rt.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #include "sched.h"
  6. #include <linux/slab.h>
  7. #include <linux/irq_work.h>
  8. int sched_rr_timeslice = RR_TIMESLICE;
  9. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  10. struct rt_bandwidth def_rt_bandwidth;
  11. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  12. {
  13. struct rt_bandwidth *rt_b =
  14. container_of(timer, struct rt_bandwidth, rt_period_timer);
  15. int idle = 0;
  16. int overrun;
  17. raw_spin_lock(&rt_b->rt_runtime_lock);
  18. for (;;) {
  19. overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  20. if (!overrun)
  21. break;
  22. raw_spin_unlock(&rt_b->rt_runtime_lock);
  23. idle = do_sched_rt_period_timer(rt_b, overrun);
  24. raw_spin_lock(&rt_b->rt_runtime_lock);
  25. }
  26. if (idle)
  27. rt_b->rt_period_active = 0;
  28. raw_spin_unlock(&rt_b->rt_runtime_lock);
  29. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  30. }
  31. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  32. {
  33. rt_b->rt_period = ns_to_ktime(period);
  34. rt_b->rt_runtime = runtime;
  35. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  36. hrtimer_init(&rt_b->rt_period_timer,
  37. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  38. rt_b->rt_period_timer.function = sched_rt_period_timer;
  39. }
  40. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  41. {
  42. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  43. return;
  44. raw_spin_lock(&rt_b->rt_runtime_lock);
  45. if (!rt_b->rt_period_active) {
  46. rt_b->rt_period_active = 1;
  47. /*
  48. * SCHED_DEADLINE updates the bandwidth, as a run away
  49. * RT task with a DL task could hog a CPU. But DL does
  50. * not reset the period. If a deadline task was running
  51. * without an RT task running, it can cause RT tasks to
  52. * throttle when they start up. Kick the timer right away
  53. * to update the period.
  54. */
  55. hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
  56. hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
  57. }
  58. raw_spin_unlock(&rt_b->rt_runtime_lock);
  59. }
  60. #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
  61. static void push_irq_work_func(struct irq_work *work);
  62. #endif
  63. void init_rt_rq(struct rt_rq *rt_rq)
  64. {
  65. struct rt_prio_array *array;
  66. int i;
  67. array = &rt_rq->active;
  68. for (i = 0; i < MAX_RT_PRIO; i++) {
  69. INIT_LIST_HEAD(array->queue + i);
  70. __clear_bit(i, array->bitmap);
  71. }
  72. /* delimiter for bitsearch: */
  73. __set_bit(MAX_RT_PRIO, array->bitmap);
  74. #if defined CONFIG_SMP
  75. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  76. rt_rq->highest_prio.next = MAX_RT_PRIO;
  77. rt_rq->rt_nr_migratory = 0;
  78. rt_rq->overloaded = 0;
  79. plist_head_init(&rt_rq->pushable_tasks);
  80. #ifdef HAVE_RT_PUSH_IPI
  81. rt_rq->push_flags = 0;
  82. rt_rq->push_cpu = nr_cpu_ids;
  83. raw_spin_lock_init(&rt_rq->push_lock);
  84. init_irq_work(&rt_rq->push_work, push_irq_work_func);
  85. #endif
  86. #endif /* CONFIG_SMP */
  87. /* We start is dequeued state, because no RT tasks are queued */
  88. rt_rq->rt_queued = 0;
  89. rt_rq->rt_time = 0;
  90. rt_rq->rt_throttled = 0;
  91. rt_rq->rt_runtime = 0;
  92. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  93. }
  94. #ifdef CONFIG_RT_GROUP_SCHED
  95. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  96. {
  97. hrtimer_cancel(&rt_b->rt_period_timer);
  98. }
  99. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  100. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  101. {
  102. #ifdef CONFIG_SCHED_DEBUG
  103. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  104. #endif
  105. return container_of(rt_se, struct task_struct, rt);
  106. }
  107. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  108. {
  109. return rt_rq->rq;
  110. }
  111. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  112. {
  113. return rt_se->rt_rq;
  114. }
  115. static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
  116. {
  117. struct rt_rq *rt_rq = rt_se->rt_rq;
  118. return rt_rq->rq;
  119. }
  120. void free_rt_sched_group(struct task_group *tg)
  121. {
  122. int i;
  123. if (tg->rt_se)
  124. destroy_rt_bandwidth(&tg->rt_bandwidth);
  125. for_each_possible_cpu(i) {
  126. if (tg->rt_rq)
  127. kfree(tg->rt_rq[i]);
  128. if (tg->rt_se)
  129. kfree(tg->rt_se[i]);
  130. }
  131. kfree(tg->rt_rq);
  132. kfree(tg->rt_se);
  133. }
  134. void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  135. struct sched_rt_entity *rt_se, int cpu,
  136. struct sched_rt_entity *parent)
  137. {
  138. struct rq *rq = cpu_rq(cpu);
  139. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  140. rt_rq->rt_nr_boosted = 0;
  141. rt_rq->rq = rq;
  142. rt_rq->tg = tg;
  143. tg->rt_rq[cpu] = rt_rq;
  144. tg->rt_se[cpu] = rt_se;
  145. if (!rt_se)
  146. return;
  147. if (!parent)
  148. rt_se->rt_rq = &rq->rt;
  149. else
  150. rt_se->rt_rq = parent->my_q;
  151. rt_se->my_q = rt_rq;
  152. rt_se->parent = parent;
  153. INIT_LIST_HEAD(&rt_se->run_list);
  154. }
  155. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  156. {
  157. struct rt_rq *rt_rq;
  158. struct sched_rt_entity *rt_se;
  159. int i;
  160. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  161. if (!tg->rt_rq)
  162. goto err;
  163. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  164. if (!tg->rt_se)
  165. goto err;
  166. init_rt_bandwidth(&tg->rt_bandwidth,
  167. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  168. for_each_possible_cpu(i) {
  169. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  170. GFP_KERNEL, cpu_to_node(i));
  171. if (!rt_rq)
  172. goto err;
  173. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  174. GFP_KERNEL, cpu_to_node(i));
  175. if (!rt_se)
  176. goto err_free_rq;
  177. init_rt_rq(rt_rq);
  178. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  179. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  180. }
  181. return 1;
  182. err_free_rq:
  183. kfree(rt_rq);
  184. err:
  185. return 0;
  186. }
  187. #else /* CONFIG_RT_GROUP_SCHED */
  188. #define rt_entity_is_task(rt_se) (1)
  189. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  190. {
  191. return container_of(rt_se, struct task_struct, rt);
  192. }
  193. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  194. {
  195. return container_of(rt_rq, struct rq, rt);
  196. }
  197. static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
  198. {
  199. struct task_struct *p = rt_task_of(rt_se);
  200. return task_rq(p);
  201. }
  202. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  203. {
  204. struct rq *rq = rq_of_rt_se(rt_se);
  205. return &rq->rt;
  206. }
  207. void free_rt_sched_group(struct task_group *tg) { }
  208. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  209. {
  210. return 1;
  211. }
  212. #endif /* CONFIG_RT_GROUP_SCHED */
  213. #ifdef CONFIG_SMP
  214. static void pull_rt_task(struct rq *this_rq);
  215. static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
  216. {
  217. /* Try to pull RT tasks here if we lower this rq's prio */
  218. return rq->rt.highest_prio.curr > prev->prio;
  219. }
  220. static inline int rt_overloaded(struct rq *rq)
  221. {
  222. return atomic_read(&rq->rd->rto_count);
  223. }
  224. static inline void rt_set_overload(struct rq *rq)
  225. {
  226. if (!rq->online)
  227. return;
  228. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  229. /*
  230. * Make sure the mask is visible before we set
  231. * the overload count. That is checked to determine
  232. * if we should look at the mask. It would be a shame
  233. * if we looked at the mask, but the mask was not
  234. * updated yet.
  235. *
  236. * Matched by the barrier in pull_rt_task().
  237. */
  238. smp_wmb();
  239. atomic_inc(&rq->rd->rto_count);
  240. }
  241. static inline void rt_clear_overload(struct rq *rq)
  242. {
  243. if (!rq->online)
  244. return;
  245. /* the order here really doesn't matter */
  246. atomic_dec(&rq->rd->rto_count);
  247. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  248. }
  249. static void update_rt_migration(struct rt_rq *rt_rq)
  250. {
  251. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  252. if (!rt_rq->overloaded) {
  253. rt_set_overload(rq_of_rt_rq(rt_rq));
  254. rt_rq->overloaded = 1;
  255. }
  256. } else if (rt_rq->overloaded) {
  257. rt_clear_overload(rq_of_rt_rq(rt_rq));
  258. rt_rq->overloaded = 0;
  259. }
  260. }
  261. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  262. {
  263. struct task_struct *p;
  264. if (!rt_entity_is_task(rt_se))
  265. return;
  266. p = rt_task_of(rt_se);
  267. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  268. rt_rq->rt_nr_total++;
  269. if (tsk_nr_cpus_allowed(p) > 1)
  270. rt_rq->rt_nr_migratory++;
  271. update_rt_migration(rt_rq);
  272. }
  273. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  274. {
  275. struct task_struct *p;
  276. if (!rt_entity_is_task(rt_se))
  277. return;
  278. p = rt_task_of(rt_se);
  279. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  280. rt_rq->rt_nr_total--;
  281. if (tsk_nr_cpus_allowed(p) > 1)
  282. rt_rq->rt_nr_migratory--;
  283. update_rt_migration(rt_rq);
  284. }
  285. static inline int has_pushable_tasks(struct rq *rq)
  286. {
  287. return !plist_head_empty(&rq->rt.pushable_tasks);
  288. }
  289. static DEFINE_PER_CPU(struct callback_head, rt_push_head);
  290. static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
  291. static void push_rt_tasks(struct rq *);
  292. static void pull_rt_task(struct rq *);
  293. static inline void queue_push_tasks(struct rq *rq)
  294. {
  295. if (!has_pushable_tasks(rq))
  296. return;
  297. queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
  298. }
  299. static inline void queue_pull_task(struct rq *rq)
  300. {
  301. queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
  302. }
  303. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  304. {
  305. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  306. plist_node_init(&p->pushable_tasks, p->prio);
  307. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  308. /* Update the highest prio pushable task */
  309. if (p->prio < rq->rt.highest_prio.next)
  310. rq->rt.highest_prio.next = p->prio;
  311. }
  312. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  313. {
  314. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  315. /* Update the new highest prio pushable task */
  316. if (has_pushable_tasks(rq)) {
  317. p = plist_first_entry(&rq->rt.pushable_tasks,
  318. struct task_struct, pushable_tasks);
  319. rq->rt.highest_prio.next = p->prio;
  320. } else
  321. rq->rt.highest_prio.next = MAX_RT_PRIO;
  322. }
  323. #else
  324. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  325. {
  326. }
  327. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  328. {
  329. }
  330. static inline
  331. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  332. {
  333. }
  334. static inline
  335. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  336. {
  337. }
  338. static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
  339. {
  340. return false;
  341. }
  342. static inline void pull_rt_task(struct rq *this_rq)
  343. {
  344. }
  345. static inline void queue_push_tasks(struct rq *rq)
  346. {
  347. }
  348. #endif /* CONFIG_SMP */
  349. static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
  350. static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
  351. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  352. {
  353. return rt_se->on_rq;
  354. }
  355. #ifdef CONFIG_RT_GROUP_SCHED
  356. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  357. {
  358. if (!rt_rq->tg)
  359. return RUNTIME_INF;
  360. return rt_rq->rt_runtime;
  361. }
  362. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  363. {
  364. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  365. }
  366. typedef struct task_group *rt_rq_iter_t;
  367. static inline struct task_group *next_task_group(struct task_group *tg)
  368. {
  369. do {
  370. tg = list_entry_rcu(tg->list.next,
  371. typeof(struct task_group), list);
  372. } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
  373. if (&tg->list == &task_groups)
  374. tg = NULL;
  375. return tg;
  376. }
  377. #define for_each_rt_rq(rt_rq, iter, rq) \
  378. for (iter = container_of(&task_groups, typeof(*iter), list); \
  379. (iter = next_task_group(iter)) && \
  380. (rt_rq = iter->rt_rq[cpu_of(rq)]);)
  381. #define for_each_sched_rt_entity(rt_se) \
  382. for (; rt_se; rt_se = rt_se->parent)
  383. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  384. {
  385. return rt_se->my_q;
  386. }
  387. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
  388. static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
  389. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  390. {
  391. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  392. struct rq *rq = rq_of_rt_rq(rt_rq);
  393. struct sched_rt_entity *rt_se;
  394. int cpu = cpu_of(rq);
  395. rt_se = rt_rq->tg->rt_se[cpu];
  396. if (rt_rq->rt_nr_running) {
  397. if (!rt_se)
  398. enqueue_top_rt_rq(rt_rq);
  399. else if (!on_rt_rq(rt_se))
  400. enqueue_rt_entity(rt_se, 0);
  401. if (rt_rq->highest_prio.curr < curr->prio)
  402. resched_curr(rq);
  403. }
  404. }
  405. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  406. {
  407. struct sched_rt_entity *rt_se;
  408. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  409. rt_se = rt_rq->tg->rt_se[cpu];
  410. if (!rt_se)
  411. dequeue_top_rt_rq(rt_rq);
  412. else if (on_rt_rq(rt_se))
  413. dequeue_rt_entity(rt_se, 0);
  414. }
  415. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  416. {
  417. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  418. }
  419. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  420. {
  421. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  422. struct task_struct *p;
  423. if (rt_rq)
  424. return !!rt_rq->rt_nr_boosted;
  425. p = rt_task_of(rt_se);
  426. return p->prio != p->normal_prio;
  427. }
  428. #ifdef CONFIG_SMP
  429. static inline const struct cpumask *sched_rt_period_mask(void)
  430. {
  431. return this_rq()->rd->span;
  432. }
  433. #else
  434. static inline const struct cpumask *sched_rt_period_mask(void)
  435. {
  436. return cpu_online_mask;
  437. }
  438. #endif
  439. static inline
  440. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  441. {
  442. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  443. }
  444. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  445. {
  446. return &rt_rq->tg->rt_bandwidth;
  447. }
  448. #else /* !CONFIG_RT_GROUP_SCHED */
  449. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  450. {
  451. return rt_rq->rt_runtime;
  452. }
  453. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  454. {
  455. return ktime_to_ns(def_rt_bandwidth.rt_period);
  456. }
  457. typedef struct rt_rq *rt_rq_iter_t;
  458. #define for_each_rt_rq(rt_rq, iter, rq) \
  459. for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  460. #define for_each_sched_rt_entity(rt_se) \
  461. for (; rt_se; rt_se = NULL)
  462. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  463. {
  464. return NULL;
  465. }
  466. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  467. {
  468. struct rq *rq = rq_of_rt_rq(rt_rq);
  469. if (!rt_rq->rt_nr_running)
  470. return;
  471. enqueue_top_rt_rq(rt_rq);
  472. resched_curr(rq);
  473. }
  474. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  475. {
  476. dequeue_top_rt_rq(rt_rq);
  477. }
  478. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  479. {
  480. return rt_rq->rt_throttled;
  481. }
  482. static inline const struct cpumask *sched_rt_period_mask(void)
  483. {
  484. return cpu_online_mask;
  485. }
  486. static inline
  487. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  488. {
  489. return &cpu_rq(cpu)->rt;
  490. }
  491. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  492. {
  493. return &def_rt_bandwidth;
  494. }
  495. #endif /* CONFIG_RT_GROUP_SCHED */
  496. bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
  497. {
  498. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  499. return (hrtimer_active(&rt_b->rt_period_timer) ||
  500. rt_rq->rt_time < rt_b->rt_runtime);
  501. }
  502. #ifdef CONFIG_SMP
  503. /*
  504. * We ran out of runtime, see if we can borrow some from our neighbours.
  505. */
  506. static void do_balance_runtime(struct rt_rq *rt_rq)
  507. {
  508. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  509. struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
  510. int i, weight;
  511. u64 rt_period;
  512. weight = cpumask_weight(rd->span);
  513. raw_spin_lock(&rt_b->rt_runtime_lock);
  514. rt_period = ktime_to_ns(rt_b->rt_period);
  515. for_each_cpu(i, rd->span) {
  516. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  517. s64 diff;
  518. if (iter == rt_rq)
  519. continue;
  520. raw_spin_lock(&iter->rt_runtime_lock);
  521. /*
  522. * Either all rqs have inf runtime and there's nothing to steal
  523. * or __disable_runtime() below sets a specific rq to inf to
  524. * indicate its been disabled and disalow stealing.
  525. */
  526. if (iter->rt_runtime == RUNTIME_INF)
  527. goto next;
  528. /*
  529. * From runqueues with spare time, take 1/n part of their
  530. * spare time, but no more than our period.
  531. */
  532. diff = iter->rt_runtime - iter->rt_time;
  533. if (diff > 0) {
  534. diff = div_u64((u64)diff, weight);
  535. if (rt_rq->rt_runtime + diff > rt_period)
  536. diff = rt_period - rt_rq->rt_runtime;
  537. iter->rt_runtime -= diff;
  538. rt_rq->rt_runtime += diff;
  539. if (rt_rq->rt_runtime == rt_period) {
  540. raw_spin_unlock(&iter->rt_runtime_lock);
  541. break;
  542. }
  543. }
  544. next:
  545. raw_spin_unlock(&iter->rt_runtime_lock);
  546. }
  547. raw_spin_unlock(&rt_b->rt_runtime_lock);
  548. }
  549. /*
  550. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  551. */
  552. static void __disable_runtime(struct rq *rq)
  553. {
  554. struct root_domain *rd = rq->rd;
  555. rt_rq_iter_t iter;
  556. struct rt_rq *rt_rq;
  557. if (unlikely(!scheduler_running))
  558. return;
  559. for_each_rt_rq(rt_rq, iter, rq) {
  560. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  561. s64 want;
  562. int i;
  563. raw_spin_lock(&rt_b->rt_runtime_lock);
  564. raw_spin_lock(&rt_rq->rt_runtime_lock);
  565. /*
  566. * Either we're all inf and nobody needs to borrow, or we're
  567. * already disabled and thus have nothing to do, or we have
  568. * exactly the right amount of runtime to take out.
  569. */
  570. if (rt_rq->rt_runtime == RUNTIME_INF ||
  571. rt_rq->rt_runtime == rt_b->rt_runtime)
  572. goto balanced;
  573. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  574. /*
  575. * Calculate the difference between what we started out with
  576. * and what we current have, that's the amount of runtime
  577. * we lend and now have to reclaim.
  578. */
  579. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  580. /*
  581. * Greedy reclaim, take back as much as we can.
  582. */
  583. for_each_cpu(i, rd->span) {
  584. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  585. s64 diff;
  586. /*
  587. * Can't reclaim from ourselves or disabled runqueues.
  588. */
  589. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  590. continue;
  591. raw_spin_lock(&iter->rt_runtime_lock);
  592. if (want > 0) {
  593. diff = min_t(s64, iter->rt_runtime, want);
  594. iter->rt_runtime -= diff;
  595. want -= diff;
  596. } else {
  597. iter->rt_runtime -= want;
  598. want -= want;
  599. }
  600. raw_spin_unlock(&iter->rt_runtime_lock);
  601. if (!want)
  602. break;
  603. }
  604. raw_spin_lock(&rt_rq->rt_runtime_lock);
  605. /*
  606. * We cannot be left wanting - that would mean some runtime
  607. * leaked out of the system.
  608. */
  609. BUG_ON(want);
  610. balanced:
  611. /*
  612. * Disable all the borrow logic by pretending we have inf
  613. * runtime - in which case borrowing doesn't make sense.
  614. */
  615. rt_rq->rt_runtime = RUNTIME_INF;
  616. rt_rq->rt_throttled = 0;
  617. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  618. raw_spin_unlock(&rt_b->rt_runtime_lock);
  619. /* Make rt_rq available for pick_next_task() */
  620. sched_rt_rq_enqueue(rt_rq);
  621. }
  622. }
  623. static void __enable_runtime(struct rq *rq)
  624. {
  625. rt_rq_iter_t iter;
  626. struct rt_rq *rt_rq;
  627. if (unlikely(!scheduler_running))
  628. return;
  629. /*
  630. * Reset each runqueue's bandwidth settings
  631. */
  632. for_each_rt_rq(rt_rq, iter, rq) {
  633. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  634. raw_spin_lock(&rt_b->rt_runtime_lock);
  635. raw_spin_lock(&rt_rq->rt_runtime_lock);
  636. rt_rq->rt_runtime = rt_b->rt_runtime;
  637. rt_rq->rt_time = 0;
  638. rt_rq->rt_throttled = 0;
  639. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  640. raw_spin_unlock(&rt_b->rt_runtime_lock);
  641. }
  642. }
  643. static void balance_runtime(struct rt_rq *rt_rq)
  644. {
  645. if (!sched_feat(RT_RUNTIME_SHARE))
  646. return;
  647. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  648. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  649. do_balance_runtime(rt_rq);
  650. raw_spin_lock(&rt_rq->rt_runtime_lock);
  651. }
  652. }
  653. #else /* !CONFIG_SMP */
  654. static inline void balance_runtime(struct rt_rq *rt_rq) {}
  655. #endif /* CONFIG_SMP */
  656. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  657. {
  658. int i, idle = 1, throttled = 0;
  659. const struct cpumask *span;
  660. span = sched_rt_period_mask();
  661. #ifdef CONFIG_RT_GROUP_SCHED
  662. /*
  663. * FIXME: isolated CPUs should really leave the root task group,
  664. * whether they are isolcpus or were isolated via cpusets, lest
  665. * the timer run on a CPU which does not service all runqueues,
  666. * potentially leaving other CPUs indefinitely throttled. If
  667. * isolation is really required, the user will turn the throttle
  668. * off to kill the perturbations it causes anyway. Meanwhile,
  669. * this maintains functionality for boot and/or troubleshooting.
  670. */
  671. if (rt_b == &root_task_group.rt_bandwidth)
  672. span = cpu_online_mask;
  673. #endif
  674. for_each_cpu(i, span) {
  675. int enqueue = 0;
  676. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  677. struct rq *rq = rq_of_rt_rq(rt_rq);
  678. raw_spin_lock(&rq->lock);
  679. if (rt_rq->rt_time) {
  680. u64 runtime;
  681. raw_spin_lock(&rt_rq->rt_runtime_lock);
  682. if (rt_rq->rt_throttled)
  683. balance_runtime(rt_rq);
  684. runtime = rt_rq->rt_runtime;
  685. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  686. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  687. rt_rq->rt_throttled = 0;
  688. enqueue = 1;
  689. /*
  690. * When we're idle and a woken (rt) task is
  691. * throttled check_preempt_curr() will set
  692. * skip_update and the time between the wakeup
  693. * and this unthrottle will get accounted as
  694. * 'runtime'.
  695. */
  696. if (rt_rq->rt_nr_running && rq->curr == rq->idle)
  697. rq_clock_skip_update(rq, false);
  698. }
  699. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  700. idle = 0;
  701. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  702. } else if (rt_rq->rt_nr_running) {
  703. idle = 0;
  704. if (!rt_rq_throttled(rt_rq))
  705. enqueue = 1;
  706. }
  707. if (rt_rq->rt_throttled)
  708. throttled = 1;
  709. if (enqueue)
  710. sched_rt_rq_enqueue(rt_rq);
  711. raw_spin_unlock(&rq->lock);
  712. }
  713. if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
  714. return 1;
  715. return idle;
  716. }
  717. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  718. {
  719. #ifdef CONFIG_RT_GROUP_SCHED
  720. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  721. if (rt_rq)
  722. return rt_rq->highest_prio.curr;
  723. #endif
  724. return rt_task_of(rt_se)->prio;
  725. }
  726. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  727. {
  728. u64 runtime = sched_rt_runtime(rt_rq);
  729. if (rt_rq->rt_throttled)
  730. return rt_rq_throttled(rt_rq);
  731. if (runtime >= sched_rt_period(rt_rq))
  732. return 0;
  733. balance_runtime(rt_rq);
  734. runtime = sched_rt_runtime(rt_rq);
  735. if (runtime == RUNTIME_INF)
  736. return 0;
  737. if (rt_rq->rt_time > runtime) {
  738. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  739. /*
  740. * Don't actually throttle groups that have no runtime assigned
  741. * but accrue some time due to boosting.
  742. */
  743. if (likely(rt_b->rt_runtime)) {
  744. rt_rq->rt_throttled = 1;
  745. printk_deferred_once("sched: RT throttling activated\n");
  746. } else {
  747. /*
  748. * In case we did anyway, make it go away,
  749. * replenishment is a joke, since it will replenish us
  750. * with exactly 0 ns.
  751. */
  752. rt_rq->rt_time = 0;
  753. }
  754. if (rt_rq_throttled(rt_rq)) {
  755. sched_rt_rq_dequeue(rt_rq);
  756. return 1;
  757. }
  758. }
  759. return 0;
  760. }
  761. /*
  762. * Update the current task's runtime statistics. Skip current tasks that
  763. * are not in our scheduling class.
  764. */
  765. static void update_curr_rt(struct rq *rq)
  766. {
  767. struct task_struct *curr = rq->curr;
  768. struct sched_rt_entity *rt_se = &curr->rt;
  769. u64 delta_exec;
  770. if (curr->sched_class != &rt_sched_class)
  771. return;
  772. delta_exec = rq_clock_task(rq) - curr->se.exec_start;
  773. if (unlikely((s64)delta_exec <= 0))
  774. return;
  775. /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
  776. cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
  777. schedstat_set(curr->se.statistics.exec_max,
  778. max(curr->se.statistics.exec_max, delta_exec));
  779. curr->se.sum_exec_runtime += delta_exec;
  780. account_group_exec_runtime(curr, delta_exec);
  781. curr->se.exec_start = rq_clock_task(rq);
  782. cpuacct_charge(curr, delta_exec);
  783. sched_rt_avg_update(rq, delta_exec);
  784. if (!rt_bandwidth_enabled())
  785. return;
  786. for_each_sched_rt_entity(rt_se) {
  787. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  788. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  789. raw_spin_lock(&rt_rq->rt_runtime_lock);
  790. rt_rq->rt_time += delta_exec;
  791. if (sched_rt_runtime_exceeded(rt_rq))
  792. resched_curr(rq);
  793. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  794. }
  795. }
  796. }
  797. static void
  798. dequeue_top_rt_rq(struct rt_rq *rt_rq)
  799. {
  800. struct rq *rq = rq_of_rt_rq(rt_rq);
  801. BUG_ON(&rq->rt != rt_rq);
  802. if (!rt_rq->rt_queued)
  803. return;
  804. BUG_ON(!rq->nr_running);
  805. sub_nr_running(rq, rt_rq->rt_nr_running);
  806. rt_rq->rt_queued = 0;
  807. }
  808. static void
  809. enqueue_top_rt_rq(struct rt_rq *rt_rq)
  810. {
  811. struct rq *rq = rq_of_rt_rq(rt_rq);
  812. BUG_ON(&rq->rt != rt_rq);
  813. if (rt_rq->rt_queued)
  814. return;
  815. if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
  816. return;
  817. add_nr_running(rq, rt_rq->rt_nr_running);
  818. rt_rq->rt_queued = 1;
  819. }
  820. #if defined CONFIG_SMP
  821. static void
  822. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  823. {
  824. struct rq *rq = rq_of_rt_rq(rt_rq);
  825. #ifdef CONFIG_RT_GROUP_SCHED
  826. /*
  827. * Change rq's cpupri only if rt_rq is the top queue.
  828. */
  829. if (&rq->rt != rt_rq)
  830. return;
  831. #endif
  832. if (rq->online && prio < prev_prio)
  833. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  834. }
  835. static void
  836. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  837. {
  838. struct rq *rq = rq_of_rt_rq(rt_rq);
  839. #ifdef CONFIG_RT_GROUP_SCHED
  840. /*
  841. * Change rq's cpupri only if rt_rq is the top queue.
  842. */
  843. if (&rq->rt != rt_rq)
  844. return;
  845. #endif
  846. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  847. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  848. }
  849. #else /* CONFIG_SMP */
  850. static inline
  851. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  852. static inline
  853. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  854. #endif /* CONFIG_SMP */
  855. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  856. static void
  857. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  858. {
  859. int prev_prio = rt_rq->highest_prio.curr;
  860. if (prio < prev_prio)
  861. rt_rq->highest_prio.curr = prio;
  862. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  863. }
  864. static void
  865. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  866. {
  867. int prev_prio = rt_rq->highest_prio.curr;
  868. if (rt_rq->rt_nr_running) {
  869. WARN_ON(prio < prev_prio);
  870. /*
  871. * This may have been our highest task, and therefore
  872. * we may have some recomputation to do
  873. */
  874. if (prio == prev_prio) {
  875. struct rt_prio_array *array = &rt_rq->active;
  876. rt_rq->highest_prio.curr =
  877. sched_find_first_bit(array->bitmap);
  878. }
  879. } else
  880. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  881. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  882. }
  883. #else
  884. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  885. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  886. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  887. #ifdef CONFIG_RT_GROUP_SCHED
  888. static void
  889. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  890. {
  891. if (rt_se_boosted(rt_se))
  892. rt_rq->rt_nr_boosted++;
  893. if (rt_rq->tg)
  894. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  895. }
  896. static void
  897. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  898. {
  899. if (rt_se_boosted(rt_se))
  900. rt_rq->rt_nr_boosted--;
  901. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  902. }
  903. #else /* CONFIG_RT_GROUP_SCHED */
  904. static void
  905. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  906. {
  907. start_rt_bandwidth(&def_rt_bandwidth);
  908. }
  909. static inline
  910. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  911. #endif /* CONFIG_RT_GROUP_SCHED */
  912. static inline
  913. unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
  914. {
  915. struct rt_rq *group_rq = group_rt_rq(rt_se);
  916. if (group_rq)
  917. return group_rq->rt_nr_running;
  918. else
  919. return 1;
  920. }
  921. static inline
  922. unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
  923. {
  924. struct rt_rq *group_rq = group_rt_rq(rt_se);
  925. struct task_struct *tsk;
  926. if (group_rq)
  927. return group_rq->rr_nr_running;
  928. tsk = rt_task_of(rt_se);
  929. return (tsk->policy == SCHED_RR) ? 1 : 0;
  930. }
  931. static inline
  932. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  933. {
  934. int prio = rt_se_prio(rt_se);
  935. WARN_ON(!rt_prio(prio));
  936. rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
  937. rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
  938. inc_rt_prio(rt_rq, prio);
  939. inc_rt_migration(rt_se, rt_rq);
  940. inc_rt_group(rt_se, rt_rq);
  941. }
  942. static inline
  943. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  944. {
  945. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  946. WARN_ON(!rt_rq->rt_nr_running);
  947. rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
  948. rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
  949. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  950. dec_rt_migration(rt_se, rt_rq);
  951. dec_rt_group(rt_se, rt_rq);
  952. }
  953. /*
  954. * Change rt_se->run_list location unless SAVE && !MOVE
  955. *
  956. * assumes ENQUEUE/DEQUEUE flags match
  957. */
  958. static inline bool move_entity(unsigned int flags)
  959. {
  960. if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
  961. return false;
  962. return true;
  963. }
  964. static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
  965. {
  966. list_del_init(&rt_se->run_list);
  967. if (list_empty(array->queue + rt_se_prio(rt_se)))
  968. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  969. rt_se->on_list = 0;
  970. }
  971. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  972. {
  973. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  974. struct rt_prio_array *array = &rt_rq->active;
  975. struct rt_rq *group_rq = group_rt_rq(rt_se);
  976. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  977. /*
  978. * Don't enqueue the group if its throttled, or when empty.
  979. * The latter is a consequence of the former when a child group
  980. * get throttled and the current group doesn't have any other
  981. * active members.
  982. */
  983. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
  984. if (rt_se->on_list)
  985. __delist_rt_entity(rt_se, array);
  986. return;
  987. }
  988. if (move_entity(flags)) {
  989. WARN_ON_ONCE(rt_se->on_list);
  990. if (flags & ENQUEUE_HEAD)
  991. list_add(&rt_se->run_list, queue);
  992. else
  993. list_add_tail(&rt_se->run_list, queue);
  994. __set_bit(rt_se_prio(rt_se), array->bitmap);
  995. rt_se->on_list = 1;
  996. }
  997. rt_se->on_rq = 1;
  998. inc_rt_tasks(rt_se, rt_rq);
  999. }
  1000. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  1001. {
  1002. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  1003. struct rt_prio_array *array = &rt_rq->active;
  1004. if (move_entity(flags)) {
  1005. WARN_ON_ONCE(!rt_se->on_list);
  1006. __delist_rt_entity(rt_se, array);
  1007. }
  1008. rt_se->on_rq = 0;
  1009. dec_rt_tasks(rt_se, rt_rq);
  1010. }
  1011. /*
  1012. * Because the prio of an upper entry depends on the lower
  1013. * entries, we must remove entries top - down.
  1014. */
  1015. static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
  1016. {
  1017. struct sched_rt_entity *back = NULL;
  1018. for_each_sched_rt_entity(rt_se) {
  1019. rt_se->back = back;
  1020. back = rt_se;
  1021. }
  1022. dequeue_top_rt_rq(rt_rq_of_se(back));
  1023. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  1024. if (on_rt_rq(rt_se))
  1025. __dequeue_rt_entity(rt_se, flags);
  1026. }
  1027. }
  1028. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  1029. {
  1030. struct rq *rq = rq_of_rt_se(rt_se);
  1031. dequeue_rt_stack(rt_se, flags);
  1032. for_each_sched_rt_entity(rt_se)
  1033. __enqueue_rt_entity(rt_se, flags);
  1034. enqueue_top_rt_rq(&rq->rt);
  1035. }
  1036. static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
  1037. {
  1038. struct rq *rq = rq_of_rt_se(rt_se);
  1039. dequeue_rt_stack(rt_se, flags);
  1040. for_each_sched_rt_entity(rt_se) {
  1041. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  1042. if (rt_rq && rt_rq->rt_nr_running)
  1043. __enqueue_rt_entity(rt_se, flags);
  1044. }
  1045. enqueue_top_rt_rq(&rq->rt);
  1046. }
  1047. /*
  1048. * Adding/removing a task to/from a priority array:
  1049. */
  1050. static void
  1051. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  1052. {
  1053. struct sched_rt_entity *rt_se = &p->rt;
  1054. if (flags & ENQUEUE_WAKEUP)
  1055. rt_se->timeout = 0;
  1056. enqueue_rt_entity(rt_se, flags);
  1057. if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
  1058. enqueue_pushable_task(rq, p);
  1059. }
  1060. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  1061. {
  1062. struct sched_rt_entity *rt_se = &p->rt;
  1063. update_curr_rt(rq);
  1064. dequeue_rt_entity(rt_se, flags);
  1065. dequeue_pushable_task(rq, p);
  1066. }
  1067. /*
  1068. * Put task to the head or the end of the run list without the overhead of
  1069. * dequeue followed by enqueue.
  1070. */
  1071. static void
  1072. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  1073. {
  1074. if (on_rt_rq(rt_se)) {
  1075. struct rt_prio_array *array = &rt_rq->active;
  1076. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  1077. if (head)
  1078. list_move(&rt_se->run_list, queue);
  1079. else
  1080. list_move_tail(&rt_se->run_list, queue);
  1081. }
  1082. }
  1083. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  1084. {
  1085. struct sched_rt_entity *rt_se = &p->rt;
  1086. struct rt_rq *rt_rq;
  1087. for_each_sched_rt_entity(rt_se) {
  1088. rt_rq = rt_rq_of_se(rt_se);
  1089. requeue_rt_entity(rt_rq, rt_se, head);
  1090. }
  1091. }
  1092. static void yield_task_rt(struct rq *rq)
  1093. {
  1094. requeue_task_rt(rq, rq->curr, 0);
  1095. }
  1096. #ifdef CONFIG_SMP
  1097. static int find_lowest_rq(struct task_struct *task);
  1098. static int
  1099. select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
  1100. {
  1101. struct task_struct *curr;
  1102. struct rq *rq;
  1103. /* For anything but wake ups, just return the task_cpu */
  1104. if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
  1105. goto out;
  1106. rq = cpu_rq(cpu);
  1107. rcu_read_lock();
  1108. curr = READ_ONCE(rq->curr); /* unlocked access */
  1109. /*
  1110. * If the current task on @p's runqueue is an RT task, then
  1111. * try to see if we can wake this RT task up on another
  1112. * runqueue. Otherwise simply start this RT task
  1113. * on its current runqueue.
  1114. *
  1115. * We want to avoid overloading runqueues. If the woken
  1116. * task is a higher priority, then it will stay on this CPU
  1117. * and the lower prio task should be moved to another CPU.
  1118. * Even though this will probably make the lower prio task
  1119. * lose its cache, we do not want to bounce a higher task
  1120. * around just because it gave up its CPU, perhaps for a
  1121. * lock?
  1122. *
  1123. * For equal prio tasks, we just let the scheduler sort it out.
  1124. *
  1125. * Otherwise, just let it ride on the affined RQ and the
  1126. * post-schedule router will push the preempted task away
  1127. *
  1128. * This test is optimistic, if we get it wrong the load-balancer
  1129. * will have to sort it out.
  1130. */
  1131. if (curr && unlikely(rt_task(curr)) &&
  1132. (tsk_nr_cpus_allowed(curr) < 2 ||
  1133. curr->prio <= p->prio)) {
  1134. int target = find_lowest_rq(p);
  1135. /*
  1136. * Don't bother moving it if the destination CPU is
  1137. * not running a lower priority task.
  1138. */
  1139. if (target != -1 &&
  1140. p->prio < cpu_rq(target)->rt.highest_prio.curr)
  1141. cpu = target;
  1142. }
  1143. rcu_read_unlock();
  1144. out:
  1145. return cpu;
  1146. }
  1147. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  1148. {
  1149. /*
  1150. * Current can't be migrated, useless to reschedule,
  1151. * let's hope p can move out.
  1152. */
  1153. if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
  1154. !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  1155. return;
  1156. /*
  1157. * p is migratable, so let's not schedule it and
  1158. * see if it is pushed or pulled somewhere else.
  1159. */
  1160. if (tsk_nr_cpus_allowed(p) != 1
  1161. && cpupri_find(&rq->rd->cpupri, p, NULL))
  1162. return;
  1163. /*
  1164. * There appears to be other cpus that can accept
  1165. * current and none to run 'p', so lets reschedule
  1166. * to try and push current away:
  1167. */
  1168. requeue_task_rt(rq, p, 1);
  1169. resched_curr(rq);
  1170. }
  1171. #endif /* CONFIG_SMP */
  1172. /*
  1173. * Preempt the current task with a newly woken task if needed:
  1174. */
  1175. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  1176. {
  1177. if (p->prio < rq->curr->prio) {
  1178. resched_curr(rq);
  1179. return;
  1180. }
  1181. #ifdef CONFIG_SMP
  1182. /*
  1183. * If:
  1184. *
  1185. * - the newly woken task is of equal priority to the current task
  1186. * - the newly woken task is non-migratable while current is migratable
  1187. * - current will be preempted on the next reschedule
  1188. *
  1189. * we should check to see if current can readily move to a different
  1190. * cpu. If so, we will reschedule to allow the push logic to try
  1191. * to move current somewhere else, making room for our non-migratable
  1192. * task.
  1193. */
  1194. if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
  1195. check_preempt_equal_prio(rq, p);
  1196. #endif
  1197. }
  1198. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  1199. struct rt_rq *rt_rq)
  1200. {
  1201. struct rt_prio_array *array = &rt_rq->active;
  1202. struct sched_rt_entity *next = NULL;
  1203. struct list_head *queue;
  1204. int idx;
  1205. idx = sched_find_first_bit(array->bitmap);
  1206. BUG_ON(idx >= MAX_RT_PRIO);
  1207. queue = array->queue + idx;
  1208. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  1209. return next;
  1210. }
  1211. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  1212. {
  1213. struct sched_rt_entity *rt_se;
  1214. struct task_struct *p;
  1215. struct rt_rq *rt_rq = &rq->rt;
  1216. do {
  1217. rt_se = pick_next_rt_entity(rq, rt_rq);
  1218. BUG_ON(!rt_se);
  1219. rt_rq = group_rt_rq(rt_se);
  1220. } while (rt_rq);
  1221. p = rt_task_of(rt_se);
  1222. p->se.exec_start = rq_clock_task(rq);
  1223. return p;
  1224. }
  1225. static struct task_struct *
  1226. pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
  1227. {
  1228. struct task_struct *p;
  1229. struct rt_rq *rt_rq = &rq->rt;
  1230. if (need_pull_rt_task(rq, prev)) {
  1231. /*
  1232. * This is OK, because current is on_cpu, which avoids it being
  1233. * picked for load-balance and preemption/IRQs are still
  1234. * disabled avoiding further scheduler activity on it and we're
  1235. * being very careful to re-start the picking loop.
  1236. */
  1237. lockdep_unpin_lock(&rq->lock, cookie);
  1238. pull_rt_task(rq);
  1239. lockdep_repin_lock(&rq->lock, cookie);
  1240. /*
  1241. * pull_rt_task() can drop (and re-acquire) rq->lock; this
  1242. * means a dl or stop task can slip in, in which case we need
  1243. * to re-start task selection.
  1244. */
  1245. if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
  1246. rq->dl.dl_nr_running))
  1247. return RETRY_TASK;
  1248. }
  1249. /*
  1250. * We may dequeue prev's rt_rq in put_prev_task().
  1251. * So, we update time before rt_nr_running check.
  1252. */
  1253. if (prev->sched_class == &rt_sched_class)
  1254. update_curr_rt(rq);
  1255. if (!rt_rq->rt_queued)
  1256. return NULL;
  1257. put_prev_task(rq, prev);
  1258. p = _pick_next_task_rt(rq);
  1259. /* The running task is never eligible for pushing */
  1260. dequeue_pushable_task(rq, p);
  1261. queue_push_tasks(rq);
  1262. return p;
  1263. }
  1264. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  1265. {
  1266. update_curr_rt(rq);
  1267. /*
  1268. * The previous task needs to be made eligible for pushing
  1269. * if it is still active
  1270. */
  1271. if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
  1272. enqueue_pushable_task(rq, p);
  1273. }
  1274. #ifdef CONFIG_SMP
  1275. /* Only try algorithms three times */
  1276. #define RT_MAX_TRIES 3
  1277. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  1278. {
  1279. if (!task_running(rq, p) &&
  1280. cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  1281. return 1;
  1282. return 0;
  1283. }
  1284. /*
  1285. * Return the highest pushable rq's task, which is suitable to be executed
  1286. * on the cpu, NULL otherwise
  1287. */
  1288. static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
  1289. {
  1290. struct plist_head *head = &rq->rt.pushable_tasks;
  1291. struct task_struct *p;
  1292. if (!has_pushable_tasks(rq))
  1293. return NULL;
  1294. plist_for_each_entry(p, head, pushable_tasks) {
  1295. if (pick_rt_task(rq, p, cpu))
  1296. return p;
  1297. }
  1298. return NULL;
  1299. }
  1300. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  1301. static int find_lowest_rq(struct task_struct *task)
  1302. {
  1303. struct sched_domain *sd;
  1304. struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
  1305. int this_cpu = smp_processor_id();
  1306. int cpu = task_cpu(task);
  1307. /* Make sure the mask is initialized first */
  1308. if (unlikely(!lowest_mask))
  1309. return -1;
  1310. if (tsk_nr_cpus_allowed(task) == 1)
  1311. return -1; /* No other targets possible */
  1312. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  1313. return -1; /* No targets found */
  1314. /*
  1315. * At this point we have built a mask of cpus representing the
  1316. * lowest priority tasks in the system. Now we want to elect
  1317. * the best one based on our affinity and topology.
  1318. *
  1319. * We prioritize the last cpu that the task executed on since
  1320. * it is most likely cache-hot in that location.
  1321. */
  1322. if (cpumask_test_cpu(cpu, lowest_mask))
  1323. return cpu;
  1324. /*
  1325. * Otherwise, we consult the sched_domains span maps to figure
  1326. * out which cpu is logically closest to our hot cache data.
  1327. */
  1328. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  1329. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  1330. rcu_read_lock();
  1331. for_each_domain(cpu, sd) {
  1332. if (sd->flags & SD_WAKE_AFFINE) {
  1333. int best_cpu;
  1334. /*
  1335. * "this_cpu" is cheaper to preempt than a
  1336. * remote processor.
  1337. */
  1338. if (this_cpu != -1 &&
  1339. cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
  1340. rcu_read_unlock();
  1341. return this_cpu;
  1342. }
  1343. best_cpu = cpumask_first_and(lowest_mask,
  1344. sched_domain_span(sd));
  1345. if (best_cpu < nr_cpu_ids) {
  1346. rcu_read_unlock();
  1347. return best_cpu;
  1348. }
  1349. }
  1350. }
  1351. rcu_read_unlock();
  1352. /*
  1353. * And finally, if there were no matches within the domains
  1354. * just give the caller *something* to work with from the compatible
  1355. * locations.
  1356. */
  1357. if (this_cpu != -1)
  1358. return this_cpu;
  1359. cpu = cpumask_any(lowest_mask);
  1360. if (cpu < nr_cpu_ids)
  1361. return cpu;
  1362. return -1;
  1363. }
  1364. /* Will lock the rq it finds */
  1365. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1366. {
  1367. struct rq *lowest_rq = NULL;
  1368. int tries;
  1369. int cpu;
  1370. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1371. cpu = find_lowest_rq(task);
  1372. if ((cpu == -1) || (cpu == rq->cpu))
  1373. break;
  1374. lowest_rq = cpu_rq(cpu);
  1375. if (lowest_rq->rt.highest_prio.curr <= task->prio) {
  1376. /*
  1377. * Target rq has tasks of equal or higher priority,
  1378. * retrying does not release any lock and is unlikely
  1379. * to yield a different result.
  1380. */
  1381. lowest_rq = NULL;
  1382. break;
  1383. }
  1384. /* if the prio of this runqueue changed, try again */
  1385. if (double_lock_balance(rq, lowest_rq)) {
  1386. /*
  1387. * We had to unlock the run queue. In
  1388. * the mean time, task could have
  1389. * migrated already or had its affinity changed.
  1390. * Also make sure that it wasn't scheduled on its rq.
  1391. */
  1392. if (unlikely(task_rq(task) != rq ||
  1393. !cpumask_test_cpu(lowest_rq->cpu,
  1394. tsk_cpus_allowed(task)) ||
  1395. task_running(rq, task) ||
  1396. !rt_task(task) ||
  1397. !task_on_rq_queued(task))) {
  1398. double_unlock_balance(rq, lowest_rq);
  1399. lowest_rq = NULL;
  1400. break;
  1401. }
  1402. }
  1403. /* If this rq is still suitable use it. */
  1404. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1405. break;
  1406. /* try again */
  1407. double_unlock_balance(rq, lowest_rq);
  1408. lowest_rq = NULL;
  1409. }
  1410. return lowest_rq;
  1411. }
  1412. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1413. {
  1414. struct task_struct *p;
  1415. if (!has_pushable_tasks(rq))
  1416. return NULL;
  1417. p = plist_first_entry(&rq->rt.pushable_tasks,
  1418. struct task_struct, pushable_tasks);
  1419. BUG_ON(rq->cpu != task_cpu(p));
  1420. BUG_ON(task_current(rq, p));
  1421. BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
  1422. BUG_ON(!task_on_rq_queued(p));
  1423. BUG_ON(!rt_task(p));
  1424. return p;
  1425. }
  1426. /*
  1427. * If the current CPU has more than one RT task, see if the non
  1428. * running task can migrate over to a CPU that is running a task
  1429. * of lesser priority.
  1430. */
  1431. static int push_rt_task(struct rq *rq)
  1432. {
  1433. struct task_struct *next_task;
  1434. struct rq *lowest_rq;
  1435. int ret = 0;
  1436. if (!rq->rt.overloaded)
  1437. return 0;
  1438. next_task = pick_next_pushable_task(rq);
  1439. if (!next_task)
  1440. return 0;
  1441. retry:
  1442. if (unlikely(next_task == rq->curr)) {
  1443. WARN_ON(1);
  1444. return 0;
  1445. }
  1446. /*
  1447. * It's possible that the next_task slipped in of
  1448. * higher priority than current. If that's the case
  1449. * just reschedule current.
  1450. */
  1451. if (unlikely(next_task->prio < rq->curr->prio)) {
  1452. resched_curr(rq);
  1453. return 0;
  1454. }
  1455. /* We might release rq lock */
  1456. get_task_struct(next_task);
  1457. /* find_lock_lowest_rq locks the rq if found */
  1458. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1459. if (!lowest_rq) {
  1460. struct task_struct *task;
  1461. /*
  1462. * find_lock_lowest_rq releases rq->lock
  1463. * so it is possible that next_task has migrated.
  1464. *
  1465. * We need to make sure that the task is still on the same
  1466. * run-queue and is also still the next task eligible for
  1467. * pushing.
  1468. */
  1469. task = pick_next_pushable_task(rq);
  1470. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1471. /*
  1472. * The task hasn't migrated, and is still the next
  1473. * eligible task, but we failed to find a run-queue
  1474. * to push it to. Do not retry in this case, since
  1475. * other cpus will pull from us when ready.
  1476. */
  1477. goto out;
  1478. }
  1479. if (!task)
  1480. /* No more tasks, just exit */
  1481. goto out;
  1482. /*
  1483. * Something has shifted, try again.
  1484. */
  1485. put_task_struct(next_task);
  1486. next_task = task;
  1487. goto retry;
  1488. }
  1489. deactivate_task(rq, next_task, 0);
  1490. set_task_cpu(next_task, lowest_rq->cpu);
  1491. activate_task(lowest_rq, next_task, 0);
  1492. ret = 1;
  1493. resched_curr(lowest_rq);
  1494. double_unlock_balance(rq, lowest_rq);
  1495. out:
  1496. put_task_struct(next_task);
  1497. return ret;
  1498. }
  1499. static void push_rt_tasks(struct rq *rq)
  1500. {
  1501. /* push_rt_task will return true if it moved an RT */
  1502. while (push_rt_task(rq))
  1503. ;
  1504. }
  1505. #ifdef HAVE_RT_PUSH_IPI
  1506. /*
  1507. * The search for the next cpu always starts at rq->cpu and ends
  1508. * when we reach rq->cpu again. It will never return rq->cpu.
  1509. * This returns the next cpu to check, or nr_cpu_ids if the loop
  1510. * is complete.
  1511. *
  1512. * rq->rt.push_cpu holds the last cpu returned by this function,
  1513. * or if this is the first instance, it must hold rq->cpu.
  1514. */
  1515. static int rto_next_cpu(struct rq *rq)
  1516. {
  1517. int prev_cpu = rq->rt.push_cpu;
  1518. int cpu;
  1519. cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
  1520. /*
  1521. * If the previous cpu is less than the rq's CPU, then it already
  1522. * passed the end of the mask, and has started from the beginning.
  1523. * We end if the next CPU is greater or equal to rq's CPU.
  1524. */
  1525. if (prev_cpu < rq->cpu) {
  1526. if (cpu >= rq->cpu)
  1527. return nr_cpu_ids;
  1528. } else if (cpu >= nr_cpu_ids) {
  1529. /*
  1530. * We passed the end of the mask, start at the beginning.
  1531. * If the result is greater or equal to the rq's CPU, then
  1532. * the loop is finished.
  1533. */
  1534. cpu = cpumask_first(rq->rd->rto_mask);
  1535. if (cpu >= rq->cpu)
  1536. return nr_cpu_ids;
  1537. }
  1538. rq->rt.push_cpu = cpu;
  1539. /* Return cpu to let the caller know if the loop is finished or not */
  1540. return cpu;
  1541. }
  1542. static int find_next_push_cpu(struct rq *rq)
  1543. {
  1544. struct rq *next_rq;
  1545. int cpu;
  1546. while (1) {
  1547. cpu = rto_next_cpu(rq);
  1548. if (cpu >= nr_cpu_ids)
  1549. break;
  1550. next_rq = cpu_rq(cpu);
  1551. /* Make sure the next rq can push to this rq */
  1552. if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
  1553. break;
  1554. }
  1555. return cpu;
  1556. }
  1557. #define RT_PUSH_IPI_EXECUTING 1
  1558. #define RT_PUSH_IPI_RESTART 2
  1559. static void tell_cpu_to_push(struct rq *rq)
  1560. {
  1561. int cpu;
  1562. if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
  1563. raw_spin_lock(&rq->rt.push_lock);
  1564. /* Make sure it's still executing */
  1565. if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
  1566. /*
  1567. * Tell the IPI to restart the loop as things have
  1568. * changed since it started.
  1569. */
  1570. rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
  1571. raw_spin_unlock(&rq->rt.push_lock);
  1572. return;
  1573. }
  1574. raw_spin_unlock(&rq->rt.push_lock);
  1575. }
  1576. /* When here, there's no IPI going around */
  1577. rq->rt.push_cpu = rq->cpu;
  1578. cpu = find_next_push_cpu(rq);
  1579. if (cpu >= nr_cpu_ids)
  1580. return;
  1581. rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
  1582. irq_work_queue_on(&rq->rt.push_work, cpu);
  1583. }
  1584. /* Called from hardirq context */
  1585. static void try_to_push_tasks(void *arg)
  1586. {
  1587. struct rt_rq *rt_rq = arg;
  1588. struct rq *rq, *src_rq;
  1589. int this_cpu;
  1590. int cpu;
  1591. this_cpu = rt_rq->push_cpu;
  1592. /* Paranoid check */
  1593. BUG_ON(this_cpu != smp_processor_id());
  1594. rq = cpu_rq(this_cpu);
  1595. src_rq = rq_of_rt_rq(rt_rq);
  1596. again:
  1597. if (has_pushable_tasks(rq)) {
  1598. raw_spin_lock(&rq->lock);
  1599. push_rt_task(rq);
  1600. raw_spin_unlock(&rq->lock);
  1601. }
  1602. /* Pass the IPI to the next rt overloaded queue */
  1603. raw_spin_lock(&rt_rq->push_lock);
  1604. /*
  1605. * If the source queue changed since the IPI went out,
  1606. * we need to restart the search from that CPU again.
  1607. */
  1608. if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
  1609. rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
  1610. rt_rq->push_cpu = src_rq->cpu;
  1611. }
  1612. cpu = find_next_push_cpu(src_rq);
  1613. if (cpu >= nr_cpu_ids)
  1614. rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
  1615. raw_spin_unlock(&rt_rq->push_lock);
  1616. if (cpu >= nr_cpu_ids)
  1617. return;
  1618. /*
  1619. * It is possible that a restart caused this CPU to be
  1620. * chosen again. Don't bother with an IPI, just see if we
  1621. * have more to push.
  1622. */
  1623. if (unlikely(cpu == rq->cpu))
  1624. goto again;
  1625. /* Try the next RT overloaded CPU */
  1626. irq_work_queue_on(&rt_rq->push_work, cpu);
  1627. }
  1628. static void push_irq_work_func(struct irq_work *work)
  1629. {
  1630. struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
  1631. try_to_push_tasks(rt_rq);
  1632. }
  1633. #endif /* HAVE_RT_PUSH_IPI */
  1634. static void pull_rt_task(struct rq *this_rq)
  1635. {
  1636. int this_cpu = this_rq->cpu, cpu;
  1637. bool resched = false;
  1638. struct task_struct *p;
  1639. struct rq *src_rq;
  1640. if (likely(!rt_overloaded(this_rq)))
  1641. return;
  1642. /*
  1643. * Match the barrier from rt_set_overloaded; this guarantees that if we
  1644. * see overloaded we must also see the rto_mask bit.
  1645. */
  1646. smp_rmb();
  1647. #ifdef HAVE_RT_PUSH_IPI
  1648. if (sched_feat(RT_PUSH_IPI)) {
  1649. tell_cpu_to_push(this_rq);
  1650. return;
  1651. }
  1652. #endif
  1653. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1654. if (this_cpu == cpu)
  1655. continue;
  1656. src_rq = cpu_rq(cpu);
  1657. /*
  1658. * Don't bother taking the src_rq->lock if the next highest
  1659. * task is known to be lower-priority than our current task.
  1660. * This may look racy, but if this value is about to go
  1661. * logically higher, the src_rq will push this task away.
  1662. * And if its going logically lower, we do not care
  1663. */
  1664. if (src_rq->rt.highest_prio.next >=
  1665. this_rq->rt.highest_prio.curr)
  1666. continue;
  1667. /*
  1668. * We can potentially drop this_rq's lock in
  1669. * double_lock_balance, and another CPU could
  1670. * alter this_rq
  1671. */
  1672. double_lock_balance(this_rq, src_rq);
  1673. /*
  1674. * We can pull only a task, which is pushable
  1675. * on its rq, and no others.
  1676. */
  1677. p = pick_highest_pushable_task(src_rq, this_cpu);
  1678. /*
  1679. * Do we have an RT task that preempts
  1680. * the to-be-scheduled task?
  1681. */
  1682. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1683. WARN_ON(p == src_rq->curr);
  1684. WARN_ON(!task_on_rq_queued(p));
  1685. /*
  1686. * There's a chance that p is higher in priority
  1687. * than what's currently running on its cpu.
  1688. * This is just that p is wakeing up and hasn't
  1689. * had a chance to schedule. We only pull
  1690. * p if it is lower in priority than the
  1691. * current task on the run queue
  1692. */
  1693. if (p->prio < src_rq->curr->prio)
  1694. goto skip;
  1695. resched = true;
  1696. deactivate_task(src_rq, p, 0);
  1697. set_task_cpu(p, this_cpu);
  1698. activate_task(this_rq, p, 0);
  1699. /*
  1700. * We continue with the search, just in
  1701. * case there's an even higher prio task
  1702. * in another runqueue. (low likelihood
  1703. * but possible)
  1704. */
  1705. }
  1706. skip:
  1707. double_unlock_balance(this_rq, src_rq);
  1708. }
  1709. if (resched)
  1710. resched_curr(this_rq);
  1711. }
  1712. /*
  1713. * If we are not running and we are not going to reschedule soon, we should
  1714. * try to push tasks away now
  1715. */
  1716. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1717. {
  1718. if (!task_running(rq, p) &&
  1719. !test_tsk_need_resched(rq->curr) &&
  1720. tsk_nr_cpus_allowed(p) > 1 &&
  1721. (dl_task(rq->curr) || rt_task(rq->curr)) &&
  1722. (tsk_nr_cpus_allowed(rq->curr) < 2 ||
  1723. rq->curr->prio <= p->prio))
  1724. push_rt_tasks(rq);
  1725. }
  1726. /* Assumes rq->lock is held */
  1727. static void rq_online_rt(struct rq *rq)
  1728. {
  1729. if (rq->rt.overloaded)
  1730. rt_set_overload(rq);
  1731. __enable_runtime(rq);
  1732. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1733. }
  1734. /* Assumes rq->lock is held */
  1735. static void rq_offline_rt(struct rq *rq)
  1736. {
  1737. if (rq->rt.overloaded)
  1738. rt_clear_overload(rq);
  1739. __disable_runtime(rq);
  1740. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1741. }
  1742. /*
  1743. * When switch from the rt queue, we bring ourselves to a position
  1744. * that we might want to pull RT tasks from other runqueues.
  1745. */
  1746. static void switched_from_rt(struct rq *rq, struct task_struct *p)
  1747. {
  1748. /*
  1749. * If there are other RT tasks then we will reschedule
  1750. * and the scheduling of the other RT tasks will handle
  1751. * the balancing. But if we are the last RT task
  1752. * we may need to handle the pulling of RT tasks
  1753. * now.
  1754. */
  1755. if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
  1756. return;
  1757. queue_pull_task(rq);
  1758. }
  1759. void __init init_sched_rt_class(void)
  1760. {
  1761. unsigned int i;
  1762. for_each_possible_cpu(i) {
  1763. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1764. GFP_KERNEL, cpu_to_node(i));
  1765. }
  1766. }
  1767. #endif /* CONFIG_SMP */
  1768. /*
  1769. * When switching a task to RT, we may overload the runqueue
  1770. * with RT tasks. In this case we try to push them off to
  1771. * other runqueues.
  1772. */
  1773. static void switched_to_rt(struct rq *rq, struct task_struct *p)
  1774. {
  1775. /*
  1776. * If we are already running, then there's nothing
  1777. * that needs to be done. But if we are not running
  1778. * we may need to preempt the current running task.
  1779. * If that current running task is also an RT task
  1780. * then see if we can move to another run queue.
  1781. */
  1782. if (task_on_rq_queued(p) && rq->curr != p) {
  1783. #ifdef CONFIG_SMP
  1784. if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
  1785. queue_push_tasks(rq);
  1786. #endif /* CONFIG_SMP */
  1787. if (p->prio < rq->curr->prio)
  1788. resched_curr(rq);
  1789. }
  1790. }
  1791. /*
  1792. * Priority of the task has changed. This may cause
  1793. * us to initiate a push or pull.
  1794. */
  1795. static void
  1796. prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
  1797. {
  1798. if (!task_on_rq_queued(p))
  1799. return;
  1800. if (rq->curr == p) {
  1801. #ifdef CONFIG_SMP
  1802. /*
  1803. * If our priority decreases while running, we
  1804. * may need to pull tasks to this runqueue.
  1805. */
  1806. if (oldprio < p->prio)
  1807. queue_pull_task(rq);
  1808. /*
  1809. * If there's a higher priority task waiting to run
  1810. * then reschedule.
  1811. */
  1812. if (p->prio > rq->rt.highest_prio.curr)
  1813. resched_curr(rq);
  1814. #else
  1815. /* For UP simply resched on drop of prio */
  1816. if (oldprio < p->prio)
  1817. resched_curr(rq);
  1818. #endif /* CONFIG_SMP */
  1819. } else {
  1820. /*
  1821. * This task is not running, but if it is
  1822. * greater than the current running task
  1823. * then reschedule.
  1824. */
  1825. if (p->prio < rq->curr->prio)
  1826. resched_curr(rq);
  1827. }
  1828. }
  1829. static void watchdog(struct rq *rq, struct task_struct *p)
  1830. {
  1831. unsigned long soft, hard;
  1832. /* max may change after cur was read, this will be fixed next tick */
  1833. soft = task_rlimit(p, RLIMIT_RTTIME);
  1834. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1835. if (soft != RLIM_INFINITY) {
  1836. unsigned long next;
  1837. if (p->rt.watchdog_stamp != jiffies) {
  1838. p->rt.timeout++;
  1839. p->rt.watchdog_stamp = jiffies;
  1840. }
  1841. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1842. if (p->rt.timeout > next)
  1843. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1844. }
  1845. }
  1846. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1847. {
  1848. struct sched_rt_entity *rt_se = &p->rt;
  1849. update_curr_rt(rq);
  1850. watchdog(rq, p);
  1851. /*
  1852. * RR tasks need a special form of timeslice management.
  1853. * FIFO tasks have no timeslices.
  1854. */
  1855. if (p->policy != SCHED_RR)
  1856. return;
  1857. if (--p->rt.time_slice)
  1858. return;
  1859. p->rt.time_slice = sched_rr_timeslice;
  1860. /*
  1861. * Requeue to the end of queue if we (and all of our ancestors) are not
  1862. * the only element on the queue
  1863. */
  1864. for_each_sched_rt_entity(rt_se) {
  1865. if (rt_se->run_list.prev != rt_se->run_list.next) {
  1866. requeue_task_rt(rq, p, 0);
  1867. resched_curr(rq);
  1868. return;
  1869. }
  1870. }
  1871. }
  1872. static void set_curr_task_rt(struct rq *rq)
  1873. {
  1874. struct task_struct *p = rq->curr;
  1875. p->se.exec_start = rq_clock_task(rq);
  1876. /* The running task is never eligible for pushing */
  1877. dequeue_pushable_task(rq, p);
  1878. }
  1879. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1880. {
  1881. /*
  1882. * Time slice is 0 for SCHED_FIFO tasks
  1883. */
  1884. if (task->policy == SCHED_RR)
  1885. return sched_rr_timeslice;
  1886. else
  1887. return 0;
  1888. }
  1889. const struct sched_class rt_sched_class = {
  1890. .next = &fair_sched_class,
  1891. .enqueue_task = enqueue_task_rt,
  1892. .dequeue_task = dequeue_task_rt,
  1893. .yield_task = yield_task_rt,
  1894. .check_preempt_curr = check_preempt_curr_rt,
  1895. .pick_next_task = pick_next_task_rt,
  1896. .put_prev_task = put_prev_task_rt,
  1897. #ifdef CONFIG_SMP
  1898. .select_task_rq = select_task_rq_rt,
  1899. .set_cpus_allowed = set_cpus_allowed_common,
  1900. .rq_online = rq_online_rt,
  1901. .rq_offline = rq_offline_rt,
  1902. .task_woken = task_woken_rt,
  1903. .switched_from = switched_from_rt,
  1904. #endif
  1905. .set_curr_task = set_curr_task_rt,
  1906. .task_tick = task_tick_rt,
  1907. .get_rr_interval = get_rr_interval_rt,
  1908. .prio_changed = prio_changed_rt,
  1909. .switched_to = switched_to_rt,
  1910. .update_curr = update_curr_rt,
  1911. };
  1912. #ifdef CONFIG_SCHED_DEBUG
  1913. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1914. void print_rt_stats(struct seq_file *m, int cpu)
  1915. {
  1916. rt_rq_iter_t iter;
  1917. struct rt_rq *rt_rq;
  1918. rcu_read_lock();
  1919. for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
  1920. print_rt_rq(m, cpu, rt_rq);
  1921. rcu_read_unlock();
  1922. }
  1923. #endif /* CONFIG_SCHED_DEBUG */