1059. out_unmap:
  1060. pte_unmap_unlock(pte, ptl);
  1061. if (ret) {
  1062. node = khugepaged_find_target_node();
  1063. /* collapse_huge_page will return with the mmap_sem released */
  1064. collapse_huge_page(mm, address, hpage, node, referenced);
  1065. }
  1066. out:
  1067. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  1068. none_or_zero, result, unmapped);
  1069. return ret;
  1070. }
  1071. static void collect_mm_slot(struct mm_slot *mm_slot)
  1072. {
  1073. struct mm_struct *mm = mm_slot->mm;
  1074. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1075. if (khugepaged_test_exit(mm)) {
  1076. /* free mm_slot */
  1077. hash_del(&mm_slot->hash);
  1078. list_del(&mm_slot->mm_node);
  1079. /*
  1080. * Not strictly needed because the mm exited already.
  1081. *
  1082. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1083. */
  1084. /* khugepaged_mm_lock actually not necessary for the below */
  1085. free_mm_slot(mm_slot);
  1086. mmdrop(mm);
  1087. }
  1088. }
  1089. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  1090. static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
  1091. {
  1092. struct vm_area_struct *vma;
  1093. unsigned long addr;
  1094. pmd_t *pmd, _pmd;
  1095. i_mmap_lock_write(mapping);
  1096. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1097. /* probably overkill */
  1098. if (vma->anon_vma)
  1099. continue;
  1100. addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  1101. if (addr & ~HPAGE_PMD_MASK)
  1102. continue;
  1103. if (vma->vm_end < addr + HPAGE_PMD_SIZE)
  1104. continue;
  1105. pmd = mm_find_pmd(vma->vm_mm, addr);
  1106. if (!pmd)
  1107. continue;
  1108. /*
  1109. * We need exclusive mmap_sem to retract page table.
  1110. * If trylock fails we would end up with pte-mapped THP after
  1111. * re-fault. Not ideal, but it's more important to not disturb
  1112. * the system too much.
  1113. */
  1114. if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
  1115. spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
  1116. /* assume page table is clear */
  1117. _pmd = pmdp_collapse_flush(vma, addr, pmd);
  1118. spin_unlock(ptl);
  1119. up_write(&vma->vm_mm->mmap_sem);
  1120. atomic_long_dec(&vma->vm_mm->nr_ptes);
  1121. pte_free(vma->vm_mm, pmd_pgtable(_pmd));
  1122. }
  1123. }
  1124. i_mmap_unlock_write(mapping);
  1125. }
  1126. /**
  1127. * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
  1128. *
  1129. * Basic scheme is simple, details are more complex:
  1130. * - allocate and freeze a new huge page;
  1131. * - scan over radix tree replacing old pages the new one
  1132. * + swap in pages if necessary;
  1133. * + fill in gaps;
  1134. * + keep old pages around in case if rollback is required;
  1135. * - if replacing succeed:
  1136. * + copy data over;
  1137. * + free old pages;
  1138. * + unfreeze huge page;
  1139. * - if replacing failed;
  1140. * + put all pages back and unfreeze them;
  1141. * + restore gaps in the radix-tree;
  1142. * + free huge page;
  1143. */
  1144. static void collapse_shmem(struct mm_struct *mm,
  1145. struct address_space *mapping, pgoff_t start,
  1146. struct page **hpage, int node)
  1147. {
  1148. gfp_t gfp;
  1149. struct page *page, *new_page, *tmp;
  1150. struct mem_cgroup *memcg;
  1151. pgoff_t index, end = start + HPAGE_PMD_NR;
  1152. LIST_HEAD(pagelist);
  1153. struct radix_tree_iter iter;
  1154. void **slot;
  1155. int nr_none = 0, result = SCAN_SUCCEED;
  1156. VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
  1157. /* Only allocate from the target node */
  1158. gfp = alloc_hugepage_khugepaged_gfpmask() |
  1159. __GFP_OTHER_NODE | __GFP_THISNODE;
  1160. new_page = khugepaged_alloc_page(hpage, gfp, node);
  1161. if (!new_page) {
  1162. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  1163. goto out;
  1164. }
  1165. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  1166. result = SCAN_CGROUP_CHARGE_FAIL;
  1167. goto out;
  1168. }
  1169. new_page->index = start;
  1170. new_page->mapping = mapping;
  1171. __SetPageSwapBacked(new_page);
  1172. __SetPageLocked(new_page);
  1173. BUG_ON(!page_ref_freeze(new_page, 1));
  1174. /*
  1175. * At this point the new_page is 'frozen' (page_count() is zero), locked
  1176. * and not up-to-date. It's safe to insert it into radix tree, because
  1177. * nobody would be able to map it or use it in other way until we
  1178. * unfreeze it.
  1179. */
  1180. index = start;
  1181. spin_lock_irq(&mapping->tree_lock);
  1182. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  1183. int n = min(iter.index, end) - index;
  1184. /*
  1185. * Handle holes in the radix tree: charge it from shmem and
  1186. * insert relevant subpage of new_page into the radix-tree.
  1187. */
  1188. if (n && !shmem_charge(mapping->host, n)) {
  1189. result = SCAN_FAIL;
  1190. break;
  1191. }
  1192. nr_none += n;
  1193. for (; index < min(iter.index, end); index++) {
  1194. radix_tree_insert(&mapping->page_tree, index,
  1195. new_page + (index % HPAGE_PMD_NR));
  1196. }
  1197. /* We are done. */
  1198. if (index >= end)
  1199. break;
  1200. page = radix_tree_deref_slot_protected(slot,
  1201. &mapping->tree_lock);
  1202. if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
  1203. spin_unlock_irq(&mapping->tree_lock);
  1204. /* swap in or instantiate fallocated page */
  1205. if (shmem_getpage(mapping->host, index, &page,
  1206. SGP_NOHUGE)) {
  1207. result = SCAN_FAIL;
  1208. goto tree_unlocked;
  1209. }
  1210. spin_lock_irq(&mapping->tree_lock);
  1211. } else if (trylock_page(page)) {
  1212. get_page(page);
  1213. } else {
  1214. result = SCAN_PAGE_LOCK;
  1215. break;
  1216. }
  1217. /*
  1218. * The page must be locked, so we can drop the tree_lock
  1219. * without racing with truncate.
  1220. */
  1221. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1222. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  1223. VM_BUG_ON_PAGE(PageTransCompound(page), page);
  1224. if (page_mapping(page) != mapping) {
  1225. result = SCAN_TRUNCATED;
  1226. goto out_unlock;
  1227. }
  1228. spin_unlock_irq(&mapping->tree_lock);
  1229. if (isolate_lru_page(page)) {
  1230. result = SCAN_DEL_PAGE_LRU;
  1231. goto out_isolate_failed;
  1232. }
  1233. if (page_mapped(page))
  1234. unmap_mapping_range(mapping, index << PAGE_SHIFT,
  1235. PAGE_SIZE, 0);
  1236. spin_lock_irq(&mapping->tree_lock);
  1237. slot = radix_tree_lookup_slot(&mapping->page_tree, index);
  1238. VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
  1239. &mapping->tree_lock), page);
  1240. VM_BUG_ON_PAGE(page_mapped(page), page);
  1241. /*
  1242. * The page is expected to have page_count() == 3:
  1243. * - we hold a pin on it;
  1244. * - one reference from radix tree;
  1245. * - one from isolate_lru_page;
  1246. */
  1247. if (!page_ref_freeze(page, 3)) {
  1248. result = SCAN_PAGE_COUNT;
  1249. goto out_lru;
  1250. }
  1251. /*
  1252. * Add the page to the list to be able to undo the collapse if
  1253. * something go wrong.
  1254. */
  1255. list_add_tail(&page->lru, &pagelist);
  1256. /* Finally, replace with the new page. */
  1257. radix_tree_replace_slot(slot,
  1258. new_page + (index % HPAGE_PMD_NR));
  1259. slot = radix_tree_iter_next(&iter);
  1260. index++;
  1261. continue;
  1262. out_lru:
  1263. spin_unlock_irq(&mapping->tree_lock);
  1264. putback_lru_page(page);
  1265. out_isolate_failed:
  1266. unlock_page(page);
  1267. put_page(page);
  1268. goto tree_unlocked;
  1269. out_unlock:
  1270. unlock_page(page);
  1271. put_page(page);
  1272. break;
  1273. }
  1274. /*
  1275. * Handle hole in radix tree at the end of the range.
  1276. * This code only triggers if there's nothing in radix tree
  1277. * beyond 'end'.
  1278. */
  1279. if (result == SCAN_SUCCEED && index < end) {
  1280. int n = end - index;
  1281. if (!shmem_charge(mapping->host, n)) {
  1282. result = SCAN_FAIL;
  1283. goto tree_locked;
  1284. }
  1285. for (; index < end; index++) {
  1286. radix_tree_insert(&mapping->page_tree, index,
  1287. new_page + (index % HPAGE_PMD_NR));
  1288. }
  1289. nr_none += n;
  1290. }
  1291. tree_locked:
  1292. spin_unlock_irq(&mapping->tree_lock);
  1293. tree_unlocked:
  1294. if (result == SCAN_SUCCEED) {
  1295. unsigned long flags;
  1296. struct zone *zone = page_zone(new_page);
  1297. /*
  1298. * Replacing old pages with new one has succeed, now we need to
  1299. * copy the content and free old pages.
  1300. */
  1301. list_for_each_entry_safe(page, tmp, &pagelist, lru) {
  1302. copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
  1303. page);
  1304. list_del(&page->lru);
  1305. unlock_page(page);
  1306. page_ref_unfreeze(page, 1);
  1307. page->mapping = NULL;
  1308. ClearPageActive(page);
  1309. ClearPageUnevictable(page);
  1310. put_page(page);
  1311. }
  1312. local_irq_save(flags);
  1313. __inc_node_page_state(new_page, NR_SHMEM_THPS);
  1314. if (nr_none) {
  1315. __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
  1316. __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
  1317. }
  1318. local_irq_restore(flags);
  1319. /*
  1320. * Remove pte page tables, so we can re-faulti
  1321. * the page as huge.
  1322. */
  1323. retract_page_tables(mapping, start);
  1324. /* Everything is ready, let's unfreeze the new_page */
  1325. set_page_dirty(new_page);
  1326. SetPageUptodate(new_page);
  1327. page_ref_unfreeze(new_page, HPAGE_PMD_NR);
  1328. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1329. lru_cache_add_anon(new_page);
  1330. unlock_page(new_page);
  1331. *hpage = NULL;
  1332. } else {
  1333. /* Something went wrong: rollback changes to the radix-tree */
  1334. shmem_uncharge(mapping->host, nr_none);
  1335. spin_lock_irq(&mapping->tree_lock);
  1336. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
  1337. start) {
  1338. if (iter.index >= end)
  1339. break;
  1340. page = list_first_entry_or_null(&pagelist,
  1341. struct page, lru);
  1342. if (!page || iter.index < page->index) {
  1343. if (!nr_none)
  1344. break;
  1345. nr_none--;
  1346. /* Put holes back where they were */
  1347. radix_tree_delete(&mapping->page_tree,
  1348. iter.index);
  1349. slot = radix_tree_iter_next(&iter);
  1350. continue;
  1351. }
  1352. VM_BUG_ON_PAGE(page->index != iter.index, page);
  1353. /* Unfreeze the page. */
  1354. list_del(&page->lru);
  1355. page_ref_unfreeze(page, 2);
  1356. radix_tree_replace_slot(slot, page);
  1357. spin_unlock_irq(&mapping->tree_lock);
  1358. putback_lru_page(page);
  1359. unlock_page(page);
  1360. spin_lock_irq(&mapping->tree_lock);
  1361. slot = radix_tree_iter_next(&iter);
  1362. }
  1363. VM_BUG_ON(nr_none);
  1364. spin_unlock_irq(&mapping->tree_lock);
  1365. /* Unfreeze new_page, caller would take care about freeing it */
  1366. page_ref_unfreeze(new_page, 1);
  1367. mem_cgroup_cancel_charge(new_page, memcg, true);
  1368. unlock_page(new_page);
  1369. new_page->mapping = NULL;
  1370. }
  1371. out:
  1372. VM_BUG_ON(!list_empty(&pagelist));
  1373. /* TODO: tracepoints */
  1374. }
  1375. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1376. struct address_space *mapping,
  1377. pgoff_t start, struct page **hpage)
  1378. {
  1379. struct page *page = NULL;
  1380. struct radix_tree_iter iter;
  1381. void **slot;
  1382. int present, swap;
  1383. int node = NUMA_NO_NODE;
  1384. int result = SCAN_SUCCEED;
  1385. present = 0;
  1386. swap = 0;
  1387. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  1388. rcu_read_lock();
  1389. radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
  1390. if (iter.index >= start + HPAGE_PMD_NR)
  1391. break;
  1392. page = radix_tree_deref_slot(slot);
  1393. if (radix_tree_deref_retry(page)) {
  1394. slot = radix_tree_iter_retry(&iter);
  1395. continue;
  1396. }
  1397. if (radix_tree_exception(page)) {
  1398. if (++swap > khugepaged_max_ptes_swap) {
  1399. result = SCAN_EXCEED_SWAP_PTE;
  1400. break;
  1401. }
  1402. continue;
  1403. }
  1404. if (PageTransCompound(page)) {
  1405. result = SCAN_PAGE_COMPOUND;
  1406. break;
  1407. }
  1408. node = page_to_nid(page);
  1409. if (khugepaged_scan_abort(node)) {
  1410. result = SCAN_SCAN_ABORT;
  1411. break;
  1412. }
  1413. khugepaged_node_load[node]++;
  1414. if (!PageLRU(page)) {
  1415. result = SCAN_PAGE_LRU;
  1416. break;
  1417. }
  1418. if (page_count(page) != 1 + page_mapcount(page)) {
  1419. result = SCAN_PAGE_COUNT;
  1420. break;
  1421. }
  1422. /*
  1423. * We probably should check if the page is referenced here, but
  1424. * nobody would transfer pte_young() to PageReferenced() for us.
  1425. * And rmap walk here is just too costly...
  1426. */
  1427. present++;
  1428. if (need_resched()) {
  1429. cond_resched_rcu();
  1430. slot = radix_tree_iter_next(&iter);
  1431. }
  1432. }
  1433. rcu_read_unlock();
  1434. if (result == SCAN_SUCCEED) {
  1435. if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
  1436. result = SCAN_EXCEED_NONE_PTE;
  1437. } else {
  1438. node = khugepaged_find_target_node();
  1439. collapse_shmem(mm, mapping, start, hpage, node);
  1440. }
  1441. }
  1442. /* TODO: tracepoints */
  1443. }
  1444. #else
  1445. static void khugepaged_scan_shmem(struct mm_struct *mm,
  1446. struct address_space *mapping,
  1447. pgoff_t start, struct page **hpage)
  1448. {
  1449. BUILD_BUG();
  1450. }
  1451. #endif
  1452. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1453. struct page **hpage)
  1454. __releases(&khugepaged_mm_lock)
  1455. __acquires(&khugepaged_mm_lock)
  1456. {
  1457. struct mm_slot *mm_slot;
  1458. struct mm_struct *mm;
  1459. struct vm_area_struct *vma;
  1460. int progress = 0;
  1461. VM_BUG_ON(!pages);
  1462. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1463. if (khugepaged_scan.mm_slot)
  1464. mm_slot = khugepaged_scan.mm_slot;
  1465. else {
  1466. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1467. struct mm_slot, mm_node);
  1468. khugepaged_scan.address = 0;
  1469. khugepaged_scan.mm_slot = mm_slot;
  1470. }
  1471. spin_unlock(&khugepaged_mm_lock);
  1472. mm = mm_slot->mm;
  1473. down_read(&mm->mmap_sem);
  1474. if (unlikely(khugepaged_test_exit(mm)))
  1475. vma = NULL;
  1476. else
  1477. vma = find_vma(mm, khugepaged_scan.address);
  1478. progress++;
  1479. for (; vma; vma = vma->vm_next) {
  1480. unsigned long hstart, hend;
  1481. cond_resched();
  1482. if (unlikely(khugepaged_test_exit(mm))) {
  1483. progress++;
  1484. break;
  1485. }
  1486. if (!hugepage_vma_check(vma)) {
  1487. skip:
  1488. progress++;
  1489. continue;
  1490. }
  1491. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1492. hend = vma->vm_end & HPAGE_PMD_MASK;
  1493. if (hstart >= hend)
  1494. goto skip;
  1495. if (khugepaged_scan.address > hend)
  1496. goto skip;
  1497. if (khugepaged_scan.address < hstart)
  1498. khugepaged_scan.address = hstart;
  1499. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1500. while (khugepaged_scan.address < hend) {
  1501. int ret;
  1502. cond_resched();
  1503. if (unlikely(khugepaged_test_exit(mm)))
  1504. goto breakouterloop;
  1505. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1506. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1507. hend);
  1508. if (shmem_file(vma->vm_file)) {
  1509. struct file *file;
  1510. pgoff_t pgoff = linear_page_index(vma,
  1511. khugepaged_scan.address);
  1512. if (!shmem_huge_enabled(vma))
  1513. goto skip;
  1514. file = get_file(vma->vm_file);
  1515. up_read(&mm->mmap_sem);
  1516. ret = 1;
  1517. khugepaged_scan_shmem(mm, file->f_mapping,
  1518. pgoff, hpage);
  1519. fput(file);
  1520. } else {
  1521. ret = khugepaged_scan_pmd(mm, vma,
  1522. khugepaged_scan.address,
  1523. hpage);
  1524. }
  1525. /* move to next address */
  1526. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1527. progress += HPAGE_PMD_NR;
  1528. if (ret)
  1529. /* we released mmap_sem so break loop */
  1530. goto breakouterloop_mmap_sem;
  1531. if (progress >= pages)
  1532. goto breakouterloop;
  1533. }
  1534. }
  1535. breakouterloop:
  1536. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1537. breakouterloop_mmap_sem:
  1538. spin_lock(&khugepaged_mm_lock);
  1539. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1540. /*
  1541. * Release the current mm_slot if this mm is about to die, or
  1542. * if we scanned all vmas of this mm.
  1543. */
  1544. if (khugepaged_test_exit(mm) || !vma) {
  1545. /*
  1546. * Make sure that if mm_users is reaching zero while
  1547. * khugepaged runs here, khugepaged_exit will find
  1548. * mm_slot not pointing to the exiting mm.
  1549. */
  1550. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1551. khugepaged_scan.mm_slot = list_entry(
  1552. mm_slot->mm_node.next,
  1553. struct mm_slot, mm_node);
  1554. khugepaged_scan.address = 0;
  1555. } else {
  1556. khugepaged_scan.mm_slot = NULL;
  1557. khugepaged_full_scans++;
  1558. }
  1559. collect_mm_slot(mm_slot);
  1560. }
  1561. return progress;
  1562. }
  1563. static int khugepaged_has_work(void)
  1564. {
  1565. return !list_empty(&khugepaged_scan.mm_head) &&
  1566. khugepaged_enabled();
  1567. }
  1568. static int khugepaged_wait_event(void)
  1569. {
  1570. return !list_empty(&khugepaged_scan.mm_head) ||
  1571. kthread_should_stop();
  1572. }
  1573. static void khugepaged_do_scan(void)
  1574. {
  1575. struct page *hpage = NULL;
  1576. unsigned int progress = 0, pass_through_head = 0;
  1577. unsigned int pages = khugepaged_pages_to_scan;
  1578. bool wait = true;
  1579. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1580. while (progress < pages) {
  1581. if (!khugepaged_prealloc_page(&hpage, &wait))
  1582. break;
  1583. cond_resched();
  1584. if (unlikely(kthread_should_stop() || try_to_freeze()))
  1585. break;
  1586. spin_lock(&khugepaged_mm_lock);
  1587. if (!khugepaged_scan.mm_slot)
  1588. pass_through_head++;
  1589. if (khugepaged_has_work() &&
  1590. pass_through_head < 2)
  1591. progress += khugepaged_scan_mm_slot(pages - progress,
  1592. &hpage);
  1593. else
  1594. progress = pages;
  1595. spin_unlock(&khugepaged_mm_lock);
  1596. }
  1597. if (!IS_ERR_OR_NULL(hpage))
  1598. put_page(hpage);
  1599. }
  1600. static bool khugepaged_should_wakeup(void)
  1601. {
  1602. return kthread_should_stop() ||
  1603. time_after_eq(jiffies, khugepaged_sleep_expire);
  1604. }
  1605. static void khugepaged_wait_work(void)
  1606. {
  1607. if (khugepaged_has_work()) {
  1608. const unsigned long scan_sleep_jiffies =
  1609. msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
  1610. if (!scan_sleep_jiffies)
  1611. return;
  1612. khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
  1613. wait_event_freezable_timeout(khugepaged_wait,
  1614. khugepaged_should_wakeup(),
  1615. scan_sleep_jiffies);
  1616. return;
  1617. }
  1618. if (khugepaged_enabled())
  1619. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  1620. }
  1621. static int khugepaged(void *none)
  1622. {
  1623. struct mm_slot *mm_slot;
  1624. set_freezable();
  1625. set_user_nice(current, MAX_NICE);
  1626. while (!kthread_should_stop()) {
  1627. khugepaged_do_scan();
  1628. khugepaged_wait_work();
  1629. }
  1630. spin_lock(&khugepaged_mm_lock);
  1631. mm_slot = khugepaged_scan.mm_slot;
  1632. khugepaged_scan.mm_slot = NULL;
  1633. if (mm_slot)
  1634. collect_mm_slot(mm_slot);
  1635. spin_unlock(&khugepaged_mm_lock);
  1636. return 0;
  1637. }
  1638. static void set_recommended_min_free_kbytes(void)
  1639. {
  1640. struct zone *zone;
  1641. int nr_zones = 0;
  1642. unsigned long recommended_min;
  1643. for_each_populated_zone(zone)
  1644. nr_zones++;
  1645. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  1646. recommended_min = pageblock_nr_pages * nr_zones * 2;
  1647. /*
  1648. * Make sure that on average at least two pageblocks are almost free
  1649. * of another type, one for a migratetype to fall back to and a
  1650. * second to avoid subsequent fallbacks of other types There are 3
  1651. * MIGRATE_TYPES we care about.
  1652. */
  1653. recommended_min += pageblock_nr_pages * nr_zones *
  1654. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  1655. /* don't ever allow to reserve more than 5% of the lowmem */
  1656. recommended_min = min(recommended_min,
  1657. (unsigned long) nr_free_buffer_pages() / 20);
  1658. recommended_min <<= (PAGE_SHIFT-10);
  1659. if (recommended_min > min_free_kbytes) {
  1660. if (user_min_free_kbytes >= 0)
  1661. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  1662. min_free_kbytes, recommended_min);
  1663. min_free_kbytes = recommended_min;
  1664. }
  1665. setup_per_zone_wmarks();
  1666. }
  1667. int start_stop_khugepaged(void)
  1668. {
  1669. static struct task_struct *khugepaged_thread __read_mostly;
  1670. static DEFINE_MUTEX(khugepaged_mutex);
  1671. int err = 0;
  1672. mutex_lock(&khugepaged_mutex);
  1673. if (khugepaged_enabled()) {
  1674. if (!khugepaged_thread)
  1675. khugepaged_thread = kthread_run(khugepaged, NULL,
  1676. "khugepaged");
  1677. if (IS_ERR(khugepaged_thread)) {
  1678. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  1679. err = PTR_ERR(khugepaged_thread);
  1680. khugepaged_thread = NULL;
  1681. goto fail;
  1682. }
  1683. if (!list_empty(&khugepaged_scan.mm_head))
  1684. wake_up_interruptible(&khugepaged_wait);
  1685. set_recommended_min_free_kbytes();
  1686. } else if (khugepaged_thread) {
  1687. kthread_stop(khugepaged_thread);
  1688. khugepaged_thread = NULL;
  1689. }
  1690. fail:
  1691. mutex_unlock(&khugepaged_mutex);
  1692. return err;
  1693. }