fair.c 236 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  21. */
  22. #include <linux/sched.h>
  23. #include <linux/latencytop.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/cpuidle.h>
  26. #include <linux/slab.h>
  27. #include <linux/profile.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/mempolicy.h>
  30. #include <linux/migrate.h>
  31. #include <linux/task_work.h>
  32. #include <trace/events/sched.h>
  33. #include "sched.h"
  34. /*
  35. * Targeted preemption latency for CPU-bound tasks:
  36. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37. *
  38. * NOTE: this latency value is not the same as the concept of
  39. * 'timeslice length' - timeslices in CFS are of variable length
  40. * and have no persistent notion like in traditional, time-slice
  41. * based scheduling concepts.
  42. *
  43. * (to see the precise effective timeslice length of your workload,
  44. * run vmstat and monitor the context-switches (cs) field)
  45. */
  46. unsigned int sysctl_sched_latency = 6000000ULL;
  47. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  48. /*
  49. * The initial- and re-scaling of tunables is configurable
  50. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51. *
  52. * Options are:
  53. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  54. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  55. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  56. */
  57. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  58. = SCHED_TUNABLESCALING_LOG;
  59. /*
  60. * Minimal preemption granularity for CPU-bound tasks:
  61. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  62. */
  63. unsigned int sysctl_sched_min_granularity = 750000ULL;
  64. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  65. /*
  66. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  67. */
  68. static unsigned int sched_nr_latency = 8;
  69. /*
  70. * After fork, child runs first. If set to 0 (default) then
  71. * parent will (try to) run first.
  72. */
  73. unsigned int sysctl_sched_child_runs_first __read_mostly;
  74. /*
  75. * SCHED_OTHER wake-up granularity.
  76. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  77. *
  78. * This option delays the preemption effects of decoupled workloads
  79. * and reduces their over-scheduling. Synchronous workloads will still
  80. * have immediate wakeup/sleep latencies.
  81. */
  82. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  83. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  84. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  85. /*
  86. * The exponential sliding window over which load is averaged for shares
  87. * distribution.
  88. * (default: 10msec)
  89. */
  90. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  91. #ifdef CONFIG_CFS_BANDWIDTH
  92. /*
  93. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  94. * each time a cfs_rq requests quota.
  95. *
  96. * Note: in the case that the slice exceeds the runtime remaining (either due
  97. * to consumption or the quota being specified to be smaller than the slice)
  98. * we will always only issue the remaining available time.
  99. *
  100. * default: 5 msec, units: microseconds
  101. */
  102. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  103. #endif
  104. /*
  105. * The margin used when comparing utilization with CPU capacity:
  106. * util * 1024 < capacity * margin
  107. */
  108. unsigned int capacity_margin = 1280; /* ~20% */
  109. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  110. {
  111. lw->weight += inc;
  112. lw->inv_weight = 0;
  113. }
  114. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  115. {
  116. lw->weight -= dec;
  117. lw->inv_weight = 0;
  118. }
  119. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  120. {
  121. lw->weight = w;
  122. lw->inv_weight = 0;
  123. }
  124. /*
  125. * Increase the granularity value when there are more CPUs,
  126. * because with more CPUs the 'effective latency' as visible
  127. * to users decreases. But the relationship is not linear,
  128. * so pick a second-best guess by going with the log2 of the
  129. * number of CPUs.
  130. *
  131. * This idea comes from the SD scheduler of Con Kolivas:
  132. */
  133. static unsigned int get_update_sysctl_factor(void)
  134. {
  135. unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  136. unsigned int factor;
  137. switch (sysctl_sched_tunable_scaling) {
  138. case SCHED_TUNABLESCALING_NONE:
  139. factor = 1;
  140. break;
  141. case SCHED_TUNABLESCALING_LINEAR:
  142. factor = cpus;
  143. break;
  144. case SCHED_TUNABLESCALING_LOG:
  145. default:
  146. factor = 1 + ilog2(cpus);
  147. break;
  148. }
  149. return factor;
  150. }
  151. static void update_sysctl(void)
  152. {
  153. unsigned int factor = get_update_sysctl_factor();
  154. #define SET_SYSCTL(name) \
  155. (sysctl_##name = (factor) * normalized_sysctl_##name)
  156. SET_SYSCTL(sched_min_granularity);
  157. SET_SYSCTL(sched_latency);
  158. SET_SYSCTL(sched_wakeup_granularity);
  159. #undef SET_SYSCTL
  160. }
  161. void sched_init_granularity(void)
  162. {
  163. update_sysctl();
  164. }
  165. #define WMULT_CONST (~0U)
  166. #define WMULT_SHIFT 32
  167. static void __update_inv_weight(struct load_weight *lw)
  168. {
  169. unsigned long w;
  170. if (likely(lw->inv_weight))
  171. return;
  172. w = scale_load_down(lw->weight);
  173. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  174. lw->inv_weight = 1;
  175. else if (unlikely(!w))
  176. lw->inv_weight = WMULT_CONST;
  177. else
  178. lw->inv_weight = WMULT_CONST / w;
  179. }
  180. /*
  181. * delta_exec * weight / lw.weight
  182. * OR
  183. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  184. *
  185. * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
  186. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  187. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  188. *
  189. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  190. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  191. */
  192. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  193. {
  194. u64 fact = scale_load_down(weight);
  195. int shift = WMULT_SHIFT;
  196. __update_inv_weight(lw);
  197. if (unlikely(fact >> 32)) {
  198. while (fact >> 32) {
  199. fact >>= 1;
  200. shift--;
  201. }
  202. }
  203. /* hint to use a 32x32->64 mul */
  204. fact = (u64)(u32)fact * lw->inv_weight;
  205. while (fact >> 32) {
  206. fact >>= 1;
  207. shift--;
  208. }
  209. return mul_u64_u32_shr(delta_exec, fact, shift);
  210. }
  211. const struct sched_class fair_sched_class;
  212. /**************************************************************
  213. * CFS operations on generic schedulable entities:
  214. */
  215. #ifdef CONFIG_FAIR_GROUP_SCHED
  216. /* cpu runqueue to which this cfs_rq is attached */
  217. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  218. {
  219. return cfs_rq->rq;
  220. }
  221. /* An entity is a task if it doesn't "own" a runqueue */
  222. #define entity_is_task(se) (!se->my_q)
  223. static inline struct task_struct *task_of(struct sched_entity *se)
  224. {
  225. SCHED_WARN_ON(!entity_is_task(se));
  226. return container_of(se, struct task_struct, se);
  227. }
  228. /* Walk up scheduling entities hierarchy */
  229. #define for_each_sched_entity(se) \
  230. for (; se; se = se->parent)
  231. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  232. {
  233. return p->se.cfs_rq;
  234. }
  235. /* runqueue on which this entity is (to be) queued */
  236. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  237. {
  238. return se->cfs_rq;
  239. }
  240. /* runqueue "owned" by this group */
  241. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  242. {
  243. return grp->my_q;
  244. }
  245. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  246. {
  247. if (!cfs_rq->on_list) {
  248. /*
  249. * Ensure we either appear before our parent (if already
  250. * enqueued) or force our parent to appear after us when it is
  251. * enqueued. The fact that we always enqueue bottom-up
  252. * reduces this to two cases.
  253. */
  254. if (cfs_rq->tg->parent &&
  255. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  256. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  257. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  258. } else {
  259. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  260. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  261. }
  262. cfs_rq->on_list = 1;
  263. }
  264. }
  265. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  266. {
  267. if (cfs_rq->on_list) {
  268. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  269. cfs_rq->on_list = 0;
  270. }
  271. }
  272. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  273. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  274. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  275. /* Do the two (enqueued) entities belong to the same group ? */
  276. static inline struct cfs_rq *
  277. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  278. {
  279. if (se->cfs_rq == pse->cfs_rq)
  280. return se->cfs_rq;
  281. return NULL;
  282. }
  283. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  284. {
  285. return se->parent;
  286. }
  287. static void
  288. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  289. {
  290. int se_depth, pse_depth;
  291. /*
  292. * preemption test can be made between sibling entities who are in the
  293. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  294. * both tasks until we find their ancestors who are siblings of common
  295. * parent.
  296. */
  297. /* First walk up until both entities are at same depth */
  298. se_depth = (*se)->depth;
  299. pse_depth = (*pse)->depth;
  300. while (se_depth > pse_depth) {
  301. se_depth--;
  302. *se = parent_entity(*se);
  303. }
  304. while (pse_depth > se_depth) {
  305. pse_depth--;
  306. *pse = parent_entity(*pse);
  307. }
  308. while (!is_same_group(*se, *pse)) {
  309. *se = parent_entity(*se);
  310. *pse = parent_entity(*pse);
  311. }
  312. }
  313. #else /* !CONFIG_FAIR_GROUP_SCHED */
  314. static inline struct task_struct *task_of(struct sched_entity *se)
  315. {
  316. return container_of(se, struct task_struct, se);
  317. }
  318. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  319. {
  320. return container_of(cfs_rq, struct rq, cfs);
  321. }
  322. #define entity_is_task(se) 1
  323. #define for_each_sched_entity(se) \
  324. for (; se; se = NULL)
  325. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  326. {
  327. return &task_rq(p)->cfs;
  328. }
  329. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  330. {
  331. struct task_struct *p = task_of(se);
  332. struct rq *rq = task_rq(p);
  333. return &rq->cfs;
  334. }
  335. /* runqueue "owned" by this group */
  336. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  337. {
  338. return NULL;
  339. }
  340. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  341. {
  342. }
  343. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  344. {
  345. }
  346. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  347. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  348. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  349. {
  350. return NULL;
  351. }
  352. static inline void
  353. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  354. {
  355. }
  356. #endif /* CONFIG_FAIR_GROUP_SCHED */
  357. static __always_inline
  358. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  359. /**************************************************************
  360. * Scheduling class tree data structure manipulation methods:
  361. */
  362. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  363. {
  364. s64 delta = (s64)(vruntime - max_vruntime);
  365. if (delta > 0)
  366. max_vruntime = vruntime;
  367. return max_vruntime;
  368. }
  369. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  370. {
  371. s64 delta = (s64)(vruntime - min_vruntime);
  372. if (delta < 0)
  373. min_vruntime = vruntime;
  374. return min_vruntime;
  375. }
  376. static inline int entity_before(struct sched_entity *a,
  377. struct sched_entity *b)
  378. {
  379. return (s64)(a->vruntime - b->vruntime) < 0;
  380. }
  381. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  382. {
  383. struct sched_entity *curr = cfs_rq->curr;
  384. u64 vruntime = cfs_rq->min_vruntime;
  385. if (curr) {
  386. if (curr->on_rq)
  387. vruntime = curr->vruntime;
  388. else
  389. curr = NULL;
  390. }
  391. if (cfs_rq->rb_leftmost) {
  392. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  393. struct sched_entity,
  394. run_node);
  395. if (!curr)
  396. vruntime = se->vruntime;
  397. else
  398. vruntime = min_vruntime(vruntime, se->vruntime);
  399. }
  400. /* ensure we never gain time by being placed backwards. */
  401. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  402. #ifndef CONFIG_64BIT
  403. smp_wmb();
  404. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  405. #endif
  406. }
  407. /*
  408. * Enqueue an entity into the rb-tree:
  409. */
  410. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  411. {
  412. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  413. struct rb_node *parent = NULL;
  414. struct sched_entity *entry;
  415. int leftmost = 1;
  416. /*
  417. * Find the right place in the rbtree:
  418. */
  419. while (*link) {
  420. parent = *link;
  421. entry = rb_entry(parent, struct sched_entity, run_node);
  422. /*
  423. * We dont care about collisions. Nodes with
  424. * the same key stay together.
  425. */
  426. if (entity_before(se, entry)) {
  427. link = &parent->rb_left;
  428. } else {
  429. link = &parent->rb_right;
  430. leftmost = 0;
  431. }
  432. }
  433. /*
  434. * Maintain a cache of leftmost tree entries (it is frequently
  435. * used):
  436. */
  437. if (leftmost)
  438. cfs_rq->rb_leftmost = &se->run_node;
  439. rb_link_node(&se->run_node, parent, link);
  440. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  441. }
  442. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  443. {
  444. if (cfs_rq->rb_leftmost == &se->run_node) {
  445. struct rb_node *next_node;
  446. next_node = rb_next(&se->run_node);
  447. cfs_rq->rb_leftmost = next_node;
  448. }
  449. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  450. }
  451. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *left = cfs_rq->rb_leftmost;
  454. if (!left)
  455. return NULL;
  456. return rb_entry(left, struct sched_entity, run_node);
  457. }
  458. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  459. {
  460. struct rb_node *next = rb_next(&se->run_node);
  461. if (!next)
  462. return NULL;
  463. return rb_entry(next, struct sched_entity, run_node);
  464. }
  465. #ifdef CONFIG_SCHED_DEBUG
  466. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  467. {
  468. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  469. if (!last)
  470. return NULL;
  471. return rb_entry(last, struct sched_entity, run_node);
  472. }
  473. /**************************************************************
  474. * Scheduling class statistics methods:
  475. */
  476. int sched_proc_update_handler(struct ctl_table *table, int write,
  477. void __user *buffer, size_t *lenp,
  478. loff_t *ppos)
  479. {
  480. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  481. unsigned int factor = get_update_sysctl_factor();
  482. if (ret || !write)
  483. return ret;
  484. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  485. sysctl_sched_min_granularity);
  486. #define WRT_SYSCTL(name) \
  487. (normalized_sysctl_##name = sysctl_##name / (factor))
  488. WRT_SYSCTL(sched_min_granularity);
  489. WRT_SYSCTL(sched_latency);
  490. WRT_SYSCTL(sched_wakeup_granularity);
  491. #undef WRT_SYSCTL
  492. return 0;
  493. }
  494. #endif
  495. /*
  496. * delta /= w
  497. */
  498. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  499. {
  500. if (unlikely(se->load.weight != NICE_0_LOAD))
  501. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  502. return delta;
  503. }
  504. /*
  505. * The idea is to set a period in which each task runs once.
  506. *
  507. * When there are too many tasks (sched_nr_latency) we have to stretch
  508. * this period because otherwise the slices get too small.
  509. *
  510. * p = (nr <= nl) ? l : l*nr/nl
  511. */
  512. static u64 __sched_period(unsigned long nr_running)
  513. {
  514. if (unlikely(nr_running > sched_nr_latency))
  515. return nr_running * sysctl_sched_min_granularity;
  516. else
  517. return sysctl_sched_latency;
  518. }
  519. /*
  520. * We calculate the wall-time slice from the period by taking a part
  521. * proportional to the weight.
  522. *
  523. * s = p*P[w/rw]
  524. */
  525. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  526. {
  527. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  528. for_each_sched_entity(se) {
  529. struct load_weight *load;
  530. struct load_weight lw;
  531. cfs_rq = cfs_rq_of(se);
  532. load = &cfs_rq->load;
  533. if (unlikely(!se->on_rq)) {
  534. lw = cfs_rq->load;
  535. update_load_add(&lw, se->load.weight);
  536. load = &lw;
  537. }
  538. slice = __calc_delta(slice, se->load.weight, load);
  539. }
  540. return slice;
  541. }
  542. /*
  543. * We calculate the vruntime slice of a to-be-inserted task.
  544. *
  545. * vs = s/w
  546. */
  547. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  548. {
  549. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  550. }
  551. #ifdef CONFIG_SMP
  552. static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
  553. static unsigned long task_h_load(struct task_struct *p);
  554. /*
  555. * We choose a half-life close to 1 scheduling period.
  556. * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
  557. * dependent on this value.
  558. */
  559. #define LOAD_AVG_PERIOD 32
  560. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  561. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
  562. /* Give new sched_entity start runnable values to heavy its load in infant time */
  563. void init_entity_runnable_average(struct sched_entity *se)
  564. {
  565. struct sched_avg *sa = &se->avg;
  566. sa->last_update_time = 0;
  567. /*
  568. * sched_avg's period_contrib should be strictly less then 1024, so
  569. * we give it 1023 to make sure it is almost a period (1024us), and
  570. * will definitely be update (after enqueue).
  571. */
  572. sa->period_contrib = 1023;
  573. /*
  574. * Tasks are intialized with full load to be seen as heavy tasks until
  575. * they get a chance to stabilize to their real load level.
  576. * Group entities are intialized with zero load to reflect the fact that
  577. * nothing has been attached to the task group yet.
  578. */
  579. if (entity_is_task(se))
  580. sa->load_avg = scale_load_down(se->load.weight);
  581. sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
  582. /*
  583. * At this point, util_avg won't be used in select_task_rq_fair anyway
  584. */
  585. sa->util_avg = 0;
  586. sa->util_sum = 0;
  587. /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  588. }
  589. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  590. static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
  591. static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
  592. static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
  593. /*
  594. * With new tasks being created, their initial util_avgs are extrapolated
  595. * based on the cfs_rq's current util_avg:
  596. *
  597. * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
  598. *
  599. * However, in many cases, the above util_avg does not give a desired
  600. * value. Moreover, the sum of the util_avgs may be divergent, such
  601. * as when the series is a harmonic series.
  602. *
  603. * To solve this problem, we also cap the util_avg of successive tasks to
  604. * only 1/2 of the left utilization budget:
  605. *
  606. * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
  607. *
  608. * where n denotes the nth task.
  609. *
  610. * For example, a simplest series from the beginning would be like:
  611. *
  612. * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
  613. * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
  614. *
  615. * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
  616. * if util_avg > util_avg_cap.
  617. */
  618. void post_init_entity_util_avg(struct sched_entity *se)
  619. {
  620. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  621. struct sched_avg *sa = &se->avg;
  622. long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
  623. u64 now = cfs_rq_clock_task(cfs_rq);
  624. if (cap > 0) {
  625. if (cfs_rq->avg.util_avg != 0) {
  626. sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
  627. sa->util_avg /= (cfs_rq->avg.load_avg + 1);
  628. if (sa->util_avg > cap)
  629. sa->util_avg = cap;
  630. } else {
  631. sa->util_avg = cap;
  632. }
  633. sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
  634. }
  635. if (entity_is_task(se)) {
  636. struct task_struct *p = task_of(se);
  637. if (p->sched_class != &fair_sched_class) {
  638. /*
  639. * For !fair tasks do:
  640. *
  641. update_cfs_rq_load_avg(now, cfs_rq, false);
  642. attach_entity_load_avg(cfs_rq, se);
  643. switched_from_fair(rq, p);
  644. *
  645. * such that the next switched_to_fair() has the
  646. * expected state.
  647. */
  648. se->avg.last_update_time = now;
  649. return;
  650. }
  651. }
  652. update_cfs_rq_load_avg(now, cfs_rq, false);
  653. attach_entity_load_avg(cfs_rq, se);
  654. update_tg_load_avg(cfs_rq, false);
  655. }
  656. #else /* !CONFIG_SMP */
  657. void init_entity_runnable_average(struct sched_entity *se)
  658. {
  659. }
  660. void post_init_entity_util_avg(struct sched_entity *se)
  661. {
  662. }
  663. static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  664. {
  665. }
  666. #endif /* CONFIG_SMP */
  667. /*
  668. * Update the current task's runtime statistics.
  669. */
  670. static void update_curr(struct cfs_rq *cfs_rq)
  671. {
  672. struct sched_entity *curr = cfs_rq->curr;
  673. u64 now = rq_clock_task(rq_of(cfs_rq));
  674. u64 delta_exec;
  675. if (unlikely(!curr))
  676. return;
  677. delta_exec = now - curr->exec_start;
  678. if (unlikely((s64)delta_exec <= 0))
  679. return;
  680. curr->exec_start = now;
  681. schedstat_set(curr->statistics.exec_max,
  682. max(delta_exec, curr->statistics.exec_max));
  683. curr->sum_exec_runtime += delta_exec;
  684. schedstat_add(cfs_rq->exec_clock, delta_exec);
  685. curr->vruntime += calc_delta_fair(delta_exec, curr);
  686. update_min_vruntime(cfs_rq);
  687. if (entity_is_task(curr)) {
  688. struct task_struct *curtask = task_of(curr);
  689. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  690. cpuacct_charge(curtask, delta_exec);
  691. account_group_exec_runtime(curtask, delta_exec);
  692. }
  693. account_cfs_rq_runtime(cfs_rq, delta_exec);
  694. }
  695. static void update_curr_fair(struct rq *rq)
  696. {
  697. update_curr(cfs_rq_of(&rq->curr->se));
  698. }
  699. static inline void
  700. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  701. {
  702. u64 wait_start, prev_wait_start;
  703. if (!schedstat_enabled())
  704. return;
  705. wait_start = rq_clock(rq_of(cfs_rq));
  706. prev_wait_start = schedstat_val(se->statistics.wait_start);
  707. if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
  708. likely(wait_start > prev_wait_start))
  709. wait_start -= prev_wait_start;
  710. schedstat_set(se->statistics.wait_start, wait_start);
  711. }
  712. static inline void
  713. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  714. {
  715. struct task_struct *p;
  716. u64 delta;
  717. if (!schedstat_enabled())
  718. return;
  719. delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
  720. if (entity_is_task(se)) {
  721. p = task_of(se);
  722. if (task_on_rq_migrating(p)) {
  723. /*
  724. * Preserve migrating task's wait time so wait_start
  725. * time stamp can be adjusted to accumulate wait time
  726. * prior to migration.
  727. */
  728. schedstat_set(se->statistics.wait_start, delta);
  729. return;
  730. }
  731. trace_sched_stat_wait(p, delta);
  732. }
  733. schedstat_set(se->statistics.wait_max,
  734. max(schedstat_val(se->statistics.wait_max), delta));
  735. schedstat_inc(se->statistics.wait_count);
  736. schedstat_add(se->statistics.wait_sum, delta);
  737. schedstat_set(se->statistics.wait_start, 0);
  738. }
  739. static inline void
  740. update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  741. {
  742. struct task_struct *tsk = NULL;
  743. u64 sleep_start, block_start;
  744. if (!schedstat_enabled())
  745. return;
  746. sleep_start = schedstat_val(se->statistics.sleep_start);
  747. block_start = schedstat_val(se->statistics.block_start);
  748. if (entity_is_task(se))
  749. tsk = task_of(se);
  750. if (sleep_start) {
  751. u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
  752. if ((s64)delta < 0)
  753. delta = 0;
  754. if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
  755. schedstat_set(se->statistics.sleep_max, delta);
  756. schedstat_set(se->statistics.sleep_start, 0);
  757. schedstat_add(se->statistics.sum_sleep_runtime, delta);
  758. if (tsk) {
  759. account_scheduler_latency(tsk, delta >> 10, 1);
  760. trace_sched_stat_sleep(tsk, delta);
  761. }
  762. }
  763. if (block_start) {
  764. u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
  765. if ((s64)delta < 0)
  766. delta = 0;
  767. if (unlikely(delta > schedstat_val(se->statistics.block_max)))
  768. schedstat_set(se->statistics.block_max, delta);
  769. schedstat_set(se->statistics.block_start, 0);
  770. schedstat_add(se->statistics.sum_sleep_runtime, delta);
  771. if (tsk) {
  772. if (tsk->in_iowait) {
  773. schedstat_add(se->statistics.iowait_sum, delta);
  774. schedstat_inc(se->statistics.iowait_count);
  775. trace_sched_stat_iowait(tsk, delta);
  776. }
  777. trace_sched_stat_blocked(tsk, delta);
  778. /*
  779. * Blocking time is in units of nanosecs, so shift by
  780. * 20 to get a milliseconds-range estimation of the
  781. * amount of time that the task spent sleeping:
  782. */
  783. if (unlikely(prof_on == SLEEP_PROFILING)) {
  784. profile_hits(SLEEP_PROFILING,
  785. (void *)get_wchan(tsk),
  786. delta >> 20);
  787. }
  788. account_scheduler_latency(tsk, delta >> 10, 0);
  789. }
  790. }
  791. }
  792. /*
  793. * Task is being enqueued - update stats:
  794. */
  795. static inline void
  796. update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  797. {
  798. if (!schedstat_enabled())
  799. return;
  800. /*
  801. * Are we enqueueing a waiting task? (for current tasks
  802. * a dequeue/enqueue event is a NOP)
  803. */
  804. if (se != cfs_rq->curr)
  805. update_stats_wait_start(cfs_rq, se);
  806. if (flags & ENQUEUE_WAKEUP)
  807. update_stats_enqueue_sleeper(cfs_rq, se);
  808. }
  809. static inline void
  810. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  811. {
  812. if (!schedstat_enabled())
  813. return;
  814. /*
  815. * Mark the end of the wait period if dequeueing a
  816. * waiting task:
  817. */
  818. if (se != cfs_rq->curr)
  819. update_stats_wait_end(cfs_rq, se);
  820. if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
  821. struct task_struct *tsk = task_of(se);
  822. if (tsk->state & TASK_INTERRUPTIBLE)
  823. schedstat_set(se->statistics.sleep_start,
  824. rq_clock(rq_of(cfs_rq)));
  825. if (tsk->state & TASK_UNINTERRUPTIBLE)
  826. schedstat_set(se->statistics.block_start,
  827. rq_clock(rq_of(cfs_rq)));
  828. }
  829. }
  830. /*
  831. * We are picking a new current task - update its stats:
  832. */
  833. static inline void
  834. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  835. {
  836. /*
  837. * We are starting a new run period:
  838. */
  839. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  840. }
  841. /**************************************************
  842. * Scheduling class queueing methods:
  843. */
  844. #ifdef CONFIG_NUMA_BALANCING
  845. /*
  846. * Approximate time to scan a full NUMA task in ms. The task scan period is
  847. * calculated based on the tasks virtual memory size and
  848. * numa_balancing_scan_size.
  849. */
  850. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  851. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  852. /* Portion of address space to scan in MB */
  853. unsigned int sysctl_numa_balancing_scan_size = 256;
  854. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  855. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  856. static unsigned int task_nr_scan_windows(struct task_struct *p)
  857. {
  858. unsigned long rss = 0;
  859. unsigned long nr_scan_pages;
  860. /*
  861. * Calculations based on RSS as non-present and empty pages are skipped
  862. * by the PTE scanner and NUMA hinting faults should be trapped based
  863. * on resident pages
  864. */
  865. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  866. rss = get_mm_rss(p->mm);
  867. if (!rss)
  868. rss = nr_scan_pages;
  869. rss = round_up(rss, nr_scan_pages);
  870. return rss / nr_scan_pages;
  871. }
  872. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  873. #define MAX_SCAN_WINDOW 2560
  874. static unsigned int task_scan_min(struct task_struct *p)
  875. {
  876. unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
  877. unsigned int scan, floor;
  878. unsigned int windows = 1;
  879. if (scan_size < MAX_SCAN_WINDOW)
  880. windows = MAX_SCAN_WINDOW / scan_size;
  881. floor = 1000 / windows;
  882. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  883. return max_t(unsigned int, floor, scan);
  884. }
  885. static unsigned int task_scan_max(struct task_struct *p)
  886. {
  887. unsigned int smin = task_scan_min(p);
  888. unsigned int smax;
  889. /* Watch for min being lower than max due to floor calculations */
  890. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  891. return max(smin, smax);
  892. }
  893. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  894. {
  895. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  896. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  897. }
  898. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  899. {
  900. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  901. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  902. }
  903. struct numa_group {
  904. atomic_t refcount;
  905. spinlock_t lock; /* nr_tasks, tasks */
  906. int nr_tasks;
  907. pid_t gid;
  908. int active_nodes;
  909. struct rcu_head rcu;
  910. unsigned long total_faults;
  911. unsigned long max_faults_cpu;
  912. /*
  913. * Faults_cpu is used to decide whether memory should move
  914. * towards the CPU. As a consequence, these stats are weighted
  915. * more by CPU use than by memory faults.
  916. */
  917. unsigned long *faults_cpu;
  918. unsigned long faults[0];
  919. };
  920. /* Shared or private faults. */
  921. #define NR_NUMA_HINT_FAULT_TYPES 2
  922. /* Memory and CPU locality */
  923. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  924. /* Averaged statistics, and temporary buffers. */
  925. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  926. pid_t task_numa_group_id(struct task_struct *p)
  927. {
  928. return p->numa_group ? p->numa_group->gid : 0;
  929. }
  930. /*
  931. * The averaged statistics, shared & private, memory & cpu,
  932. * occupy the first half of the array. The second half of the
  933. * array is for current counters, which are averaged into the
  934. * first set by task_numa_placement.
  935. */
  936. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  937. {
  938. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  939. }
  940. static inline unsigned long task_faults(struct task_struct *p, int nid)
  941. {
  942. if (!p->numa_faults)
  943. return 0;
  944. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  945. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  946. }
  947. static inline unsigned long group_faults(struct task_struct *p, int nid)
  948. {
  949. if (!p->numa_group)
  950. return 0;
  951. return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  952. p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  953. }
  954. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  955. {
  956. return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
  957. group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
  958. }
  959. /*
  960. * A node triggering more than 1/3 as many NUMA faults as the maximum is
  961. * considered part of a numa group's pseudo-interleaving set. Migrations
  962. * between these nodes are slowed down, to allow things to settle down.
  963. */
  964. #define ACTIVE_NODE_FRACTION 3
  965. static bool numa_is_active_node(int nid, struct numa_group *ng)
  966. {
  967. return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
  968. }
  969. /* Handle placement on systems where not all nodes are directly connected. */
  970. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  971. int maxdist, bool task)
  972. {
  973. unsigned long score = 0;
  974. int node;
  975. /*
  976. * All nodes are directly connected, and the same distance
  977. * from each other. No need for fancy placement algorithms.
  978. */
  979. if (sched_numa_topology_type == NUMA_DIRECT)
  980. return 0;
  981. /*
  982. * This code is called for each node, introducing N^2 complexity,
  983. * which should be ok given the number of nodes rarely exceeds 8.
  984. */
  985. for_each_online_node(node) {
  986. unsigned long faults;
  987. int dist = node_distance(nid, node);
  988. /*
  989. * The furthest away nodes in the system are not interesting
  990. * for placement; nid was already counted.
  991. */
  992. if (dist == sched_max_numa_distance || node == nid)
  993. continue;
  994. /*
  995. * On systems with a backplane NUMA topology, compare groups
  996. * of nodes, and move tasks towards the group with the most
  997. * memory accesses. When comparing two nodes at distance
  998. * "hoplimit", only nodes closer by than "hoplimit" are part
  999. * of each group. Skip other nodes.
  1000. */
  1001. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1002. dist > maxdist)
  1003. continue;
  1004. /* Add up the faults from nearby nodes. */
  1005. if (task)
  1006. faults = task_faults(p, node);
  1007. else
  1008. faults = group_faults(p, node);
  1009. /*
  1010. * On systems with a glueless mesh NUMA topology, there are
  1011. * no fixed "groups of nodes". Instead, nodes that are not
  1012. * directly connected bounce traffic through intermediate
  1013. * nodes; a numa_group can occupy any set of nodes.
  1014. * The further away a node is, the less the faults count.
  1015. * This seems to result in good task placement.
  1016. */
  1017. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1018. faults *= (sched_max_numa_distance - dist);
  1019. faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
  1020. }
  1021. score += faults;
  1022. }
  1023. return score;
  1024. }
  1025. /*
  1026. * These return the fraction of accesses done by a particular task, or
  1027. * task group, on a particular numa node. The group weight is given a
  1028. * larger multiplier, in order to group tasks together that are almost
  1029. * evenly spread out between numa nodes.
  1030. */
  1031. static inline unsigned long task_weight(struct task_struct *p, int nid,
  1032. int dist)
  1033. {
  1034. unsigned long faults, total_faults;
  1035. if (!p->numa_faults)
  1036. return 0;
  1037. total_faults = p->total_numa_faults;
  1038. if (!total_faults)
  1039. return 0;
  1040. faults = task_faults(p, nid);
  1041. faults += score_nearby_nodes(p, nid, dist, true);
  1042. return 1000 * faults / total_faults;
  1043. }
  1044. static inline unsigned long group_weight(struct task_struct *p, int nid,
  1045. int dist)
  1046. {
  1047. unsigned long faults, total_faults;
  1048. if (!p->numa_group)
  1049. return 0;
  1050. total_faults = p->numa_group->total_faults;
  1051. if (!total_faults)
  1052. return 0;
  1053. faults = group_faults(p, nid);
  1054. faults += score_nearby_nodes(p, nid, dist, false);
  1055. return 1000 * faults / total_faults;
  1056. }
  1057. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  1058. int src_nid, int dst_cpu)
  1059. {
  1060. struct numa_group *ng = p->numa_group;
  1061. int dst_nid = cpu_to_node(dst_cpu);
  1062. int last_cpupid, this_cpupid;
  1063. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  1064. /*
  1065. * Multi-stage node selection is used in conjunction with a periodic
  1066. * migration fault to build a temporal task<->page relation. By using
  1067. * a two-stage filter we remove short/unlikely relations.
  1068. *
  1069. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  1070. * a task's usage of a particular page (n_p) per total usage of this
  1071. * page (n_t) (in a given time-span) to a probability.
  1072. *
  1073. * Our periodic faults will sample this probability and getting the
  1074. * same result twice in a row, given these samples are fully
  1075. * independent, is then given by P(n)^2, provided our sample period
  1076. * is sufficiently short compared to the usage pattern.
  1077. *
  1078. * This quadric squishes small probabilities, making it less likely we
  1079. * act on an unlikely task<->page relation.
  1080. */
  1081. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  1082. if (!cpupid_pid_unset(last_cpupid) &&
  1083. cpupid_to_nid(last_cpupid) != dst_nid)
  1084. return false;
  1085. /* Always allow migrate on private faults */
  1086. if (cpupid_match_pid(p, last_cpupid))
  1087. return true;
  1088. /* A shared fault, but p->numa_group has not been set up yet. */
  1089. if (!ng)
  1090. return true;
  1091. /*
  1092. * Destination node is much more heavily used than the source
  1093. * node? Allow migration.
  1094. */
  1095. if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
  1096. ACTIVE_NODE_FRACTION)
  1097. return true;
  1098. /*
  1099. * Distribute memory according to CPU & memory use on each node,
  1100. * with 3/4 hysteresis to avoid unnecessary memory migrations:
  1101. *
  1102. * faults_cpu(dst) 3 faults_cpu(src)
  1103. * --------------- * - > ---------------
  1104. * faults_mem(dst) 4 faults_mem(src)
  1105. */
  1106. return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
  1107. group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
  1108. }
  1109. static unsigned long weighted_cpuload(const int cpu);
  1110. static unsigned long source_load(int cpu, int type);
  1111. static unsigned long target_load(int cpu, int type);
  1112. static unsigned long capacity_of(int cpu);
  1113. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  1114. /* Cached statistics for all CPUs within a node */
  1115. struct numa_stats {
  1116. unsigned long nr_running;
  1117. unsigned long load;
  1118. /* Total compute capacity of CPUs on a node */
  1119. unsigned long compute_capacity;
  1120. /* Approximate capacity in terms of runnable tasks on a node */
  1121. unsigned long task_capacity;
  1122. int has_free_capacity;
  1123. };
  1124. /*
  1125. * XXX borrowed from update_sg_lb_stats
  1126. */
  1127. static void update_numa_stats(struct numa_stats *ns, int nid)
  1128. {
  1129. int smt, cpu, cpus = 0;
  1130. unsigned long capacity;
  1131. memset(ns, 0, sizeof(*ns));
  1132. for_each_cpu(cpu, cpumask_of_node(nid)) {
  1133. struct rq *rq = cpu_rq(cpu);
  1134. ns->nr_running += rq->nr_running;
  1135. ns->load += weighted_cpuload(cpu);
  1136. ns->compute_capacity += capacity_of(cpu);
  1137. cpus++;
  1138. }
  1139. /*
  1140. * If we raced with hotplug and there are no CPUs left in our mask
  1141. * the @ns structure is NULL'ed and task_numa_compare() will
  1142. * not find this node attractive.
  1143. *
  1144. * We'll either bail at !has_free_capacity, or we'll detect a huge
  1145. * imbalance and bail there.
  1146. */
  1147. if (!cpus)
  1148. return;
  1149. /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
  1150. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
  1151. capacity = cpus / smt; /* cores */
  1152. ns->task_capacity = min_t(unsigned, capacity,
  1153. DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
  1154. ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
  1155. }
  1156. struct task_numa_env {
  1157. struct task_struct *p;
  1158. int src_cpu, src_nid;
  1159. int dst_cpu, dst_nid;
  1160. struct numa_stats src_stats, dst_stats;
  1161. int imbalance_pct;
  1162. int dist;
  1163. struct task_struct *best_task;
  1164. long best_imp;
  1165. int best_cpu;
  1166. };
  1167. static void task_numa_assign(struct task_numa_env *env,
  1168. struct task_struct *p, long imp)
  1169. {
  1170. if (env->best_task)
  1171. put_task_struct(env->best_task);
  1172. if (p)
  1173. get_task_struct(p);
  1174. env->best_task = p;
  1175. env->best_imp = imp;
  1176. env->best_cpu = env->dst_cpu;
  1177. }
  1178. static bool load_too_imbalanced(long src_load, long dst_load,
  1179. struct task_numa_env *env)
  1180. {
  1181. long imb, old_imb;
  1182. long orig_src_load, orig_dst_load;
  1183. long src_capacity, dst_capacity;
  1184. /*
  1185. * The load is corrected for the CPU capacity available on each node.
  1186. *
  1187. * src_load dst_load
  1188. * ------------ vs ---------
  1189. * src_capacity dst_capacity
  1190. */
  1191. src_capacity = env->src_stats.compute_capacity;
  1192. dst_capacity = env->dst_stats.compute_capacity;
  1193. /* We care about the slope of the imbalance, not the direction. */
  1194. if (dst_load < src_load)
  1195. swap(dst_load, src_load);
  1196. /* Is the difference below the threshold? */
  1197. imb = dst_load * src_capacity * 100 -
  1198. src_load * dst_capacity * env->imbalance_pct;
  1199. if (imb <= 0)
  1200. return false;
  1201. /*
  1202. * The imbalance is above the allowed threshold.
  1203. * Compare it with the old imbalance.
  1204. */
  1205. orig_src_load = env->src_stats.load;
  1206. orig_dst_load = env->dst_stats.load;
  1207. if (orig_dst_load < orig_src_load)
  1208. swap(orig_dst_load, orig_src_load);
  1209. old_imb = orig_dst_load * src_capacity * 100 -
  1210. orig_src_load * dst_capacity * env->imbalance_pct;
  1211. /* Would this change make things worse? */
  1212. return (imb > old_imb);
  1213. }
  1214. /*
  1215. * This checks if the overall compute and NUMA accesses of the system would
  1216. * be improved if the source tasks was migrated to the target dst_cpu taking
  1217. * into account that it might be best if task running on the dst_cpu should
  1218. * be exchanged with the source task
  1219. */
  1220. static void task_numa_compare(struct task_numa_env *env,
  1221. long taskimp, long groupimp)
  1222. {
  1223. struct rq *src_rq = cpu_rq(env->src_cpu);
  1224. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1225. struct task_struct *cur;
  1226. long src_load, dst_load;
  1227. long load;
  1228. long imp = env->p->numa_group ? groupimp : taskimp;
  1229. long moveimp = imp;
  1230. int dist = env->dist;
  1231. rcu_read_lock();
  1232. cur = task_rcu_dereference(&dst_rq->curr);
  1233. if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
  1234. cur = NULL;
  1235. /*
  1236. * Because we have preemption enabled we can get migrated around and
  1237. * end try selecting ourselves (current == env->p) as a swap candidate.
  1238. */
  1239. if (cur == env->p)
  1240. goto unlock;
  1241. /*
  1242. * "imp" is the fault differential for the source task between the
  1243. * source and destination node. Calculate the total differential for
  1244. * the source task and potential destination task. The more negative
  1245. * the value is, the more rmeote accesses that would be expected to
  1246. * be incurred if the tasks were swapped.
  1247. */
  1248. if (cur) {
  1249. /* Skip this swap candidate if cannot move to the source cpu */
  1250. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  1251. goto unlock;
  1252. /*
  1253. * If dst and source tasks are in the same NUMA group, or not
  1254. * in any group then look only at task weights.
  1255. */
  1256. if (cur->numa_group == env->p->numa_group) {
  1257. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1258. task_weight(cur, env->dst_nid, dist);
  1259. /*
  1260. * Add some hysteresis to prevent swapping the
  1261. * tasks within a group over tiny differences.
  1262. */
  1263. if (cur->numa_group)
  1264. imp -= imp/16;
  1265. } else {
  1266. /*
  1267. * Compare the group weights. If a task is all by
  1268. * itself (not part of a group), use the task weight
  1269. * instead.
  1270. */
  1271. if (cur->numa_group)
  1272. imp += group_weight(cur, env->src_nid, dist) -
  1273. group_weight(cur, env->dst_nid, dist);
  1274. else
  1275. imp += task_weight(cur, env->src_nid, dist) -
  1276. task_weight(cur, env->dst_nid, dist);
  1277. }
  1278. }
  1279. if (imp <= env->best_imp && moveimp <= env->best_imp)
  1280. goto unlock;
  1281. if (!cur) {
  1282. /* Is there capacity at our destination? */
  1283. if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
  1284. !env->dst_stats.has_free_capacity)
  1285. goto unlock;
  1286. goto balance;
  1287. }
  1288. /* Balance doesn't matter much if we're running a task per cpu */
  1289. if (imp > env->best_imp && src_rq->nr_running == 1 &&
  1290. dst_rq->nr_running == 1)
  1291. goto assign;
  1292. /*
  1293. * In the overloaded case, try and keep the load balanced.
  1294. */
  1295. balance:
  1296. load = task_h_load(env->p);
  1297. dst_load = env->dst_stats.load + load;
  1298. src_load = env->src_stats.load - load;
  1299. if (moveimp > imp && moveimp > env->best_imp) {
  1300. /*
  1301. * If the improvement from just moving env->p direction is
  1302. * better than swapping tasks around, check if a move is
  1303. * possible. Store a slightly smaller score than moveimp,
  1304. * so an actually idle CPU will win.
  1305. */
  1306. if (!load_too_imbalanced(src_load, dst_load, env)) {
  1307. imp = moveimp - 1;
  1308. cur = NULL;
  1309. goto assign;
  1310. }
  1311. }
  1312. if (imp <= env->best_imp)
  1313. goto unlock;
  1314. if (cur) {
  1315. load = task_h_load(cur);
  1316. dst_load -= load;
  1317. src_load += load;
  1318. }
  1319. if (load_too_imbalanced(src_load, dst_load, env))
  1320. goto unlock;
  1321. /*
  1322. * One idle CPU per node is evaluated for a task numa move.
  1323. * Call select_idle_sibling to maybe find a better one.
  1324. */
  1325. if (!cur) {
  1326. /*
  1327. * select_idle_siblings() uses an per-cpu cpumask that
  1328. * can be used from IRQ context.
  1329. */
  1330. local_irq_disable();
  1331. env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
  1332. env->dst_cpu);
  1333. local_irq_enable();
  1334. }
  1335. assign:
  1336. task_numa_assign(env, cur, imp);
  1337. unlock:
  1338. rcu_read_unlock();
  1339. }
  1340. static void task_numa_find_cpu(struct task_numa_env *env,
  1341. long taskimp, long groupimp)
  1342. {
  1343. int cpu;
  1344. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1345. /* Skip this CPU if the source task cannot migrate */
  1346. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  1347. continue;
  1348. env->dst_cpu = cpu;
  1349. task_numa_compare(env, taskimp, groupimp);
  1350. }
  1351. }
  1352. /* Only move tasks to a NUMA node less busy than the current node. */
  1353. static bool numa_has_capacity(struct task_numa_env *env)
  1354. {
  1355. struct numa_stats *src = &env->src_stats;
  1356. struct numa_stats *dst = &env->dst_stats;
  1357. if (src->has_free_capacity && !dst->has_free_capacity)
  1358. return false;
  1359. /*
  1360. * Only consider a task move if the source has a higher load
  1361. * than the destination, corrected for CPU capacity on each node.
  1362. *
  1363. * src->load dst->load
  1364. * --------------------- vs ---------------------
  1365. * src->compute_capacity dst->compute_capacity
  1366. */
  1367. if (src->load * dst->compute_capacity * env->imbalance_pct >
  1368. dst->load * src->compute_capacity * 100)
  1369. return true;
  1370. return false;
  1371. }
  1372. static int task_numa_migrate(struct task_struct *p)
  1373. {
  1374. struct task_numa_env env = {
  1375. .p = p,
  1376. .src_cpu = task_cpu(p),
  1377. .src_nid = task_node(p),
  1378. .imbalance_pct = 112,
  1379. .best_task = NULL,
  1380. .best_imp = 0,
  1381. .best_cpu = -1,
  1382. };
  1383. struct sched_domain *sd;
  1384. unsigned long taskweight, groupweight;
  1385. int nid, ret, dist;
  1386. long taskimp, groupimp;
  1387. /*
  1388. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1389. * imbalance and would be the first to start moving tasks about.
  1390. *
  1391. * And we want to avoid any moving of tasks about, as that would create
  1392. * random movement of tasks -- counter the numa conditions we're trying
  1393. * to satisfy here.
  1394. */
  1395. rcu_read_lock();
  1396. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1397. if (sd)
  1398. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1399. rcu_read_unlock();
  1400. /*
  1401. * Cpusets can break the scheduler domain tree into smaller
  1402. * balance domains, some of which do not cross NUMA boundaries.
  1403. * Tasks that are "trapped" in such domains cannot be migrated
  1404. * elsewhere, so there is no point in (re)trying.
  1405. */
  1406. if (unlikely(!sd)) {
  1407. p->numa_preferred_nid = task_node(p);
  1408. return -EINVAL;
  1409. }
  1410. env.dst_nid = p->numa_preferred_nid;
  1411. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1412. taskweight = task_weight(p, env.src_nid, dist);
  1413. groupweight = group_weight(p, env.src_nid, dist);
  1414. update_numa_stats(&env.src_stats, env.src_nid);
  1415. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1416. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1417. update_numa_stats(&env.dst_stats, env.dst_nid);
  1418. /* Try to find a spot on the preferred nid. */
  1419. if (numa_has_capacity(&env))
  1420. task_numa_find_cpu(&env, taskimp, groupimp);
  1421. /*
  1422. * Look at other nodes in these cases:
  1423. * - there is no space available on the preferred_nid
  1424. * - the task is part of a numa_group that is interleaved across
  1425. * multiple NUMA nodes; in order to better consolidate the group,
  1426. * we need to check other locations.
  1427. */
  1428. if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
  1429. for_each_online_node(nid) {
  1430. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1431. continue;
  1432. dist = node_distance(env.src_nid, env.dst_nid);
  1433. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1434. dist != env.dist) {
  1435. taskweight = task_weight(p, env.src_nid, dist);
  1436. groupweight = group_weight(p, env.src_nid, dist);
  1437. }
  1438. /* Only consider nodes where both task and groups benefit */
  1439. taskimp = task_weight(p, nid, dist) - taskweight;
  1440. groupimp = group_weight(p, nid, dist) - groupweight;
  1441. if (taskimp < 0 && groupimp < 0)
  1442. continue;
  1443. env.dist = dist;
  1444. env.dst_nid = nid;
  1445. update_numa_stats(&env.dst_stats, env.dst_nid);
  1446. if (numa_has_capacity(&env))
  1447. task_numa_find_cpu(&env, taskimp, groupimp);
  1448. }
  1449. }
  1450. /*
  1451. * If the task is part of a workload that spans multiple NUMA nodes,
  1452. * and is migrating into one of the workload's active nodes, remember
  1453. * this node as the task's preferred numa node, so the workload can
  1454. * settle down.
  1455. * A task that migrated to a second choice node will be better off
  1456. * trying for a better one later. Do not set the preferred node here.
  1457. */
  1458. if (p->numa_group) {
  1459. struct numa_group *ng = p->numa_group;
  1460. if (env.best_cpu == -1)
  1461. nid = env.src_nid;
  1462. else
  1463. nid = env.dst_nid;
  1464. if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
  1465. sched_setnuma(p, env.dst_nid);
  1466. }
  1467. /* No better CPU than the current one was found. */
  1468. if (env.best_cpu == -1)
  1469. return -EAGAIN;
  1470. /*
  1471. * Reset the scan period if the task is being rescheduled on an
  1472. * alternative node to recheck if the tasks is now properly placed.
  1473. */
  1474. p->numa_scan_period = task_scan_min(p);
  1475. if (env.best_task == NULL) {
  1476. ret = migrate_task_to(p, env.best_cpu);
  1477. if (ret != 0)
  1478. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1479. return ret;
  1480. }
  1481. ret = migrate_swap(p, env.best_task);
  1482. if (ret != 0)
  1483. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1484. put_task_struct(env.best_task);
  1485. return ret;
  1486. }
  1487. /* Attempt to migrate a task to a CPU on the preferred node. */
  1488. static void numa_migrate_preferred(struct task_struct *p)
  1489. {
  1490. unsigned long interval = HZ;
  1491. /* This task has no NUMA fault statistics yet */
  1492. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1493. return;
  1494. /* Periodically retry migrating the task to the preferred node */
  1495. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1496. p->numa_migrate_retry = jiffies + interval;
  1497. /* Success if task is already running on preferred CPU */
  1498. if (task_node(p) == p->numa_preferred_nid)
  1499. return;
  1500. /* Otherwise, try migrate to a CPU on the preferred node */
  1501. task_numa_migrate(p);
  1502. }
  1503. /*
  1504. * Find out how many nodes on the workload is actively running on. Do this by
  1505. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1506. * be different from the set of nodes where the workload's memory is currently
  1507. * located.
  1508. */
  1509. static void numa_group_count_active_nodes(struct numa_group *numa_group)
  1510. {
  1511. unsigned long faults, max_faults = 0;
  1512. int nid, active_nodes = 0;
  1513. for_each_online_node(nid) {
  1514. faults = group_faults_cpu(numa_group, nid);
  1515. if (faults > max_faults)
  1516. max_faults = faults;
  1517. }
  1518. for_each_online_node(nid) {
  1519. faults = group_faults_cpu(numa_group, nid);
  1520. if (faults * ACTIVE_NODE_FRACTION > max_faults)
  1521. active_nodes++;
  1522. }
  1523. numa_group->max_faults_cpu = max_faults;
  1524. numa_group->active_nodes = active_nodes;
  1525. }
  1526. /*
  1527. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1528. * increments. The more local the fault statistics are, the higher the scan
  1529. * period will be for the next scan window. If local/(local+remote) ratio is
  1530. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1531. * the scan period will decrease. Aim for 70% local accesses.
  1532. */
  1533. #define NUMA_PERIOD_SLOTS 10
  1534. #define NUMA_PERIOD_THRESHOLD 7
  1535. /*
  1536. * Increase the scan period (slow down scanning) if the majority of
  1537. * our memory is already on our local node, or if the majority of
  1538. * the page accesses are shared with other processes.
  1539. * Otherwise, decrease the scan period.
  1540. */
  1541. static void update_task_scan_period(struct task_struct *p,
  1542. unsigned long shared, unsigned long private)
  1543. {
  1544. unsigned int period_slot;
  1545. int ratio;
  1546. int diff;
  1547. unsigned long remote = p->numa_faults_locality[0];
  1548. unsigned long local = p->numa_faults_locality[1];
  1549. /*
  1550. * If there were no record hinting faults then either the task is
  1551. * completely idle or all activity is areas that are not of interest
  1552. * to automatic numa balancing. Related to that, if there were failed
  1553. * migration then it implies we are migrating too quickly or the local
  1554. * node is overloaded. In either case, scan slower
  1555. */
  1556. if (local + shared == 0 || p->numa_faults_locality[2]) {
  1557. p->numa_scan_period = min(p->numa_scan_period_max,
  1558. p->numa_scan_period << 1);
  1559. p->mm->numa_next_scan = jiffies +
  1560. msecs_to_jiffies(p->numa_scan_period);
  1561. return;
  1562. }
  1563. /*
  1564. * Prepare to scale scan period relative to the current period.
  1565. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1566. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1567. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1568. */
  1569. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1570. ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1571. if (ratio >= NUMA_PERIOD_THRESHOLD) {
  1572. int slot = ratio - NUMA_PERIOD_THRESHOLD;
  1573. if (!slot)
  1574. slot = 1;
  1575. diff = slot * period_slot;
  1576. } else {
  1577. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1578. /*
  1579. * Scale scan rate increases based on sharing. There is an
  1580. * inverse relationship between the degree of sharing and
  1581. * the adjustment made to the scanning period. Broadly
  1582. * speaking the intent is that there is little point
  1583. * scanning faster if shared accesses dominate as it may
  1584. * simply bounce migrations uselessly
  1585. */
  1586. ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
  1587. diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
  1588. }
  1589. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1590. task_scan_min(p), task_scan_max(p));
  1591. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1592. }
  1593. /*
  1594. * Get the fraction of time the task has been running since the last
  1595. * NUMA placement cycle. The scheduler keeps similar statistics, but
  1596. * decays those on a 32ms period, which is orders of magnitude off
  1597. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  1598. * stats only if the task is so new there are no NUMA statistics yet.
  1599. */
  1600. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  1601. {
  1602. u64 runtime, delta, now;
  1603. /* Use the start of this time slice to avoid calculations. */
  1604. now = p->se.exec_start;
  1605. runtime = p->se.sum_exec_runtime;
  1606. if (p->last_task_numa_placement) {
  1607. delta = runtime - p->last_sum_exec_runtime;
  1608. *period = now - p->last_task_numa_placement;
  1609. } else {
  1610. delta = p->se.avg.load_sum / p->se.load.weight;
  1611. *period = LOAD_AVG_MAX;
  1612. }
  1613. p->last_sum_exec_runtime = runtime;
  1614. p->last_task_numa_placement = now;
  1615. return delta;
  1616. }
  1617. /*
  1618. * Determine the preferred nid for a task in a numa_group. This needs to
  1619. * be done in a way that produces consistent results with group_weight,
  1620. * otherwise workloads might not converge.
  1621. */
  1622. static int preferred_group_nid(struct task_struct *p, int nid)
  1623. {
  1624. nodemask_t nodes;
  1625. int dist;
  1626. /* Direct connections between all NUMA nodes. */
  1627. if (sched_numa_topology_type == NUMA_DIRECT)
  1628. return nid;
  1629. /*
  1630. * On a system with glueless mesh NUMA topology, group_weight
  1631. * scores nodes according to the number of NUMA hinting faults on
  1632. * both the node itself, and on nearby nodes.
  1633. */
  1634. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1635. unsigned long score, max_score = 0;
  1636. int node, max_node = nid;
  1637. dist = sched_max_numa_distance;
  1638. for_each_online_node(node) {
  1639. score = group_weight(p, node, dist);
  1640. if (score > max_score) {
  1641. max_score = score;
  1642. max_node = node;
  1643. }
  1644. }
  1645. return max_node;
  1646. }
  1647. /*
  1648. * Finding the preferred nid in a system with NUMA backplane
  1649. * interconnect topology is more involved. The goal is to locate
  1650. * tasks from numa_groups near each other in the system, and
  1651. * untangle workloads from different sides of the system. This requires
  1652. * searching down the hierarchy of node groups, recursively searching
  1653. * inside the highest scoring group of nodes. The nodemask tricks
  1654. * keep the complexity of the search down.
  1655. */
  1656. nodes = node_online_map;
  1657. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  1658. unsigned long max_faults = 0;
  1659. nodemask_t max_group = NODE_MASK_NONE;
  1660. int a, b;
  1661. /* Are there nodes at this distance from each other? */
  1662. if (!find_numa_distance(dist))
  1663. continue;
  1664. for_each_node_mask(a, nodes) {
  1665. unsigned long faults = 0;
  1666. nodemask_t this_group;
  1667. nodes_clear(this_group);
  1668. /* Sum group's NUMA faults; includes a==b case. */
  1669. for_each_node_mask(b, nodes) {
  1670. if (node_distance(a, b) < dist) {
  1671. faults += group_faults(p, b);
  1672. node_set(b, this_group);
  1673. node_clear(b, nodes);
  1674. }
  1675. }
  1676. /* Remember the top group. */
  1677. if (faults > max_faults) {
  1678. max_faults = faults;
  1679. max_group = this_group;
  1680. /*
  1681. * subtle: at the smallest distance there is
  1682. * just one node left in each "group", the
  1683. * winner is the preferred nid.
  1684. */
  1685. nid = a;
  1686. }
  1687. }
  1688. /* Next round, evaluate the nodes within max_group. */
  1689. if (!max_faults)
  1690. break;
  1691. nodes = max_group;
  1692. }
  1693. return nid;
  1694. }
  1695. static void task_numa_placement(struct task_struct *p)
  1696. {
  1697. int seq, nid, max_nid = -1, max_group_nid = -1;
  1698. unsigned long max_faults = 0, max_group_faults = 0;
  1699. unsigned long fault_types[2] = { 0, 0 };
  1700. unsigned long total_faults;
  1701. u64 runtime, period;
  1702. spinlock_t *group_lock = NULL;
  1703. /*
  1704. * The p->mm->numa_scan_seq field gets updated without
  1705. * exclusive access. Use READ_ONCE() here to ensure
  1706. * that the field is read in a single access:
  1707. */
  1708. seq = READ_ONCE(p->mm->numa_scan_seq);
  1709. if (p->numa_scan_seq == seq)
  1710. return;
  1711. p->numa_scan_seq = seq;
  1712. p->numa_scan_period_max = task_scan_max(p);
  1713. total_faults = p->numa_faults_locality[0] +
  1714. p->numa_faults_locality[1];
  1715. runtime = numa_get_avg_runtime(p, &period);
  1716. /* If the task is part of a group prevent parallel updates to group stats */
  1717. if (p->numa_group) {
  1718. group_lock = &p->numa_group->lock;
  1719. spin_lock_irq(group_lock);
  1720. }
  1721. /* Find the node with the highest number of faults */
  1722. for_each_online_node(nid) {
  1723. /* Keep track of the offsets in numa_faults array */
  1724. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  1725. unsigned long faults = 0, group_faults = 0;
  1726. int priv;
  1727. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  1728. long diff, f_diff, f_weight;
  1729. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  1730. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  1731. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  1732. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  1733. /* Decay existing window, copy faults since last scan */
  1734. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  1735. fault_types[priv] += p->numa_faults[membuf_idx];
  1736. p->numa_faults[membuf_idx] = 0;
  1737. /*
  1738. * Normalize the faults_from, so all tasks in a group
  1739. * count according to CPU use, instead of by the raw
  1740. * number of faults. Tasks with little runtime have
  1741. * little over-all impact on throughput, and thus their
  1742. * faults are less important.
  1743. */
  1744. f_weight = div64_u64(runtime << 16, period + 1);
  1745. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  1746. (total_faults + 1);
  1747. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  1748. p->numa_faults[cpubuf_idx] = 0;
  1749. p->numa_faults[mem_idx] += diff;
  1750. p->numa_faults[cpu_idx] += f_diff;
  1751. faults += p->numa_faults[mem_idx];
  1752. p->total_numa_faults += diff;
  1753. if (p->numa_group) {
  1754. /*
  1755. * safe because we can only change our own group
  1756. *
  1757. * mem_idx represents the offset for a given
  1758. * nid and priv in a specific region because it
  1759. * is at the beginning of the numa_faults array.
  1760. */
  1761. p->numa_group->faults[mem_idx] += diff;
  1762. p->numa_group->faults_cpu[mem_idx] += f_diff;
  1763. p->numa_group->total_faults += diff;
  1764. group_faults += p->numa_group->faults[mem_idx];
  1765. }
  1766. }
  1767. if (faults > max_faults) {
  1768. max_faults = faults;
  1769. max_nid = nid;
  1770. }
  1771. if (group_faults > max_group_faults) {
  1772. max_group_faults = group_faults;
  1773. max_group_nid = nid;
  1774. }
  1775. }
  1776. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1777. if (p->numa_group) {
  1778. numa_group_count_active_nodes(p->numa_group);
  1779. spin_unlock_irq(group_lock);
  1780. max_nid = preferred_group_nid(p, max_group_nid);
  1781. }
  1782. if (max_faults) {
  1783. /* Set the new preferred node */
  1784. if (max_nid != p->numa_preferred_nid)
  1785. sched_setnuma(p, max_nid);
  1786. if (task_node(p) != p->numa_preferred_nid)
  1787. numa_migrate_preferred(p);
  1788. }
  1789. }
  1790. static inline int get_numa_group(struct numa_group *grp)
  1791. {
  1792. return atomic_inc_not_zero(&grp->refcount);
  1793. }
  1794. static inline void put_numa_group(struct numa_group *grp)
  1795. {
  1796. if (atomic_dec_and_test(&grp->refcount))
  1797. kfree_rcu(grp, rcu);
  1798. }
  1799. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1800. int *priv)
  1801. {
  1802. struct numa_group *grp, *my_grp;
  1803. struct task_struct *tsk;
  1804. bool join = false;
  1805. int cpu = cpupid_to_cpu(cpupid);
  1806. int i;
  1807. if (unlikely(!p->numa_group)) {
  1808. unsigned int size = sizeof(struct numa_group) +
  1809. 4*nr_node_ids*sizeof(unsigned long);
  1810. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1811. if (!grp)
  1812. return;
  1813. atomic_set(&grp->refcount, 1);
  1814. grp->active_nodes = 1;
  1815. grp->max_faults_cpu = 0;
  1816. spin_lock_init(&grp->lock);
  1817. grp->gid = p->pid;
  1818. /* Second half of the array tracks nids where faults happen */
  1819. grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
  1820. nr_node_ids;
  1821. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1822. grp->faults[i] = p->numa_faults[i];
  1823. grp->total_faults = p->total_numa_faults;
  1824. grp->nr_tasks++;
  1825. rcu_assign_pointer(p->numa_group, grp);
  1826. }
  1827. rcu_read_lock();
  1828. tsk = READ_ONCE(cpu_rq(cpu)->curr);
  1829. if (!cpupid_match_pid(tsk, cpupid))
  1830. goto no_join;
  1831. grp = rcu_dereference(tsk->numa_group);
  1832. if (!grp)
  1833. goto no_join;
  1834. my_grp = p->numa_group;
  1835. if (grp == my_grp)
  1836. goto no_join;
  1837. /*
  1838. * Only join the other group if its bigger; if we're the bigger group,
  1839. * the other task will join us.
  1840. */
  1841. if (my_grp->nr_tasks > grp->nr_tasks)
  1842. goto no_join;
  1843. /*
  1844. * Tie-break on the grp address.
  1845. */
  1846. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1847. goto no_join;
  1848. /* Always join threads in the same process. */
  1849. if (tsk->mm == current->mm)
  1850. join = true;
  1851. /* Simple filter to avoid false positives due to PID collisions */
  1852. if (flags & TNF_SHARED)
  1853. join = true;
  1854. /* Update priv based on whether false sharing was detected */
  1855. *priv = !join;
  1856. if (join && !get_numa_group(grp))
  1857. goto no_join;
  1858. rcu_read_unlock();
  1859. if (!join)
  1860. return;
  1861. BUG_ON(irqs_disabled());
  1862. double_lock_irq(&my_grp->lock, &grp->lock);
  1863. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  1864. my_grp->faults[i] -= p->numa_faults[i];
  1865. grp->faults[i] += p->numa_faults[i];
  1866. }
  1867. my_grp->total_faults -= p->total_numa_faults;
  1868. grp->total_faults += p->total_numa_faults;
  1869. my_grp->nr_tasks--;
  1870. grp->nr_tasks++;
  1871. spin_unlock(&my_grp->lock);
  1872. spin_unlock_irq(&grp->lock);
  1873. rcu_assign_pointer(p->numa_group, grp);
  1874. put_numa_group(my_grp);
  1875. return;
  1876. no_join:
  1877. rcu_read_unlock();
  1878. return;
  1879. }
  1880. void task_numa_free(struct task_struct *p)
  1881. {
  1882. struct numa_group *grp = p->numa_group;
  1883. void *numa_faults = p->numa_faults;
  1884. unsigned long flags;
  1885. int i;
  1886. if (grp) {
  1887. spin_lock_irqsave(&grp->lock, flags);
  1888. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1889. grp->faults[i] -= p->numa_faults[i];
  1890. grp->total_faults -= p->total_numa_faults;
  1891. grp->nr_tasks--;
  1892. spin_unlock_irqrestore(&grp->lock, flags);
  1893. RCU_INIT_POINTER(p->numa_group, NULL);
  1894. put_numa_group(grp);
  1895. }
  1896. p->numa_faults = NULL;
  1897. kfree(numa_faults);
  1898. }
  1899. /*
  1900. * Got a PROT_NONE fault for a page on @node.
  1901. */
  1902. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  1903. {
  1904. struct task_struct *p = current;
  1905. bool migrated = flags & TNF_MIGRATED;
  1906. int cpu_node = task_node(current);
  1907. int local = !!(flags & TNF_FAULT_LOCAL);
  1908. struct numa_group *ng;
  1909. int priv;
  1910. if (!static_branch_likely(&sched_numa_balancing))
  1911. return;
  1912. /* for example, ksmd faulting in a user's mm */
  1913. if (!p->mm)
  1914. return;
  1915. /* Allocate buffer to track faults on a per-node basis */
  1916. if (unlikely(!p->numa_faults)) {
  1917. int size = sizeof(*p->numa_faults) *
  1918. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  1919. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  1920. if (!p->numa_faults)
  1921. return;
  1922. p->total_numa_faults = 0;
  1923. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1924. }
  1925. /*
  1926. * First accesses are treated as private, otherwise consider accesses
  1927. * to be private if the accessing pid has not changed
  1928. */
  1929. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1930. priv = 1;
  1931. } else {
  1932. priv = cpupid_match_pid(p, last_cpupid);
  1933. if (!priv && !(flags & TNF_NO_GROUP))
  1934. task_numa_group(p, last_cpupid, flags, &priv);
  1935. }
  1936. /*
  1937. * If a workload spans multiple NUMA nodes, a shared fault that
  1938. * occurs wholly within the set of nodes that the workload is
  1939. * actively using should be counted as local. This allows the
  1940. * scan rate to slow down when a workload has settled down.
  1941. */
  1942. ng = p->numa_group;
  1943. if (!priv && !local && ng && ng->active_nodes > 1 &&
  1944. numa_is_active_node(cpu_node, ng) &&
  1945. numa_is_active_node(mem_node, ng))
  1946. local = 1;
  1947. task_numa_placement(p);
  1948. /*
  1949. * Retry task to preferred node migration periodically, in case it
  1950. * case it previously failed, or the scheduler moved us.
  1951. */
  1952. if (time_after(jiffies, p->numa_migrate_retry))
  1953. numa_migrate_preferred(p);
  1954. if (migrated)
  1955. p->numa_pages_migrated += pages;
  1956. if (flags & TNF_MIGRATE_FAIL)
  1957. p->numa_faults_locality[2] += pages;
  1958. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  1959. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  1960. p->numa_faults_locality[local] += pages;
  1961. }
  1962. static void reset_ptenuma_scan(struct task_struct *p)
  1963. {
  1964. /*
  1965. * We only did a read acquisition of the mmap sem, so
  1966. * p->mm->numa_scan_seq is written to without exclusive access
  1967. * and the update is not guaranteed to be atomic. That's not
  1968. * much of an issue though, since this is just used for
  1969. * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
  1970. * expensive, to avoid any form of compiler optimizations:
  1971. */
  1972. WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
  1973. p->mm->numa_scan_offset = 0;
  1974. }
  1975. /*
  1976. * The expensive part of numa migration is done from task_work context.
  1977. * Triggered from task_tick_numa().
  1978. */
  1979. void task_numa_work(struct callback_head *work)
  1980. {
  1981. unsigned long migrate, next_scan, now = jiffies;
  1982. struct task_struct *p = current;
  1983. struct mm_struct *mm = p->mm;
  1984. u64 runtime = p->se.sum_exec_runtime;
  1985. struct vm_area_struct *vma;
  1986. unsigned long start, end;
  1987. unsigned long nr_pte_updates = 0;
  1988. long pages, virtpages;
  1989. SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
  1990. work->next = work; /* protect against double add */
  1991. /*
  1992. * Who cares about NUMA placement when they're dying.
  1993. *
  1994. * NOTE: make sure not to dereference p->mm before this check,
  1995. * exit_task_work() happens _after_ exit_mm() so we could be called
  1996. * without p->mm even though we still had it when we enqueued this
  1997. * work.
  1998. */
  1999. if (p->flags & PF_EXITING)
  2000. return;
  2001. if (!mm->numa_next_scan) {
  2002. mm->numa_next_scan = now +
  2003. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  2004. }
  2005. /*
  2006. * Enforce maximal scan/migration frequency..
  2007. */
  2008. migrate = mm->numa_next_scan;
  2009. if (time_before(now, migrate))
  2010. return;
  2011. if (p->numa_scan_period == 0) {
  2012. p->numa_scan_period_max = task_scan_max(p);
  2013. p->numa_scan_period = task_scan_min(p);
  2014. }
  2015. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  2016. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  2017. return;
  2018. /*
  2019. * Delay this task enough that another task of this mm will likely win
  2020. * the next time around.
  2021. */
  2022. p->node_stamp += 2 * TICK_NSEC;
  2023. start = mm->numa_scan_offset;
  2024. pages = sysctl_numa_balancing_scan_size;
  2025. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  2026. virtpages = pages * 8; /* Scan up to this much virtual space */
  2027. if (!pages)
  2028. return;
  2029. down_read(&mm->mmap_sem);
  2030. vma = find_vma(mm, start);
  2031. if (!vma) {
  2032. reset_ptenuma_scan(p);
  2033. start = 0;
  2034. vma = mm->mmap;
  2035. }
  2036. for (; vma; vma = vma->vm_next) {
  2037. if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
  2038. is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
  2039. continue;
  2040. }
  2041. /*
  2042. * Shared library pages mapped by multiple processes are not
  2043. * migrated as it is expected they are cache replicated. Avoid
  2044. * hinting faults in read-only file-backed mappings or the vdso
  2045. * as migrating the pages will be of marginal benefit.
  2046. */
  2047. if (!vma->vm_mm ||
  2048. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  2049. continue;
  2050. /*
  2051. * Skip inaccessible VMAs to avoid any confusion between
  2052. * PROT_NONE and NUMA hinting ptes
  2053. */
  2054. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  2055. continue;
  2056. do {
  2057. start = max(start, vma->vm_start);
  2058. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  2059. end = min(end, vma->vm_end);
  2060. nr_pte_updates = change_prot_numa(vma, start, end);
  2061. /*
  2062. * Try to scan sysctl_numa_balancing_size worth of
  2063. * hpages that have at least one present PTE that
  2064. * is not already pte-numa. If the VMA contains
  2065. * areas that are unused or already full of prot_numa
  2066. * PTEs, scan up to virtpages, to skip through those
  2067. * areas faster.
  2068. */
  2069. if (nr_pte_updates)
  2070. pages -= (end - start) >> PAGE_SHIFT;
  2071. virtpages -= (end - start) >> PAGE_SHIFT;
  2072. start = end;
  2073. if (pages <= 0 || virtpages <= 0)
  2074. goto out;
  2075. cond_resched();
  2076. } while (end != vma->vm_end);
  2077. }
  2078. out:
  2079. /*
  2080. * It is possible to reach the end of the VMA list but the last few
  2081. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  2082. * would find the !migratable VMA on the next scan but not reset the
  2083. * scanner to the start so check it now.
  2084. */
  2085. if (vma)
  2086. mm->numa_scan_offset = start;
  2087. else
  2088. reset_ptenuma_scan(p);
  2089. up_read(&mm->mmap_sem);
  2090. /*
  2091. * Make sure tasks use at least 32x as much time to run other code
  2092. * than they used here, to limit NUMA PTE scanning overhead to 3% max.
  2093. * Usually update_task_scan_period slows down scanning enough; on an
  2094. * overloaded system we need to limit overhead on a per task basis.
  2095. */
  2096. if (unlikely(p->se.sum_exec_runtime != runtime)) {
  2097. u64 diff = p->se.sum_exec_runtime - runtime;
  2098. p->node_stamp += 32 * diff;
  2099. }
  2100. }
  2101. /*
  2102. * Drive the periodic memory faults..
  2103. */
  2104. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  2105. {
  2106. struct callback_head *work = &curr->numa_work;
  2107. u64 period, now;
  2108. /*
  2109. * We don't care about NUMA placement if we don't have memory.
  2110. */
  2111. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  2112. return;
  2113. /*
  2114. * Using runtime rather than walltime has the dual advantage that
  2115. * we (mostly) drive the selection from busy threads and that the
  2116. * task needs to have done some actual work before we bother with
  2117. * NUMA placement.
  2118. */
  2119. now = curr->se.sum_exec_runtime;
  2120. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  2121. if (now > curr->node_stamp + period) {
  2122. if (!curr->node_stamp)
  2123. curr->numa_scan_period = task_scan_min(curr);
  2124. curr->node_stamp += period;
  2125. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  2126. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  2127. task_work_add(curr, work, true);
  2128. }
  2129. }
  2130. }
  2131. #else
  2132. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  2133. {
  2134. }
  2135. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  2136. {
  2137. }
  2138. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  2139. {
  2140. }
  2141. #endif /* CONFIG_NUMA_BALANCING */
  2142. static void
  2143. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2144. {
  2145. update_load_add(&cfs_rq->load, se->load.weight);
  2146. if (!parent_entity(se))
  2147. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  2148. #ifdef CONFIG_SMP
  2149. if (entity_is_task(se)) {
  2150. struct rq *rq = rq_of(cfs_rq);
  2151. account_numa_enqueue(rq, task_of(se));
  2152. list_add(&se->group_node, &rq->cfs_tasks);
  2153. }
  2154. #endif
  2155. cfs_rq->nr_running++;
  2156. }
  2157. static void
  2158. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2159. {
  2160. update_load_sub(&cfs_rq->load, se->load.weight);
  2161. if (!parent_entity(se))
  2162. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  2163. #ifdef CONFIG_SMP
  2164. if (entity_is_task(se)) {
  2165. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  2166. list_del_init(&se->group_node);
  2167. }
  2168. #endif
  2169. cfs_rq->nr_running--;
  2170. }
  2171. #ifdef CONFIG_FAIR_GROUP_SCHED
  2172. # ifdef CONFIG_SMP
  2173. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  2174. {
  2175. long tg_weight, load, shares;
  2176. /*
  2177. * This really should be: cfs_rq->avg.load_avg, but instead we use
  2178. * cfs_rq->load.weight, which is its upper bound. This helps ramp up
  2179. * the shares for small weight interactive tasks.
  2180. */
  2181. load = scale_load_down(cfs_rq->load.weight);
  2182. tg_weight = atomic_long_read(&tg->load_avg);
  2183. /* Ensure tg_weight >= load */
  2184. tg_weight -= cfs_rq->tg_load_avg_contrib;
  2185. tg_weight += load;
  2186. shares = (tg->shares * load);
  2187. if (tg_weight)
  2188. shares /= tg_weight;
  2189. if (shares < MIN_SHARES)
  2190. shares = MIN_SHARES;
  2191. if (shares > tg->shares)
  2192. shares = tg->shares;
  2193. return shares;
  2194. }
  2195. # else /* CONFIG_SMP */
  2196. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  2197. {
  2198. return tg->shares;
  2199. }
  2200. # endif /* CONFIG_SMP */
  2201. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  2202. unsigned long weight)
  2203. {
  2204. if (se->on_rq) {
  2205. /* commit outstanding execution time */
  2206. if (cfs_rq->curr == se)
  2207. update_curr(cfs_rq);
  2208. account_entity_dequeue(cfs_rq, se);
  2209. }
  2210. update_load_set(&se->load, weight);
  2211. if (se->on_rq)
  2212. account_entity_enqueue(cfs_rq, se);
  2213. }
  2214. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  2215. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  2216. {
  2217. struct task_group *tg;
  2218. struct sched_entity *se;
  2219. long shares;
  2220. tg = cfs_rq->tg;
  2221. se = tg->se[cpu_of(rq_of(cfs_rq))];
  2222. if (!se || throttled_hierarchy(cfs_rq))
  2223. return;
  2224. #ifndef CONFIG_SMP
  2225. if (likely(se->load.weight == tg->shares))
  2226. return;
  2227. #endif
  2228. shares = calc_cfs_shares(cfs_rq, tg);
  2229. reweight_entity(cfs_rq_of(se), se, shares);
  2230. }
  2231. #else /* CONFIG_FAIR_GROUP_SCHED */
  2232. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  2233. {
  2234. }
  2235. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2236. #ifdef CONFIG_SMP
  2237. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  2238. static const u32 runnable_avg_yN_inv[] = {
  2239. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  2240. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  2241. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  2242. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  2243. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  2244. 0x85aac367, 0x82cd8698,
  2245. };
  2246. /*
  2247. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  2248. * over-estimates when re-combining.
  2249. */
  2250. static const u32 runnable_avg_yN_sum[] = {
  2251. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  2252. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  2253. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  2254. };
  2255. /*
  2256. * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
  2257. * lower integers. See Documentation/scheduler/sched-avg.txt how these
  2258. * were generated:
  2259. */
  2260. static const u32 __accumulated_sum_N32[] = {
  2261. 0, 23371, 35056, 40899, 43820, 45281,
  2262. 46011, 46376, 46559, 46650, 46696, 46719,
  2263. };
  2264. /*
  2265. * Approximate:
  2266. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  2267. */
  2268. static __always_inline u64 decay_load(u64 val, u64 n)
  2269. {
  2270. unsigned int local_n;
  2271. if (!n)
  2272. return val;
  2273. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  2274. return 0;
  2275. /* after bounds checking we can collapse to 32-bit */
  2276. local_n = n;
  2277. /*
  2278. * As y^PERIOD = 1/2, we can combine
  2279. * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  2280. * With a look-up table which covers y^n (n<PERIOD)
  2281. *
  2282. * To achieve constant time decay_load.
  2283. */
  2284. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  2285. val >>= local_n / LOAD_AVG_PERIOD;
  2286. local_n %= LOAD_AVG_PERIOD;
  2287. }
  2288. val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
  2289. return val;
  2290. }
  2291. /*
  2292. * For updates fully spanning n periods, the contribution to runnable
  2293. * average will be: \Sum 1024*y^n
  2294. *
  2295. * We can compute this reasonably efficiently by combining:
  2296. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  2297. */
  2298. static u32 __compute_runnable_contrib(u64 n)
  2299. {
  2300. u32 contrib = 0;
  2301. if (likely(n <= LOAD_AVG_PERIOD))
  2302. return runnable_avg_yN_sum[n];
  2303. else if (unlikely(n >= LOAD_AVG_MAX_N))
  2304. return LOAD_AVG_MAX;
  2305. /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
  2306. contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
  2307. n %= LOAD_AVG_PERIOD;
  2308. contrib = decay_load(contrib, n);
  2309. return contrib + runnable_avg_yN_sum[n];
  2310. }
  2311. #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
  2312. /*
  2313. * We can represent the historical contribution to runnable average as the
  2314. * coefficients of a geometric series. To do this we sub-divide our runnable
  2315. * history into segments of approximately 1ms (1024us); label the segment that
  2316. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  2317. *
  2318. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  2319. * p0 p1 p2
  2320. * (now) (~1ms ago) (~2ms ago)
  2321. *
  2322. * Let u_i denote the fraction of p_i that the entity was runnable.
  2323. *
  2324. * We then designate the fractions u_i as our co-efficients, yielding the
  2325. * following representation of historical load:
  2326. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  2327. *
  2328. * We choose y based on the with of a reasonably scheduling period, fixing:
  2329. * y^32 = 0.5
  2330. *
  2331. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  2332. * approximately half as much as the contribution to load within the last ms
  2333. * (u_0).
  2334. *
  2335. * When a period "rolls over" and we have new u_0`, multiplying the previous
  2336. * sum again by y is sufficient to update:
  2337. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  2338. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  2339. */
  2340. static __always_inline int
  2341. __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
  2342. unsigned long weight, int running, struct cfs_rq *cfs_rq)
  2343. {
  2344. u64 delta, scaled_delta, periods;
  2345. u32 contrib;
  2346. unsigned int delta_w, scaled_delta_w, decayed = 0;
  2347. unsigned long scale_freq, scale_cpu;
  2348. delta = now - sa->last_update_time;
  2349. /*
  2350. * This should only happen when time goes backwards, which it
  2351. * unfortunately does during sched clock init when we swap over to TSC.
  2352. */
  2353. if ((s64)delta < 0) {
  2354. sa->last_update_time = now;
  2355. return 0;
  2356. }
  2357. /*
  2358. * Use 1024ns as the unit of measurement since it's a reasonable
  2359. * approximation of 1us and fast to compute.
  2360. */
  2361. delta >>= 10;
  2362. if (!delta)
  2363. return 0;
  2364. sa->last_update_time = now;
  2365. scale_freq = arch_scale_freq_capacity(NULL, cpu);
  2366. scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
  2367. /* delta_w is the amount already accumulated against our next period */
  2368. delta_w = sa->period_contrib;
  2369. if (delta + delta_w >= 1024) {
  2370. decayed = 1;
  2371. /* how much left for next period will start over, we don't know yet */
  2372. sa->period_contrib = 0;
  2373. /*
  2374. * Now that we know we're crossing a period boundary, figure
  2375. * out how much from delta we need to complete the current
  2376. * period and accrue it.
  2377. */
  2378. delta_w = 1024 - delta_w;
  2379. scaled_delta_w = cap_scale(delta_w, scale_freq);
  2380. if (weight) {
  2381. sa->load_sum += weight * scaled_delta_w;
  2382. if (cfs_rq) {
  2383. cfs_rq->runnable_load_sum +=
  2384. weight * scaled_delta_w;
  2385. }
  2386. }
  2387. if (running)
  2388. sa->util_sum += scaled_delta_w * scale_cpu;
  2389. delta -= delta_w;
  2390. /* Figure out how many additional periods this update spans */
  2391. periods = delta / 1024;
  2392. delta %= 1024;
  2393. sa->load_sum = decay_load(sa->load_sum, periods + 1);
  2394. if (cfs_rq) {
  2395. cfs_rq->runnable_load_sum =
  2396. decay_load(cfs_rq->runnable_load_sum, periods + 1);
  2397. }
  2398. sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
  2399. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  2400. contrib = __compute_runnable_contrib(periods);
  2401. contrib = cap_scale(contrib, scale_freq);
  2402. if (weight) {
  2403. sa->load_sum += weight * contrib;
  2404. if (cfs_rq)
  2405. cfs_rq->runnable_load_sum += weight * contrib;
  2406. }
  2407. if (running)
  2408. sa->util_sum += contrib * scale_cpu;
  2409. }
  2410. /* Remainder of delta accrued against u_0` */
  2411. scaled_delta = cap_scale(delta, scale_freq);
  2412. if (weight) {
  2413. sa->load_sum += weight * scaled_delta;
  2414. if (cfs_rq)
  2415. cfs_rq->runnable_load_sum += weight * scaled_delta;
  2416. }
  2417. if (running)
  2418. sa->util_sum += scaled_delta * scale_cpu;
  2419. sa->period_contrib += delta;
  2420. if (decayed) {
  2421. sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
  2422. if (cfs_rq) {
  2423. cfs_rq->runnable_load_avg =
  2424. div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
  2425. }
  2426. sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
  2427. }
  2428. return decayed;
  2429. }
  2430. #ifdef CONFIG_FAIR_GROUP_SCHED
  2431. /**
  2432. * update_tg_load_avg - update the tg's load avg
  2433. * @cfs_rq: the cfs_rq whose avg changed
  2434. * @force: update regardless of how small the difference
  2435. *
  2436. * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
  2437. * However, because tg->load_avg is a global value there are performance
  2438. * considerations.
  2439. *
  2440. * In order to avoid having to look at the other cfs_rq's, we use a
  2441. * differential update where we store the last value we propagated. This in
  2442. * turn allows skipping updates if the differential is 'small'.
  2443. *
  2444. * Updating tg's load_avg is necessary before update_cfs_share() (which is
  2445. * done) and effective_load() (which is not done because it is too costly).
  2446. */
  2447. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  2448. {
  2449. long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
  2450. /*
  2451. * No need to update load_avg for root_task_group as it is not used.
  2452. */
  2453. if (cfs_rq->tg == &root_task_group)
  2454. return;
  2455. if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
  2456. atomic_long_add(delta, &cfs_rq->tg->load_avg);
  2457. cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
  2458. }
  2459. }
  2460. /*
  2461. * Called within set_task_rq() right before setting a task's cpu. The
  2462. * caller only guarantees p->pi_lock is held; no other assumptions,
  2463. * including the state of rq->lock, should be made.
  2464. */
  2465. void set_task_rq_fair(struct sched_entity *se,
  2466. struct cfs_rq *prev, struct cfs_rq *next)
  2467. {
  2468. if (!sched_feat(ATTACH_AGE_LOAD))
  2469. return;
  2470. /*
  2471. * We are supposed to update the task to "current" time, then its up to
  2472. * date and ready to go to new CPU/cfs_rq. But we have difficulty in
  2473. * getting what current time is, so simply throw away the out-of-date
  2474. * time. This will result in the wakee task is less decayed, but giving
  2475. * the wakee more load sounds not bad.
  2476. */
  2477. if (se->avg.last_update_time && prev) {
  2478. u64 p_last_update_time;
  2479. u64 n_last_update_time;
  2480. #ifndef CONFIG_64BIT
  2481. u64 p_last_update_time_copy;
  2482. u64 n_last_update_time_copy;
  2483. do {
  2484. p_last_update_time_copy = prev->load_last_update_time_copy;
  2485. n_last_update_time_copy = next->load_last_update_time_copy;
  2486. smp_rmb();
  2487. p_last_update_time = prev->avg.last_update_time;
  2488. n_last_update_time = next->avg.last_update_time;
  2489. } while (p_last_update_time != p_last_update_time_copy ||
  2490. n_last_update_time != n_last_update_time_copy);
  2491. #else
  2492. p_last_update_time = prev->avg.last_update_time;
  2493. n_last_update_time = next->avg.last_update_time;
  2494. #endif
  2495. __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
  2496. &se->avg, 0, 0, NULL);
  2497. se->avg.last_update_time = n_last_update_time;
  2498. }
  2499. }
  2500. #else /* CONFIG_FAIR_GROUP_SCHED */
  2501. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
  2502. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2503. static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
  2504. {
  2505. if (&this_rq()->cfs == cfs_rq) {
  2506. /*
  2507. * There are a few boundary cases this might miss but it should
  2508. * get called often enough that that should (hopefully) not be
  2509. * a real problem -- added to that it only calls on the local
  2510. * CPU, so if we enqueue remotely we'll miss an update, but
  2511. * the next tick/schedule should update.
  2512. *
  2513. * It will not get called when we go idle, because the idle
  2514. * thread is a different class (!fair), nor will the utilization
  2515. * number include things like RT tasks.
  2516. *
  2517. * As is, the util number is not freq-invariant (we'd have to
  2518. * implement arch_scale_freq_capacity() for that).
  2519. *
  2520. * See cpu_util().
  2521. */
  2522. cpufreq_update_util(rq_of(cfs_rq), 0);
  2523. }
  2524. }
  2525. /*
  2526. * Unsigned subtract and clamp on underflow.
  2527. *
  2528. * Explicitly do a load-store to ensure the intermediate value never hits
  2529. * memory. This allows lockless observations without ever seeing the negative
  2530. * values.
  2531. */
  2532. #define sub_positive(_ptr, _val) do { \
  2533. typeof(_ptr) ptr = (_ptr); \
  2534. typeof(*ptr) val = (_val); \
  2535. typeof(*ptr) res, var = READ_ONCE(*ptr); \
  2536. res = var - val; \
  2537. if (res > var) \
  2538. res = 0; \
  2539. WRITE_ONCE(*ptr, res); \
  2540. } while (0)
  2541. /**
  2542. * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
  2543. * @now: current time, as per cfs_rq_clock_task()
  2544. * @cfs_rq: cfs_rq to update
  2545. * @update_freq: should we call cfs_rq_util_change() or will the call do so
  2546. *
  2547. * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
  2548. * avg. The immediate corollary is that all (fair) tasks must be attached, see
  2549. * post_init_entity_util_avg().
  2550. *
  2551. * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
  2552. *
  2553. * Returns true if the load decayed or we removed load.
  2554. *
  2555. * Since both these conditions indicate a changed cfs_rq->avg.load we should
  2556. * call update_tg_load_avg() when this function returns true.
  2557. */
  2558. static inline int
  2559. update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
  2560. {
  2561. struct sched_avg *sa = &cfs_rq->avg;
  2562. int decayed, removed_load = 0, removed_util = 0;
  2563. if (atomic_long_read(&cfs_rq->removed_load_avg)) {
  2564. s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
  2565. sub_positive(&sa->load_avg, r);
  2566. sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
  2567. removed_load = 1;
  2568. }
  2569. if (atomic_long_read(&cfs_rq->removed_util_avg)) {
  2570. long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
  2571. sub_positive(&sa->util_avg, r);
  2572. sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
  2573. removed_util = 1;
  2574. }
  2575. decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
  2576. scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
  2577. #ifndef CONFIG_64BIT
  2578. smp_wmb();
  2579. cfs_rq->load_last_update_time_copy = sa->last_update_time;
  2580. #endif
  2581. if (update_freq && (decayed || removed_util))
  2582. cfs_rq_util_change(cfs_rq);
  2583. return decayed || removed_load;
  2584. }
  2585. /* Update task and its cfs_rq load average */
  2586. static inline void update_load_avg(struct sched_entity *se, int update_tg)
  2587. {
  2588. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2589. u64 now = cfs_rq_clock_task(cfs_rq);
  2590. struct rq *rq = rq_of(cfs_rq);
  2591. int cpu = cpu_of(rq);
  2592. /*
  2593. * Track task load average for carrying it to new CPU after migrated, and
  2594. * track group sched_entity load average for task_h_load calc in migration
  2595. */
  2596. __update_load_avg(now, cpu, &se->avg,
  2597. se->on_rq * scale_load_down(se->load.weight),
  2598. cfs_rq->curr == se, NULL);
  2599. if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
  2600. update_tg_load_avg(cfs_rq, 0);
  2601. }
  2602. /**
  2603. * attach_entity_load_avg - attach this entity to its cfs_rq load avg
  2604. * @cfs_rq: cfs_rq to attach to
  2605. * @se: sched_entity to attach
  2606. *
  2607. * Must call update_cfs_rq_load_avg() before this, since we rely on
  2608. * cfs_rq->avg.last_update_time being current.
  2609. */
  2610. static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2611. {
  2612. if (!sched_feat(ATTACH_AGE_LOAD))
  2613. goto skip_aging;
  2614. /*
  2615. * If we got migrated (either between CPUs or between cgroups) we'll
  2616. * have aged the average right before clearing @last_update_time.
  2617. *
  2618. * Or we're fresh through post_init_entity_util_avg().
  2619. */
  2620. if (se->avg.last_update_time) {
  2621. __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
  2622. &se->avg, 0, 0, NULL);
  2623. /*
  2624. * XXX: we could have just aged the entire load away if we've been
  2625. * absent from the fair class for too long.
  2626. */
  2627. }
  2628. skip_aging:
  2629. se->avg.last_update_time = cfs_rq->avg.last_update_time;
  2630. cfs_rq->avg.load_avg += se->avg.load_avg;
  2631. cfs_rq->avg.load_sum += se->avg.load_sum;
  2632. cfs_rq->avg.util_avg += se->avg.util_avg;
  2633. cfs_rq->avg.util_sum += se->avg.util_sum;
  2634. cfs_rq_util_change(cfs_rq);
  2635. }
  2636. /**
  2637. * detach_entity_load_avg - detach this entity from its cfs_rq load avg
  2638. * @cfs_rq: cfs_rq to detach from
  2639. * @se: sched_entity to detach
  2640. *
  2641. * Must call update_cfs_rq_load_avg() before this, since we rely on
  2642. * cfs_rq->avg.last_update_time being current.
  2643. */
  2644. static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2645. {
  2646. __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
  2647. &se->avg, se->on_rq * scale_load_down(se->load.weight),
  2648. cfs_rq->curr == se, NULL);
  2649. sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
  2650. sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
  2651. sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
  2652. sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
  2653. cfs_rq_util_change(cfs_rq);
  2654. }
  2655. /* Add the load generated by se into cfs_rq's load average */
  2656. static inline void
  2657. enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2658. {
  2659. struct sched_avg *sa = &se->avg;
  2660. u64 now = cfs_rq_clock_task(cfs_rq);
  2661. int migrated, decayed;
  2662. migrated = !sa->last_update_time;
  2663. if (!migrated) {
  2664. __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
  2665. se->on_rq * scale_load_down(se->load.weight),
  2666. cfs_rq->curr == se, NULL);
  2667. }
  2668. decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
  2669. cfs_rq->runnable_load_avg += sa->load_avg;
  2670. cfs_rq->runnable_load_sum += sa->load_sum;
  2671. if (migrated)
  2672. attach_entity_load_avg(cfs_rq, se);
  2673. if (decayed || migrated)
  2674. update_tg_load_avg(cfs_rq, 0);
  2675. }
  2676. /* Remove the runnable load generated by se from cfs_rq's runnable load average */
  2677. static inline void
  2678. dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2679. {
  2680. update_load_avg(se, 1);
  2681. cfs_rq->runnable_load_avg =
  2682. max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
  2683. cfs_rq->runnable_load_sum =
  2684. max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
  2685. }
  2686. #ifndef CONFIG_64BIT
  2687. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  2688. {
  2689. u64 last_update_time_copy;
  2690. u64 last_update_time;
  2691. do {
  2692. last_update_time_copy = cfs_rq->load_last_update_time_copy;
  2693. smp_rmb();
  2694. last_update_time = cfs_rq->avg.last_update_time;
  2695. } while (last_update_time != last_update_time_copy);
  2696. return last_update_time;
  2697. }
  2698. #else
  2699. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  2700. {
  2701. return cfs_rq->avg.last_update_time;
  2702. }
  2703. #endif
  2704. /*
  2705. * Task first catches up with cfs_rq, and then subtract
  2706. * itself from the cfs_rq (task must be off the queue now).
  2707. */
  2708. void remove_entity_load_avg(struct sched_entity *se)
  2709. {
  2710. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2711. u64 last_update_time;
  2712. /*
  2713. * tasks cannot exit without having gone through wake_up_new_task() ->
  2714. * post_init_entity_util_avg() which will have added things to the
  2715. * cfs_rq, so we can remove unconditionally.
  2716. *
  2717. * Similarly for groups, they will have passed through
  2718. * post_init_entity_util_avg() before unregister_sched_fair_group()
  2719. * calls this.
  2720. */
  2721. last_update_time = cfs_rq_last_update_time(cfs_rq);
  2722. __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
  2723. atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
  2724. atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
  2725. }
  2726. static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
  2727. {
  2728. return cfs_rq->runnable_load_avg;
  2729. }
  2730. static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
  2731. {
  2732. return cfs_rq->avg.load_avg;
  2733. }
  2734. static int idle_balance(struct rq *this_rq);
  2735. #else /* CONFIG_SMP */
  2736. static inline int
  2737. update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
  2738. {
  2739. return 0;
  2740. }
  2741. static inline void update_load_avg(struct sched_entity *se, int not_used)
  2742. {
  2743. cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
  2744. }
  2745. static inline void
  2746. enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2747. static inline void
  2748. dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2749. static inline void remove_entity_load_avg(struct sched_entity *se) {}
  2750. static inline void
  2751. attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2752. static inline void
  2753. detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2754. static inline int idle_balance(struct rq *rq)
  2755. {
  2756. return 0;
  2757. }
  2758. #endif /* CONFIG_SMP */
  2759. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2760. {
  2761. #ifdef CONFIG_SCHED_DEBUG
  2762. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2763. if (d < 0)
  2764. d = -d;
  2765. if (d > 3*sysctl_sched_latency)
  2766. schedstat_inc(cfs_rq->nr_spread_over);
  2767. #endif
  2768. }
  2769. static void
  2770. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2771. {
  2772. u64 vruntime = cfs_rq->min_vruntime;
  2773. /*
  2774. * The 'current' period is already promised to the current tasks,
  2775. * however the extra weight of the new task will slow them down a
  2776. * little, place the new task so that it fits in the slot that
  2777. * stays open at the end.
  2778. */
  2779. if (initial && sched_feat(START_DEBIT))
  2780. vruntime += sched_vslice(cfs_rq, se);
  2781. /* sleeps up to a single latency don't count. */
  2782. if (!initial) {
  2783. unsigned long thresh = sysctl_sched_latency;
  2784. /*
  2785. * Halve their sleep time's effect, to allow
  2786. * for a gentler effect of sleepers:
  2787. */
  2788. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2789. thresh >>= 1;
  2790. vruntime -= thresh;
  2791. }
  2792. /* ensure we never gain time by being placed backwards. */
  2793. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2794. }
  2795. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2796. static inline void check_schedstat_required(void)
  2797. {
  2798. #ifdef CONFIG_SCHEDSTATS
  2799. if (schedstat_enabled())
  2800. return;
  2801. /* Force schedstat enabled if a dependent tracepoint is active */
  2802. if (trace_sched_stat_wait_enabled() ||
  2803. trace_sched_stat_sleep_enabled() ||
  2804. trace_sched_stat_iowait_enabled() ||
  2805. trace_sched_stat_blocked_enabled() ||
  2806. trace_sched_stat_runtime_enabled()) {
  2807. printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
  2808. "stat_blocked and stat_runtime require the "
  2809. "kernel parameter schedstats=enabled or "
  2810. "kernel.sched_schedstats=1\n");
  2811. }
  2812. #endif
  2813. }
  2814. /*
  2815. * MIGRATION
  2816. *
  2817. * dequeue
  2818. * update_curr()
  2819. * update_min_vruntime()
  2820. * vruntime -= min_vruntime
  2821. *
  2822. * enqueue
  2823. * update_curr()
  2824. * update_min_vruntime()
  2825. * vruntime += min_vruntime
  2826. *
  2827. * this way the vruntime transition between RQs is done when both
  2828. * min_vruntime are up-to-date.
  2829. *
  2830. * WAKEUP (remote)
  2831. *
  2832. * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
  2833. * vruntime -= min_vruntime
  2834. *
  2835. * enqueue
  2836. * update_curr()
  2837. * update_min_vruntime()
  2838. * vruntime += min_vruntime
  2839. *
  2840. * this way we don't have the most up-to-date min_vruntime on the originating
  2841. * CPU and an up-to-date min_vruntime on the destination CPU.
  2842. */
  2843. static void
  2844. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2845. {
  2846. bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
  2847. bool curr = cfs_rq->curr == se;
  2848. /*
  2849. * If we're the current task, we must renormalise before calling
  2850. * update_curr().
  2851. */
  2852. if (renorm && curr)
  2853. se->vruntime += cfs_rq->min_vruntime;
  2854. update_curr(cfs_rq);
  2855. /*
  2856. * Otherwise, renormalise after, such that we're placed at the current
  2857. * moment in time, instead of some random moment in the past. Being
  2858. * placed in the past could significantly boost this task to the
  2859. * fairness detriment of existing tasks.
  2860. */
  2861. if (renorm && !curr)
  2862. se->vruntime += cfs_rq->min_vruntime;
  2863. enqueue_entity_load_avg(cfs_rq, se);
  2864. account_entity_enqueue(cfs_rq, se);
  2865. update_cfs_shares(cfs_rq);
  2866. if (flags & ENQUEUE_WAKEUP)
  2867. place_entity(cfs_rq, se, 0);
  2868. check_schedstat_required();
  2869. update_stats_enqueue(cfs_rq, se, flags);
  2870. check_spread(cfs_rq, se);
  2871. if (!curr)
  2872. __enqueue_entity(cfs_rq, se);
  2873. se->on_rq = 1;
  2874. if (cfs_rq->nr_running == 1) {
  2875. list_add_leaf_cfs_rq(cfs_rq);
  2876. check_enqueue_throttle(cfs_rq);
  2877. }
  2878. }
  2879. static void __clear_buddies_last(struct sched_entity *se)
  2880. {
  2881. for_each_sched_entity(se) {
  2882. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2883. if (cfs_rq->last != se)
  2884. break;
  2885. cfs_rq->last = NULL;
  2886. }
  2887. }
  2888. static void __clear_buddies_next(struct sched_entity *se)
  2889. {
  2890. for_each_sched_entity(se) {
  2891. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2892. if (cfs_rq->next != se)
  2893. break;
  2894. cfs_rq->next = NULL;
  2895. }
  2896. }
  2897. static void __clear_buddies_skip(struct sched_entity *se)
  2898. {
  2899. for_each_sched_entity(se) {
  2900. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2901. if (cfs_rq->skip != se)
  2902. break;
  2903. cfs_rq->skip = NULL;
  2904. }
  2905. }
  2906. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2907. {
  2908. if (cfs_rq->last == se)
  2909. __clear_buddies_last(se);
  2910. if (cfs_rq->next == se)
  2911. __clear_buddies_next(se);
  2912. if (cfs_rq->skip == se)
  2913. __clear_buddies_skip(se);
  2914. }
  2915. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2916. static void
  2917. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2918. {
  2919. /*
  2920. * Update run-time statistics of the 'current'.
  2921. */
  2922. update_curr(cfs_rq);
  2923. dequeue_entity_load_avg(cfs_rq, se);
  2924. update_stats_dequeue(cfs_rq, se, flags);
  2925. clear_buddies(cfs_rq, se);
  2926. if (se != cfs_rq->curr)
  2927. __dequeue_entity(cfs_rq, se);
  2928. se->on_rq = 0;
  2929. account_entity_dequeue(cfs_rq, se);
  2930. /*
  2931. * Normalize after update_curr(); which will also have moved
  2932. * min_vruntime if @se is the one holding it back. But before doing
  2933. * update_min_vruntime() again, which will discount @se's position and
  2934. * can move min_vruntime forward still more.
  2935. */
  2936. if (!(flags & DEQUEUE_SLEEP))
  2937. se->vruntime -= cfs_rq->min_vruntime;
  2938. /* return excess runtime on last dequeue */
  2939. return_cfs_rq_runtime(cfs_rq);
  2940. update_cfs_shares(cfs_rq);
  2941. /*
  2942. * Now advance min_vruntime if @se was the entity holding it back,
  2943. * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
  2944. * put back on, and if we advance min_vruntime, we'll be placed back
  2945. * further than we started -- ie. we'll be penalized.
  2946. */
  2947. if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
  2948. update_min_vruntime(cfs_rq);
  2949. }
  2950. /*
  2951. * Preempt the current task with a newly woken task if needed:
  2952. */
  2953. static void
  2954. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2955. {
  2956. unsigned long ideal_runtime, delta_exec;
  2957. struct sched_entity *se;
  2958. s64 delta;
  2959. ideal_runtime = sched_slice(cfs_rq, curr);
  2960. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2961. if (delta_exec > ideal_runtime) {
  2962. resched_curr(rq_of(cfs_rq));
  2963. /*
  2964. * The current task ran long enough, ensure it doesn't get
  2965. * re-elected due to buddy favours.
  2966. */
  2967. clear_buddies(cfs_rq, curr);
  2968. return;
  2969. }
  2970. /*
  2971. * Ensure that a task that missed wakeup preemption by a
  2972. * narrow margin doesn't have to wait for a full slice.
  2973. * This also mitigates buddy induced latencies under load.
  2974. */
  2975. if (delta_exec < sysctl_sched_min_granularity)
  2976. return;
  2977. se = __pick_first_entity(cfs_rq);
  2978. delta = curr->vruntime - se->vruntime;
  2979. if (delta < 0)
  2980. return;
  2981. if (delta > ideal_runtime)
  2982. resched_curr(rq_of(cfs_rq));
  2983. }
  2984. static void
  2985. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2986. {
  2987. /* 'current' is not kept within the tree. */
  2988. if (se->on_rq) {
  2989. /*
  2990. * Any task has to be enqueued before it get to execute on
  2991. * a CPU. So account for the time it spent waiting on the
  2992. * runqueue.
  2993. */
  2994. update_stats_wait_end(cfs_rq, se);
  2995. __dequeue_entity(cfs_rq, se);
  2996. update_load_avg(se, 1);
  2997. }
  2998. update_stats_curr_start(cfs_rq, se);
  2999. cfs_rq->curr = se;
  3000. /*
  3001. * Track our maximum slice length, if the CPU's load is at
  3002. * least twice that of our own weight (i.e. dont track it
  3003. * when there are only lesser-weight tasks around):
  3004. */
  3005. if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  3006. schedstat_set(se->statistics.slice_max,
  3007. max((u64)schedstat_val(se->statistics.slice_max),
  3008. se->sum_exec_runtime - se->prev_sum_exec_runtime));
  3009. }
  3010. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  3011. }
  3012. static int
  3013. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  3014. /*
  3015. * Pick the next process, keeping these things in mind, in this order:
  3016. * 1) keep things fair between processes/task groups
  3017. * 2) pick the "next" process, since someone really wants that to run
  3018. * 3) pick the "last" process, for cache locality
  3019. * 4) do not run the "skip" process, if something else is available
  3020. */
  3021. static struct sched_entity *
  3022. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  3023. {
  3024. struct sched_entity *left = __pick_first_entity(cfs_rq);
  3025. struct sched_entity *se;
  3026. /*
  3027. * If curr is set we have to see if its left of the leftmost entity
  3028. * still in the tree, provided there was anything in the tree at all.
  3029. */
  3030. if (!left || (curr && entity_before(curr, left)))
  3031. left = curr;
  3032. se = left; /* ideally we run the leftmost entity */
  3033. /*
  3034. * Avoid running the skip buddy, if running something else can
  3035. * be done without getting too unfair.
  3036. */
  3037. if (cfs_rq->skip == se) {
  3038. struct sched_entity *second;
  3039. if (se == curr) {
  3040. second = __pick_first_entity(cfs_rq);
  3041. } else {
  3042. second = __pick_next_entity(se);
  3043. if (!second || (curr && entity_before(curr, second)))
  3044. second = curr;
  3045. }
  3046. if (second && wakeup_preempt_entity(second, left) < 1)
  3047. se = second;
  3048. }
  3049. /*
  3050. * Prefer last buddy, try to return the CPU to a preempted task.
  3051. */
  3052. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  3053. se = cfs_rq->last;
  3054. /*
  3055. * Someone really wants this to run. If it's not unfair, run it.
  3056. */
  3057. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  3058. se = cfs_rq->next;
  3059. clear_buddies(cfs_rq, se);
  3060. return se;
  3061. }
  3062. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  3063. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  3064. {
  3065. /*
  3066. * If still on the runqueue then deactivate_task()
  3067. * was not called and update_curr() has to be done:
  3068. */
  3069. if (prev->on_rq)
  3070. update_curr(cfs_rq);
  3071. /* throttle cfs_rqs exceeding runtime */
  3072. check_cfs_rq_runtime(cfs_rq);
  3073. check_spread(cfs_rq, prev);
  3074. if (prev->on_rq) {
  3075. update_stats_wait_start(cfs_rq, prev);
  3076. /* Put 'current' back into the tree. */
  3077. __enqueue_entity(cfs_rq, prev);
  3078. /* in !on_rq case, update occurred at dequeue */
  3079. update_load_avg(prev, 0);
  3080. }
  3081. cfs_rq->curr = NULL;
  3082. }
  3083. static void
  3084. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  3085. {
  3086. /*
  3087. * Update run-time statistics of the 'current'.
  3088. */
  3089. update_curr(cfs_rq);
  3090. /*
  3091. * Ensure that runnable average is periodically updated.
  3092. */
  3093. update_load_avg(curr, 1);
  3094. update_cfs_shares(cfs_rq);
  3095. #ifdef CONFIG_SCHED_HRTICK
  3096. /*
  3097. * queued ticks are scheduled to match the slice, so don't bother
  3098. * validating it and just reschedule.
  3099. */
  3100. if (queued) {
  3101. resched_curr(rq_of(cfs_rq));
  3102. return;
  3103. }
  3104. /*
  3105. * don't let the period tick interfere with the hrtick preemption
  3106. */
  3107. if (!sched_feat(DOUBLE_TICK) &&
  3108. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  3109. return;
  3110. #endif
  3111. if (cfs_rq->nr_running > 1)
  3112. check_preempt_tick(cfs_rq, curr);
  3113. }
  3114. /**************************************************
  3115. * CFS bandwidth control machinery
  3116. */
  3117. #ifdef CONFIG_CFS_BANDWIDTH
  3118. #ifdef HAVE_JUMP_LABEL
  3119. static struct static_key __cfs_bandwidth_used;
  3120. static inline bool cfs_bandwidth_used(void)
  3121. {
  3122. return static_key_false(&__cfs_bandwidth_used);
  3123. }
  3124. void cfs_bandwidth_usage_inc(void)
  3125. {
  3126. static_key_slow_inc(&__cfs_bandwidth_used);
  3127. }
  3128. void cfs_bandwidth_usage_dec(void)
  3129. {
  3130. static_key_slow_dec(&__cfs_bandwidth_used);
  3131. }
  3132. #else /* HAVE_JUMP_LABEL */
  3133. static bool cfs_bandwidth_used(void)
  3134. {
  3135. return true;
  3136. }
  3137. void cfs_bandwidth_usage_inc(void) {}
  3138. void cfs_bandwidth_usage_dec(void) {}
  3139. #endif /* HAVE_JUMP_LABEL */
  3140. /*
  3141. * default period for cfs group bandwidth.
  3142. * default: 0.1s, units: nanoseconds
  3143. */
  3144. static inline u64 default_cfs_period(void)
  3145. {
  3146. return 100000000ULL;
  3147. }
  3148. static inline u64 sched_cfs_bandwidth_slice(void)
  3149. {
  3150. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  3151. }
  3152. /*
  3153. * Replenish runtime according to assigned quota and update expiration time.
  3154. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  3155. * additional synchronization around rq->lock.
  3156. *
  3157. * requires cfs_b->lock
  3158. */
  3159. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  3160. {
  3161. u64 now;
  3162. if (cfs_b->quota == RUNTIME_INF)
  3163. return;
  3164. now = sched_clock_cpu(smp_processor_id());
  3165. cfs_b->runtime = cfs_b->quota;
  3166. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  3167. }
  3168. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3169. {
  3170. return &tg->cfs_bandwidth;
  3171. }
  3172. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  3173. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3174. {
  3175. if (unlikely(cfs_rq->throttle_count))
  3176. return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
  3177. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  3178. }
  3179. /* returns 0 on failure to allocate runtime */
  3180. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3181. {
  3182. struct task_group *tg = cfs_rq->tg;
  3183. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  3184. u64 amount = 0, min_amount, expires;
  3185. /* note: this is a positive sum as runtime_remaining <= 0 */
  3186. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  3187. raw_spin_lock(&cfs_b->lock);
  3188. if (cfs_b->quota == RUNTIME_INF)
  3189. amount = min_amount;
  3190. else {
  3191. start_cfs_bandwidth(cfs_b);
  3192. if (cfs_b->runtime > 0) {
  3193. amount = min(cfs_b->runtime, min_amount);
  3194. cfs_b->runtime -= amount;
  3195. cfs_b->idle = 0;
  3196. }
  3197. }
  3198. expires = cfs_b->runtime_expires;
  3199. raw_spin_unlock(&cfs_b->lock);
  3200. cfs_rq->runtime_remaining += amount;
  3201. /*
  3202. * we may have advanced our local expiration to account for allowed
  3203. * spread between our sched_clock and the one on which runtime was
  3204. * issued.
  3205. */
  3206. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  3207. cfs_rq->runtime_expires = expires;
  3208. return cfs_rq->runtime_remaining > 0;
  3209. }
  3210. /*
  3211. * Note: This depends on the synchronization provided by sched_clock and the
  3212. * fact that rq->clock snapshots this value.
  3213. */
  3214. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3215. {
  3216. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3217. /* if the deadline is ahead of our clock, nothing to do */
  3218. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  3219. return;
  3220. if (cfs_rq->runtime_remaining < 0)
  3221. return;
  3222. /*
  3223. * If the local deadline has passed we have to consider the
  3224. * possibility that our sched_clock is 'fast' and the global deadline
  3225. * has not truly expired.
  3226. *
  3227. * Fortunately we can check determine whether this the case by checking
  3228. * whether the global deadline has advanced. It is valid to compare
  3229. * cfs_b->runtime_expires without any locks since we only care about
  3230. * exact equality, so a partial write will still work.
  3231. */
  3232. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
  3233. /* extend local deadline, drift is bounded above by 2 ticks */
  3234. cfs_rq->runtime_expires += TICK_NSEC;
  3235. } else {
  3236. /* global deadline is ahead, expiration has passed */
  3237. cfs_rq->runtime_remaining = 0;
  3238. }
  3239. }
  3240. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  3241. {
  3242. /* dock delta_exec before expiring quota (as it could span periods) */
  3243. cfs_rq->runtime_remaining -= delta_exec;
  3244. expire_cfs_rq_runtime(cfs_rq);
  3245. if (likely(cfs_rq->runtime_remaining > 0))
  3246. return;
  3247. /*
  3248. * if we're unable to extend our runtime we resched so that the active
  3249. * hierarchy can be throttled
  3250. */
  3251. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  3252. resched_curr(rq_of(cfs_rq));
  3253. }
  3254. static __always_inline
  3255. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  3256. {
  3257. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  3258. return;
  3259. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  3260. }
  3261. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3262. {
  3263. return cfs_bandwidth_used() && cfs_rq->throttled;
  3264. }
  3265. /* check whether cfs_rq, or any parent, is throttled */
  3266. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3267. {
  3268. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  3269. }
  3270. /*
  3271. * Ensure that neither of the group entities corresponding to src_cpu or
  3272. * dest_cpu are members of a throttled hierarchy when performing group
  3273. * load-balance operations.
  3274. */
  3275. static inline int throttled_lb_pair(struct task_group *tg,
  3276. int src_cpu, int dest_cpu)
  3277. {
  3278. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  3279. src_cfs_rq = tg->cfs_rq[src_cpu];
  3280. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  3281. return throttled_hierarchy(src_cfs_rq) ||
  3282. throttled_hierarchy(dest_cfs_rq);
  3283. }
  3284. /* updated child weight may affect parent so we have to do this bottom up */
  3285. static int tg_unthrottle_up(struct task_group *tg, void *data)
  3286. {
  3287. struct rq *rq = data;
  3288. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3289. cfs_rq->throttle_count--;
  3290. if (!cfs_rq->throttle_count) {
  3291. /* adjust cfs_rq_clock_task() */
  3292. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  3293. cfs_rq->throttled_clock_task;
  3294. }
  3295. return 0;
  3296. }
  3297. static int tg_throttle_down(struct task_group *tg, void *data)
  3298. {
  3299. struct rq *rq = data;
  3300. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3301. /* group is entering throttled state, stop time */
  3302. if (!cfs_rq->throttle_count)
  3303. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  3304. cfs_rq->throttle_count++;
  3305. return 0;
  3306. }
  3307. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  3308. {
  3309. struct rq *rq = rq_of(cfs_rq);
  3310. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3311. struct sched_entity *se;
  3312. long task_delta, dequeue = 1;
  3313. bool empty;
  3314. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  3315. /* freeze hierarchy runnable averages while throttled */
  3316. rcu_read_lock();
  3317. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  3318. rcu_read_unlock();
  3319. task_delta = cfs_rq->h_nr_running;
  3320. for_each_sched_entity(se) {
  3321. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  3322. /* throttled entity or throttle-on-deactivate */
  3323. if (!se->on_rq)
  3324. break;
  3325. if (dequeue)
  3326. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  3327. qcfs_rq->h_nr_running -= task_delta;
  3328. if (qcfs_rq->load.weight)
  3329. dequeue = 0;
  3330. }
  3331. if (!se)
  3332. sub_nr_running(rq, task_delta);
  3333. cfs_rq->throttled = 1;
  3334. cfs_rq->throttled_clock = rq_clock(rq);
  3335. raw_spin_lock(&cfs_b->lock);
  3336. empty = list_empty(&cfs_b->throttled_cfs_rq);
  3337. /*
  3338. * Add to the _head_ of the list, so that an already-started
  3339. * distribute_cfs_runtime will not see us
  3340. */
  3341. list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3342. /*
  3343. * If we're the first throttled task, make sure the bandwidth
  3344. * timer is running.
  3345. */
  3346. if (empty)
  3347. start_cfs_bandwidth(cfs_b);
  3348. raw_spin_unlock(&cfs_b->lock);
  3349. }
  3350. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  3351. {
  3352. struct rq *rq = rq_of(cfs_rq);
  3353. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3354. struct sched_entity *se;
  3355. int enqueue = 1;
  3356. long task_delta;
  3357. se = cfs_rq->tg->se[cpu_of(rq)];
  3358. cfs_rq->throttled = 0;
  3359. update_rq_clock(rq);
  3360. raw_spin_lock(&cfs_b->lock);
  3361. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  3362. list_del_rcu(&cfs_rq->throttled_list);
  3363. raw_spin_unlock(&cfs_b->lock);
  3364. /* update hierarchical throttle state */
  3365. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  3366. if (!cfs_rq->load.weight)
  3367. return;
  3368. task_delta = cfs_rq->h_nr_running;
  3369. for_each_sched_entity(se) {
  3370. if (se->on_rq)
  3371. enqueue = 0;
  3372. cfs_rq = cfs_rq_of(se);
  3373. if (enqueue)
  3374. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  3375. cfs_rq->h_nr_running += task_delta;
  3376. if (cfs_rq_throttled(cfs_rq))
  3377. break;
  3378. }
  3379. if (!se)
  3380. add_nr_running(rq, task_delta);
  3381. /* determine whether we need to wake up potentially idle cpu */
  3382. if (rq->curr == rq->idle && rq->cfs.nr_running)
  3383. resched_curr(rq);
  3384. }
  3385. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  3386. u64 remaining, u64 expires)
  3387. {
  3388. struct cfs_rq *cfs_rq;
  3389. u64 runtime;
  3390. u64 starting_runtime = remaining;
  3391. rcu_read_lock();
  3392. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  3393. throttled_list) {
  3394. struct rq *rq = rq_of(cfs_rq);
  3395. raw_spin_lock(&rq->lock);
  3396. if (!cfs_rq_throttled(cfs_rq))
  3397. goto next;
  3398. runtime = -cfs_rq->runtime_remaining + 1;
  3399. if (runtime > remaining)
  3400. runtime = remaining;
  3401. remaining -= runtime;
  3402. cfs_rq->runtime_remaining += runtime;
  3403. cfs_rq->runtime_expires = expires;
  3404. /* we check whether we're throttled above */
  3405. if (cfs_rq->runtime_remaining > 0)
  3406. unthrottle_cfs_rq(cfs_rq);
  3407. next:
  3408. raw_spin_unlock(&rq->lock);
  3409. if (!remaining)
  3410. break;
  3411. }
  3412. rcu_read_unlock();
  3413. return starting_runtime - remaining;
  3414. }
  3415. /*
  3416. * Responsible for refilling a task_group's bandwidth and unthrottling its
  3417. * cfs_rqs as appropriate. If there has been no activity within the last
  3418. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  3419. * used to track this state.
  3420. */
  3421. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  3422. {
  3423. u64 runtime, runtime_expires;
  3424. int throttled;
  3425. /* no need to continue the timer with no bandwidth constraint */
  3426. if (cfs_b->quota == RUNTIME_INF)
  3427. goto out_deactivate;
  3428. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3429. cfs_b->nr_periods += overrun;
  3430. /*
  3431. * idle depends on !throttled (for the case of a large deficit), and if
  3432. * we're going inactive then everything else can be deferred
  3433. */
  3434. if (cfs_b->idle && !throttled)
  3435. goto out_deactivate;
  3436. __refill_cfs_bandwidth_runtime(cfs_b);
  3437. if (!throttled) {
  3438. /* mark as potentially idle for the upcoming period */
  3439. cfs_b->idle = 1;
  3440. return 0;
  3441. }
  3442. /* account preceding periods in which throttling occurred */
  3443. cfs_b->nr_throttled += overrun;
  3444. runtime_expires = cfs_b->runtime_expires;
  3445. /*
  3446. * This check is repeated as we are holding onto the new bandwidth while
  3447. * we unthrottle. This can potentially race with an unthrottled group
  3448. * trying to acquire new bandwidth from the global pool. This can result
  3449. * in us over-using our runtime if it is all used during this loop, but
  3450. * only by limited amounts in that extreme case.
  3451. */
  3452. while (throttled && cfs_b->runtime > 0) {
  3453. runtime = cfs_b->runtime;
  3454. raw_spin_unlock(&cfs_b->lock);
  3455. /* we can't nest cfs_b->lock while distributing bandwidth */
  3456. runtime = distribute_cfs_runtime(cfs_b, runtime,
  3457. runtime_expires);
  3458. raw_spin_lock(&cfs_b->lock);
  3459. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3460. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3461. }
  3462. /*
  3463. * While we are ensured activity in the period following an
  3464. * unthrottle, this also covers the case in which the new bandwidth is
  3465. * insufficient to cover the existing bandwidth deficit. (Forcing the
  3466. * timer to remain active while there are any throttled entities.)
  3467. */
  3468. cfs_b->idle = 0;
  3469. return 0;
  3470. out_deactivate:
  3471. return 1;
  3472. }
  3473. /* a cfs_rq won't donate quota below this amount */
  3474. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  3475. /* minimum remaining period time to redistribute slack quota */
  3476. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  3477. /* how long we wait to gather additional slack before distributing */
  3478. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  3479. /*
  3480. * Are we near the end of the current quota period?
  3481. *
  3482. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  3483. * hrtimer base being cleared by hrtimer_start. In the case of
  3484. * migrate_hrtimers, base is never cleared, so we are fine.
  3485. */
  3486. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  3487. {
  3488. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  3489. u64 remaining;
  3490. /* if the call-back is running a quota refresh is already occurring */
  3491. if (hrtimer_callback_running(refresh_timer))
  3492. return 1;
  3493. /* is a quota refresh about to occur? */
  3494. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  3495. if (remaining < min_expire)
  3496. return 1;
  3497. return 0;
  3498. }
  3499. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  3500. {
  3501. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  3502. /* if there's a quota refresh soon don't bother with slack */
  3503. if (runtime_refresh_within(cfs_b, min_left))
  3504. return;
  3505. hrtimer_start(&cfs_b->slack_timer,
  3506. ns_to_ktime(cfs_bandwidth_slack_period),
  3507. HRTIMER_MODE_REL);
  3508. }
  3509. /* we know any runtime found here is valid as update_curr() precedes return */
  3510. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3511. {
  3512. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3513. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  3514. if (slack_runtime <= 0)
  3515. return;
  3516. raw_spin_lock(&cfs_b->lock);
  3517. if (cfs_b->quota != RUNTIME_INF &&
  3518. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  3519. cfs_b->runtime += slack_runtime;
  3520. /* we are under rq->lock, defer unthrottling using a timer */
  3521. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  3522. !list_empty(&cfs_b->throttled_cfs_rq))
  3523. start_cfs_slack_bandwidth(cfs_b);
  3524. }
  3525. raw_spin_unlock(&cfs_b->lock);
  3526. /* even if it's not valid for return we don't want to try again */
  3527. cfs_rq->runtime_remaining -= slack_runtime;
  3528. }
  3529. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3530. {
  3531. if (!cfs_bandwidth_used())
  3532. return;
  3533. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  3534. return;
  3535. __return_cfs_rq_runtime(cfs_rq);
  3536. }
  3537. /*
  3538. * This is done with a timer (instead of inline with bandwidth return) since
  3539. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  3540. */
  3541. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  3542. {
  3543. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  3544. u64 expires;
  3545. /* confirm we're still not at a refresh boundary */
  3546. raw_spin_lock(&cfs_b->lock);
  3547. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  3548. raw_spin_unlock(&cfs_b->lock);
  3549. return;
  3550. }
  3551. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  3552. runtime = cfs_b->runtime;
  3553. expires = cfs_b->runtime_expires;
  3554. raw_spin_unlock(&cfs_b->lock);
  3555. if (!runtime)
  3556. return;
  3557. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  3558. raw_spin_lock(&cfs_b->lock);
  3559. if (expires == cfs_b->runtime_expires)
  3560. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3561. raw_spin_unlock(&cfs_b->lock);
  3562. }
  3563. /*
  3564. * When a group wakes up we want to make sure that its quota is not already
  3565. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  3566. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  3567. */
  3568. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  3569. {
  3570. if (!cfs_bandwidth_used())
  3571. return;
  3572. /* an active group must be handled by the update_curr()->put() path */
  3573. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  3574. return;
  3575. /* ensure the group is not already throttled */
  3576. if (cfs_rq_throttled(cfs_rq))
  3577. return;
  3578. /* update runtime allocation */
  3579. account_cfs_rq_runtime(cfs_rq, 0);
  3580. if (cfs_rq->runtime_remaining <= 0)
  3581. throttle_cfs_rq(cfs_rq);
  3582. }
  3583. static void sync_throttle(struct task_group *tg, int cpu)
  3584. {
  3585. struct cfs_rq *pcfs_rq, *cfs_rq;
  3586. if (!cfs_bandwidth_used())
  3587. return;
  3588. if (!tg->parent)
  3589. return;
  3590. cfs_rq = tg->cfs_rq[cpu];
  3591. pcfs_rq = tg->parent->cfs_rq[cpu];
  3592. cfs_rq->throttle_count = pcfs_rq->throttle_count;
  3593. cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
  3594. }
  3595. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  3596. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3597. {
  3598. if (!cfs_bandwidth_used())
  3599. return false;
  3600. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  3601. return false;
  3602. /*
  3603. * it's possible for a throttled entity to be forced into a running
  3604. * state (e.g. set_curr_task), in this case we're finished.
  3605. */
  3606. if (cfs_rq_throttled(cfs_rq))
  3607. return true;
  3608. throttle_cfs_rq(cfs_rq);
  3609. return true;
  3610. }
  3611. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  3612. {
  3613. struct cfs_bandwidth *cfs_b =
  3614. container_of(timer, struct cfs_bandwidth, slack_timer);
  3615. do_sched_cfs_slack_timer(cfs_b);
  3616. return HRTIMER_NORESTART;
  3617. }
  3618. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  3619. {
  3620. struct cfs_bandwidth *cfs_b =
  3621. container_of(timer, struct cfs_bandwidth, period_timer);
  3622. int overrun;
  3623. int idle = 0;
  3624. raw_spin_lock(&cfs_b->lock);
  3625. for (;;) {
  3626. overrun = hrtimer_forward_now(timer, cfs_b->period);
  3627. if (!overrun)
  3628. break;
  3629. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  3630. }
  3631. if (idle)
  3632. cfs_b->period_active = 0;
  3633. raw_spin_unlock(&cfs_b->lock);
  3634. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  3635. }
  3636. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3637. {
  3638. raw_spin_lock_init(&cfs_b->lock);
  3639. cfs_b->runtime = 0;
  3640. cfs_b->quota = RUNTIME_INF;
  3641. cfs_b->period = ns_to_ktime(default_cfs_period());
  3642. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  3643. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
  3644. cfs_b->period_timer.function = sched_cfs_period_timer;
  3645. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3646. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  3647. }
  3648. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3649. {
  3650. cfs_rq->runtime_enabled = 0;
  3651. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  3652. }
  3653. void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3654. {
  3655. lockdep_assert_held(&cfs_b->lock);
  3656. if (!cfs_b->period_active) {
  3657. cfs_b->period_active = 1;
  3658. hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
  3659. hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
  3660. }
  3661. }
  3662. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3663. {
  3664. /* init_cfs_bandwidth() was not called */
  3665. if (!cfs_b->throttled_cfs_rq.next)
  3666. return;
  3667. hrtimer_cancel(&cfs_b->period_timer);
  3668. hrtimer_cancel(&cfs_b->slack_timer);
  3669. }
  3670. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  3671. {
  3672. struct cfs_rq *cfs_rq;
  3673. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3674. struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
  3675. raw_spin_lock(&cfs_b->lock);
  3676. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  3677. raw_spin_unlock(&cfs_b->lock);
  3678. }
  3679. }
  3680. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  3681. {
  3682. struct cfs_rq *cfs_rq;
  3683. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3684. if (!cfs_rq->runtime_enabled)
  3685. continue;
  3686. /*
  3687. * clock_task is not advancing so we just need to make sure
  3688. * there's some valid quota amount
  3689. */
  3690. cfs_rq->runtime_remaining = 1;
  3691. /*
  3692. * Offline rq is schedulable till cpu is completely disabled
  3693. * in take_cpu_down(), so we prevent new cfs throttling here.
  3694. */
  3695. cfs_rq->runtime_enabled = 0;
  3696. if (cfs_rq_throttled(cfs_rq))
  3697. unthrottle_cfs_rq(cfs_rq);
  3698. }
  3699. }
  3700. #else /* CONFIG_CFS_BANDWIDTH */
  3701. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3702. {
  3703. return rq_clock_task(rq_of(cfs_rq));
  3704. }
  3705. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  3706. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  3707. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  3708. static inline void sync_throttle(struct task_group *tg, int cpu) {}
  3709. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3710. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3711. {
  3712. return 0;
  3713. }
  3714. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3715. {
  3716. return 0;
  3717. }
  3718. static inline int throttled_lb_pair(struct task_group *tg,
  3719. int src_cpu, int dest_cpu)
  3720. {
  3721. return 0;
  3722. }
  3723. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3724. #ifdef CONFIG_FAIR_GROUP_SCHED
  3725. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3726. #endif
  3727. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3728. {
  3729. return NULL;
  3730. }
  3731. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3732. static inline void update_runtime_enabled(struct rq *rq) {}
  3733. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  3734. #endif /* CONFIG_CFS_BANDWIDTH */
  3735. /**************************************************
  3736. * CFS operations on tasks:
  3737. */
  3738. #ifdef CONFIG_SCHED_HRTICK
  3739. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3740. {
  3741. struct sched_entity *se = &p->se;
  3742. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3743. SCHED_WARN_ON(task_rq(p) != rq);
  3744. if (rq->cfs.h_nr_running > 1) {
  3745. u64 slice = sched_slice(cfs_rq, se);
  3746. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  3747. s64 delta = slice - ran;
  3748. if (delta < 0) {
  3749. if (rq->curr == p)
  3750. resched_curr(rq);
  3751. return;
  3752. }
  3753. hrtick_start(rq, delta);
  3754. }
  3755. }
  3756. /*
  3757. * called from enqueue/dequeue and updates the hrtick when the
  3758. * current task is from our class and nr_running is low enough
  3759. * to matter.
  3760. */
  3761. static void hrtick_update(struct rq *rq)
  3762. {
  3763. struct task_struct *curr = rq->curr;
  3764. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  3765. return;
  3766. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  3767. hrtick_start_fair(rq, curr);
  3768. }
  3769. #else /* !CONFIG_SCHED_HRTICK */
  3770. static inline void
  3771. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3772. {
  3773. }
  3774. static inline void hrtick_update(struct rq *rq)
  3775. {
  3776. }
  3777. #endif
  3778. /*
  3779. * The enqueue_task method is called before nr_running is
  3780. * increased. Here we update the fair scheduling stats and
  3781. * then put the task into the rbtree:
  3782. */
  3783. static void
  3784. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3785. {
  3786. struct cfs_rq *cfs_rq;
  3787. struct sched_entity *se = &p->se;
  3788. /*
  3789. * If in_iowait is set, the code below may not trigger any cpufreq
  3790. * utilization updates, so do it here explicitly with the IOWAIT flag
  3791. * passed.
  3792. */
  3793. if (p->in_iowait)
  3794. cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
  3795. for_each_sched_entity(se) {
  3796. if (se->on_rq)
  3797. break;
  3798. cfs_rq = cfs_rq_of(se);
  3799. enqueue_entity(cfs_rq, se, flags);
  3800. /*
  3801. * end evaluation on encountering a throttled cfs_rq
  3802. *
  3803. * note: in the case of encountering a throttled cfs_rq we will
  3804. * post the final h_nr_running increment below.
  3805. */
  3806. if (cfs_rq_throttled(cfs_rq))
  3807. break;
  3808. cfs_rq->h_nr_running++;
  3809. flags = ENQUEUE_WAKEUP;
  3810. }
  3811. for_each_sched_entity(se) {
  3812. cfs_rq = cfs_rq_of(se);
  3813. cfs_rq->h_nr_running++;
  3814. if (cfs_rq_throttled(cfs_rq))
  3815. break;
  3816. update_load_avg(se, 1);
  3817. update_cfs_shares(cfs_rq);
  3818. }
  3819. if (!se)
  3820. add_nr_running(rq, 1);
  3821. hrtick_update(rq);
  3822. }
  3823. static void set_next_buddy(struct sched_entity *se);
  3824. /*
  3825. * The dequeue_task method is called before nr_running is
  3826. * decreased. We remove the task from the rbtree and
  3827. * update the fair scheduling stats:
  3828. */
  3829. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3830. {
  3831. struct cfs_rq *cfs_rq;
  3832. struct sched_entity *se = &p->se;
  3833. int task_sleep = flags & DEQUEUE_SLEEP;
  3834. for_each_sched_entity(se) {
  3835. cfs_rq = cfs_rq_of(se);
  3836. dequeue_entity(cfs_rq, se, flags);
  3837. /*
  3838. * end evaluation on encountering a throttled cfs_rq
  3839. *
  3840. * note: in the case of encountering a throttled cfs_rq we will
  3841. * post the final h_nr_running decrement below.
  3842. */
  3843. if (cfs_rq_throttled(cfs_rq))
  3844. break;
  3845. cfs_rq->h_nr_running--;
  3846. /* Don't dequeue parent if it has other entities besides us */
  3847. if (cfs_rq->load.weight) {
  3848. /* Avoid re-evaluating load for this entity: */
  3849. se = parent_entity(se);
  3850. /*
  3851. * Bias pick_next to pick a task from this cfs_rq, as
  3852. * p is sleeping when it is within its sched_slice.
  3853. */
  3854. if (task_sleep && se && !throttled_hierarchy(cfs_rq))
  3855. set_next_buddy(se);
  3856. break;
  3857. }
  3858. flags |= DEQUEUE_SLEEP;
  3859. }
  3860. for_each_sched_entity(se) {
  3861. cfs_rq = cfs_rq_of(se);
  3862. cfs_rq->h_nr_running--;
  3863. if (cfs_rq_throttled(cfs_rq))
  3864. break;
  3865. update_load_avg(se, 1);
  3866. update_cfs_shares(cfs_rq);
  3867. }
  3868. if (!se)
  3869. sub_nr_running(rq, 1);
  3870. hrtick_update(rq);
  3871. }
  3872. #ifdef CONFIG_SMP
  3873. /* Working cpumask for: load_balance, load_balance_newidle. */
  3874. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  3875. DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
  3876. #ifdef CONFIG_NO_HZ_COMMON
  3877. /*
  3878. * per rq 'load' arrray crap; XXX kill this.
  3879. */
  3880. /*
  3881. * The exact cpuload calculated at every tick would be:
  3882. *
  3883. * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
  3884. *
  3885. * If a cpu misses updates for n ticks (as it was idle) and update gets
  3886. * called on the n+1-th tick when cpu may be busy, then we have:
  3887. *
  3888. * load_n = (1 - 1/2^i)^n * load_0
  3889. * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
  3890. *
  3891. * decay_load_missed() below does efficient calculation of
  3892. *
  3893. * load' = (1 - 1/2^i)^n * load
  3894. *
  3895. * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
  3896. * This allows us to precompute the above in said factors, thereby allowing the
  3897. * reduction of an arbitrary n in O(log_2 n) steps. (See also
  3898. * fixed_power_int())
  3899. *
  3900. * The calculation is approximated on a 128 point scale.
  3901. */
  3902. #define DEGRADE_SHIFT 7
  3903. static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3904. static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3905. { 0, 0, 0, 0, 0, 0, 0, 0 },
  3906. { 64, 32, 8, 0, 0, 0, 0, 0 },
  3907. { 96, 72, 40, 12, 1, 0, 0, 0 },
  3908. { 112, 98, 75, 43, 15, 1, 0, 0 },
  3909. { 120, 112, 98, 76, 45, 16, 2, 0 }
  3910. };
  3911. /*
  3912. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3913. * would be when CPU is idle and so we just decay the old load without
  3914. * adding any new load.
  3915. */
  3916. static unsigned long
  3917. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3918. {
  3919. int j = 0;
  3920. if (!missed_updates)
  3921. return load;
  3922. if (missed_updates >= degrade_zero_ticks[idx])
  3923. return 0;
  3924. if (idx == 1)
  3925. return load >> missed_updates;
  3926. while (missed_updates) {
  3927. if (missed_updates % 2)
  3928. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3929. missed_updates >>= 1;
  3930. j++;
  3931. }
  3932. return load;
  3933. }
  3934. #endif /* CONFIG_NO_HZ_COMMON */
  3935. /**
  3936. * __cpu_load_update - update the rq->cpu_load[] statistics
  3937. * @this_rq: The rq to update statistics for
  3938. * @this_load: The current load
  3939. * @pending_updates: The number of missed updates
  3940. *
  3941. * Update rq->cpu_load[] statistics. This function is usually called every
  3942. * scheduler tick (TICK_NSEC).
  3943. *
  3944. * This function computes a decaying average:
  3945. *
  3946. * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
  3947. *
  3948. * Because of NOHZ it might not get called on every tick which gives need for
  3949. * the @pending_updates argument.
  3950. *
  3951. * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
  3952. * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
  3953. * = A * (A * load[i]_n-2 + B) + B
  3954. * = A * (A * (A * load[i]_n-3 + B) + B) + B
  3955. * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
  3956. * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
  3957. * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
  3958. * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
  3959. *
  3960. * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
  3961. * any change in load would have resulted in the tick being turned back on.
  3962. *
  3963. * For regular NOHZ, this reduces to:
  3964. *
  3965. * load[i]_n = (1 - 1/2^i)^n * load[i]_0
  3966. *
  3967. * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
  3968. * term.
  3969. */
  3970. static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
  3971. unsigned long pending_updates)
  3972. {
  3973. unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
  3974. int i, scale;
  3975. this_rq->nr_load_updates++;
  3976. /* Update our load: */
  3977. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3978. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3979. unsigned long old_load, new_load;
  3980. /* scale is effectively 1 << i now, and >> i divides by scale */
  3981. old_load = this_rq->cpu_load[i];
  3982. #ifdef CONFIG_NO_HZ_COMMON
  3983. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3984. if (tickless_load) {
  3985. old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
  3986. /*
  3987. * old_load can never be a negative value because a
  3988. * decayed tickless_load cannot be greater than the
  3989. * original tickless_load.
  3990. */
  3991. old_load += tickless_load;
  3992. }
  3993. #endif
  3994. new_load = this_load;
  3995. /*
  3996. * Round up the averaging division if load is increasing. This
  3997. * prevents us from getting stuck on 9 if the load is 10, for
  3998. * example.
  3999. */
  4000. if (new_load > old_load)
  4001. new_load += scale - 1;
  4002. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  4003. }
  4004. sched_avg_update(this_rq);
  4005. }
  4006. /* Used instead of source_load when we know the type == 0 */
  4007. static unsigned long weighted_cpuload(const int cpu)
  4008. {
  4009. return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
  4010. }
  4011. #ifdef CONFIG_NO_HZ_COMMON
  4012. /*
  4013. * There is no sane way to deal with nohz on smp when using jiffies because the
  4014. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  4015. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  4016. *
  4017. * Therefore we need to avoid the delta approach from the regular tick when
  4018. * possible since that would seriously skew the load calculation. This is why we
  4019. * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
  4020. * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
  4021. * loop exit, nohz_idle_balance, nohz full exit...)
  4022. *
  4023. * This means we might still be one tick off for nohz periods.
  4024. */
  4025. static void cpu_load_update_nohz(struct rq *this_rq,
  4026. unsigned long curr_jiffies,
  4027. unsigned long load)
  4028. {
  4029. unsigned long pending_updates;
  4030. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  4031. if (pending_updates) {
  4032. this_rq->last_load_update_tick = curr_jiffies;
  4033. /*
  4034. * In the regular NOHZ case, we were idle, this means load 0.
  4035. * In the NOHZ_FULL case, we were non-idle, we should consider
  4036. * its weighted load.
  4037. */
  4038. cpu_load_update(this_rq, load, pending_updates);
  4039. }
  4040. }
  4041. /*
  4042. * Called from nohz_idle_balance() to update the load ratings before doing the
  4043. * idle balance.
  4044. */
  4045. static void cpu_load_update_idle(struct rq *this_rq)
  4046. {
  4047. /*
  4048. * bail if there's load or we're actually up-to-date.
  4049. */
  4050. if (weighted_cpuload(cpu_of(this_rq)))
  4051. return;
  4052. cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
  4053. }
  4054. /*
  4055. * Record CPU load on nohz entry so we know the tickless load to account
  4056. * on nohz exit. cpu_load[0] happens then to be updated more frequently
  4057. * than other cpu_load[idx] but it should be fine as cpu_load readers
  4058. * shouldn't rely into synchronized cpu_load[*] updates.
  4059. */
  4060. void cpu_load_update_nohz_start(void)
  4061. {
  4062. struct rq *this_rq = this_rq();
  4063. /*
  4064. * This is all lockless but should be fine. If weighted_cpuload changes
  4065. * concurrently we'll exit nohz. And cpu_load write can race with
  4066. * cpu_load_update_idle() but both updater would be writing the same.
  4067. */
  4068. this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
  4069. }
  4070. /*
  4071. * Account the tickless load in the end of a nohz frame.
  4072. */
  4073. void cpu_load_update_nohz_stop(void)
  4074. {
  4075. unsigned long curr_jiffies = READ_ONCE(jiffies);
  4076. struct rq *this_rq = this_rq();
  4077. unsigned long load;
  4078. if (curr_jiffies == this_rq->last_load_update_tick)
  4079. return;
  4080. load = weighted_cpuload(cpu_of(this_rq));
  4081. raw_spin_lock(&this_rq->lock);
  4082. update_rq_clock(this_rq);
  4083. cpu_load_update_nohz(this_rq, curr_jiffies, load);
  4084. raw_spin_unlock(&this_rq->lock);
  4085. }
  4086. #else /* !CONFIG_NO_HZ_COMMON */
  4087. static inline void cpu_load_update_nohz(struct rq *this_rq,
  4088. unsigned long curr_jiffies,
  4089. unsigned long load) { }
  4090. #endif /* CONFIG_NO_HZ_COMMON */
  4091. static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
  4092. {
  4093. #ifdef CONFIG_NO_HZ_COMMON
  4094. /* See the mess around cpu_load_update_nohz(). */
  4095. this_rq->last_load_update_tick = READ_ONCE(jiffies);
  4096. #endif
  4097. cpu_load_update(this_rq, load, 1);
  4098. }
  4099. /*
  4100. * Called from scheduler_tick()
  4101. */
  4102. void cpu_load_update_active(struct rq *this_rq)
  4103. {
  4104. unsigned long load = weighted_cpuload(cpu_of(this_rq));
  4105. if (tick_nohz_tick_stopped())
  4106. cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
  4107. else
  4108. cpu_load_update_periodic(this_rq, load);
  4109. }
  4110. /*
  4111. * Return a low guess at the load of a migration-source cpu weighted
  4112. * according to the scheduling class and "nice" value.
  4113. *
  4114. * We want to under-estimate the load of migration sources, to
  4115. * balance conservatively.
  4116. */
  4117. static unsigned long source_load(int cpu, int type)
  4118. {
  4119. struct rq *rq = cpu_rq(cpu);
  4120. unsigned long total = weighted_cpuload(cpu);
  4121. if (type == 0 || !sched_feat(LB_BIAS))
  4122. return total;
  4123. return min(rq->cpu_load[type-1], total);
  4124. }
  4125. /*
  4126. * Return a high guess at the load of a migration-target cpu weighted
  4127. * according to the scheduling class and "nice" value.
  4128. */
  4129. static unsigned long target_load(int cpu, int type)
  4130. {
  4131. struct rq *rq = cpu_rq(cpu);
  4132. unsigned long total = weighted_cpuload(cpu);
  4133. if (type == 0 || !sched_feat(LB_BIAS))
  4134. return total;
  4135. return max(rq->cpu_load[type-1], total);
  4136. }
  4137. static unsigned long capacity_of(int cpu)
  4138. {
  4139. return cpu_rq(cpu)->cpu_capacity;
  4140. }
  4141. static unsigned long capacity_orig_of(int cpu)
  4142. {
  4143. return cpu_rq(cpu)->cpu_capacity_orig;
  4144. }
  4145. static unsigned long cpu_avg_load_per_task(int cpu)
  4146. {
  4147. struct rq *rq = cpu_rq(cpu);
  4148. unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
  4149. unsigned long load_avg = weighted_cpuload(cpu);
  4150. if (nr_running)
  4151. return load_avg / nr_running;
  4152. return 0;
  4153. }
  4154. #ifdef CONFIG_FAIR_GROUP_SCHED
  4155. /*
  4156. * effective_load() calculates the load change as seen from the root_task_group
  4157. *
  4158. * Adding load to a group doesn't make a group heavier, but can cause movement
  4159. * of group shares between cpus. Assuming the shares were perfectly aligned one
  4160. * can calculate the shift in shares.
  4161. *
  4162. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  4163. * on this @cpu and results in a total addition (subtraction) of @wg to the
  4164. * total group weight.
  4165. *
  4166. * Given a runqueue weight distribution (rw_i) we can compute a shares
  4167. * distribution (s_i) using:
  4168. *
  4169. * s_i = rw_i / \Sum rw_j (1)
  4170. *
  4171. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  4172. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  4173. * shares distribution (s_i):
  4174. *
  4175. * rw_i = { 2, 4, 1, 0 }
  4176. * s_i = { 2/7, 4/7, 1/7, 0 }
  4177. *
  4178. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  4179. * task used to run on and the CPU the waker is running on), we need to
  4180. * compute the effect of waking a task on either CPU and, in case of a sync
  4181. * wakeup, compute the effect of the current task going to sleep.
  4182. *
  4183. * So for a change of @wl to the local @cpu with an overall group weight change
  4184. * of @wl we can compute the new shares distribution (s'_i) using:
  4185. *
  4186. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  4187. *
  4188. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  4189. * differences in waking a task to CPU 0. The additional task changes the
  4190. * weight and shares distributions like:
  4191. *
  4192. * rw'_i = { 3, 4, 1, 0 }
  4193. * s'_i = { 3/8, 4/8, 1/8, 0 }
  4194. *
  4195. * We can then compute the difference in effective weight by using:
  4196. *
  4197. * dw_i = S * (s'_i - s_i) (3)
  4198. *
  4199. * Where 'S' is the group weight as seen by its parent.
  4200. *
  4201. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  4202. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  4203. * 4/7) times the weight of the group.
  4204. */
  4205. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  4206. {
  4207. struct sched_entity *se = tg->se[cpu];
  4208. if (!tg->parent) /* the trivial, non-cgroup case */
  4209. return wl;
  4210. for_each_sched_entity(se) {
  4211. struct cfs_rq *cfs_rq = se->my_q;
  4212. long W, w = cfs_rq_load_avg(cfs_rq);
  4213. tg = cfs_rq->tg;
  4214. /*
  4215. * W = @wg + \Sum rw_j
  4216. */
  4217. W = wg + atomic_long_read(&tg->load_avg);
  4218. /* Ensure \Sum rw_j >= rw_i */
  4219. W -= cfs_rq->tg_load_avg_contrib;
  4220. W += w;
  4221. /*
  4222. * w = rw_i + @wl
  4223. */
  4224. w += wl;
  4225. /*
  4226. * wl = S * s'_i; see (2)
  4227. */
  4228. if (W > 0 && w < W)
  4229. wl = (w * (long)scale_load_down(tg->shares)) / W;
  4230. else
  4231. wl = scale_load_down(tg->shares);
  4232. /*
  4233. * Per the above, wl is the new se->load.weight value; since
  4234. * those are clipped to [MIN_SHARES, ...) do so now. See
  4235. * calc_cfs_shares().
  4236. */
  4237. if (wl < MIN_SHARES)
  4238. wl = MIN_SHARES;
  4239. /*
  4240. * wl = dw_i = S * (s'_i - s_i); see (3)
  4241. */
  4242. wl -= se->avg.load_avg;
  4243. /*
  4244. * Recursively apply this logic to all parent groups to compute
  4245. * the final effective load change on the root group. Since
  4246. * only the @tg group gets extra weight, all parent groups can
  4247. * only redistribute existing shares. @wl is the shift in shares
  4248. * resulting from this level per the above.
  4249. */
  4250. wg = 0;
  4251. }
  4252. return wl;
  4253. }
  4254. #else
  4255. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  4256. {
  4257. return wl;
  4258. }
  4259. #endif
  4260. static void record_wakee(struct task_struct *p)
  4261. {
  4262. /*
  4263. * Only decay a single time; tasks that have less then 1 wakeup per
  4264. * jiffy will not have built up many flips.
  4265. */
  4266. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  4267. current->wakee_flips >>= 1;
  4268. current->wakee_flip_decay_ts = jiffies;
  4269. }
  4270. if (current->last_wakee != p) {
  4271. current->last_wakee = p;
  4272. current->wakee_flips++;
  4273. }
  4274. }
  4275. /*
  4276. * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
  4277. *
  4278. * A waker of many should wake a different task than the one last awakened
  4279. * at a frequency roughly N times higher than one of its wakees.
  4280. *
  4281. * In order to determine whether we should let the load spread vs consolidating
  4282. * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
  4283. * partner, and a factor of lls_size higher frequency in the other.
  4284. *
  4285. * With both conditions met, we can be relatively sure that the relationship is
  4286. * non-monogamous, with partner count exceeding socket size.
  4287. *
  4288. * Waker/wakee being client/server, worker/dispatcher, interrupt source or
  4289. * whatever is irrelevant, spread criteria is apparent partner count exceeds
  4290. * socket size.
  4291. */
  4292. static int wake_wide(struct task_struct *p)
  4293. {
  4294. unsigned int master = current->wakee_flips;
  4295. unsigned int slave = p->wakee_flips;
  4296. int factor = this_cpu_read(sd_llc_size);
  4297. if (master < slave)
  4298. swap(master, slave);
  4299. if (slave < factor || master < slave * factor)
  4300. return 0;
  4301. return 1;
  4302. }
  4303. static int wake_affine(struct sched_domain *sd, struct task_struct *p,
  4304. int prev_cpu, int sync)
  4305. {
  4306. s64 this_load, load;
  4307. s64 this_eff_load, prev_eff_load;
  4308. int idx, this_cpu;
  4309. struct task_group *tg;
  4310. unsigned long weight;
  4311. int balanced;
  4312. idx = sd->wake_idx;
  4313. this_cpu = smp_processor_id();
  4314. load = source_load(prev_cpu, idx);
  4315. this_load = target_load(this_cpu, idx);
  4316. /*
  4317. * If sync wakeup then subtract the (maximum possible)
  4318. * effect of the currently running task from the load
  4319. * of the current CPU:
  4320. */
  4321. if (sync) {
  4322. tg = task_group(current);
  4323. weight = current->se.avg.load_avg;
  4324. this_load += effective_load(tg, this_cpu, -weight, -weight);
  4325. load += effective_load(tg, prev_cpu, 0, -weight);
  4326. }
  4327. tg = task_group(p);
  4328. weight = p->se.avg.load_avg;
  4329. /*
  4330. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  4331. * due to the sync cause above having dropped this_load to 0, we'll
  4332. * always have an imbalance, but there's really nothing you can do
  4333. * about that, so that's good too.
  4334. *
  4335. * Otherwise check if either cpus are near enough in load to allow this
  4336. * task to be woken on this_cpu.
  4337. */
  4338. this_eff_load = 100;
  4339. this_eff_load *= capacity_of(prev_cpu);
  4340. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  4341. prev_eff_load *= capacity_of(this_cpu);
  4342. if (this_load > 0) {
  4343. this_eff_load *= this_load +
  4344. effective_load(tg, this_cpu, weight, weight);
  4345. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  4346. }
  4347. balanced = this_eff_load <= prev_eff_load;
  4348. schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
  4349. if (!balanced)
  4350. return 0;
  4351. schedstat_inc(sd->ttwu_move_affine);
  4352. schedstat_inc(p->se.statistics.nr_wakeups_affine);
  4353. return 1;
  4354. }
  4355. /*
  4356. * find_idlest_group finds and returns the least busy CPU group within the
  4357. * domain.
  4358. */
  4359. static struct sched_group *
  4360. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  4361. int this_cpu, int sd_flag)
  4362. {
  4363. struct sched_group *idlest = NULL, *group = sd->groups;
  4364. unsigned long min_load = ULONG_MAX, this_load = 0;
  4365. int load_idx = sd->forkexec_idx;
  4366. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  4367. if (sd_flag & SD_BALANCE_WAKE)
  4368. load_idx = sd->wake_idx;
  4369. do {
  4370. unsigned long load, avg_load;
  4371. int local_group;
  4372. int i;
  4373. /* Skip over this group if it has no CPUs allowed */
  4374. if (!cpumask_intersects(sched_group_cpus(group),
  4375. tsk_cpus_allowed(p)))
  4376. continue;
  4377. local_group = cpumask_test_cpu(this_cpu,
  4378. sched_group_cpus(group));
  4379. /* Tally up the load of all CPUs in the group */
  4380. avg_load = 0;
  4381. for_each_cpu(i, sched_group_cpus(group)) {
  4382. /* Bias balancing toward cpus of our domain */
  4383. if (local_group)
  4384. load = source_load(i, load_idx);
  4385. else
  4386. load = target_load(i, load_idx);
  4387. avg_load += load;
  4388. }
  4389. /* Adjust by relative CPU capacity of the group */
  4390. avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
  4391. if (local_group) {
  4392. this_load = avg_load;
  4393. } else if (avg_load < min_load) {
  4394. min_load = avg_load;
  4395. idlest = group;
  4396. }
  4397. } while (group = group->next, group != sd->groups);
  4398. if (!idlest || 100*this_load < imbalance*min_load)
  4399. return NULL;
  4400. return idlest;
  4401. }
  4402. /*
  4403. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  4404. */
  4405. static int
  4406. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  4407. {
  4408. unsigned long load, min_load = ULONG_MAX;
  4409. unsigned int min_exit_latency = UINT_MAX;
  4410. u64 latest_idle_timestamp = 0;
  4411. int least_loaded_cpu = this_cpu;
  4412. int shallowest_idle_cpu = -1;
  4413. int i;
  4414. /* Check if we have any choice: */
  4415. if (group->group_weight == 1)
  4416. return cpumask_first(sched_group_cpus(group));
  4417. /* Traverse only the allowed CPUs */
  4418. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  4419. if (idle_cpu(i)) {
  4420. struct rq *rq = cpu_rq(i);
  4421. struct cpuidle_state *idle = idle_get_state(rq);
  4422. if (idle && idle->exit_latency < min_exit_latency) {
  4423. /*
  4424. * We give priority to a CPU whose idle state
  4425. * has the smallest exit latency irrespective
  4426. * of any idle timestamp.
  4427. */
  4428. min_exit_latency = idle->exit_latency;
  4429. latest_idle_timestamp = rq->idle_stamp;
  4430. shallowest_idle_cpu = i;
  4431. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  4432. rq->idle_stamp > latest_idle_timestamp) {
  4433. /*
  4434. * If equal or no active idle state, then
  4435. * the most recently idled CPU might have
  4436. * a warmer cache.
  4437. */
  4438. latest_idle_timestamp = rq->idle_stamp;
  4439. shallowest_idle_cpu = i;
  4440. }
  4441. } else if (shallowest_idle_cpu == -1) {
  4442. load = weighted_cpuload(i);
  4443. if (load < min_load || (load == min_load && i == this_cpu)) {
  4444. min_load = load;
  4445. least_loaded_cpu = i;
  4446. }
  4447. }
  4448. }
  4449. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  4450. }
  4451. #ifdef CONFIG_SCHED_SMT
  4452. static inline void set_idle_cores(int cpu, int val)
  4453. {
  4454. struct sched_domain_shared *sds;
  4455. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  4456. if (sds)
  4457. WRITE_ONCE(sds->has_idle_cores, val);
  4458. }
  4459. static inline bool test_idle_cores(int cpu, bool def)
  4460. {
  4461. struct sched_domain_shared *sds;
  4462. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  4463. if (sds)
  4464. return READ_ONCE(sds->has_idle_cores);
  4465. return def;
  4466. }
  4467. /*
  4468. * Scans the local SMT mask to see if the entire core is idle, and records this
  4469. * information in sd_llc_shared->has_idle_cores.
  4470. *
  4471. * Since SMT siblings share all cache levels, inspecting this limited remote
  4472. * state should be fairly cheap.
  4473. */
  4474. void update_idle_core(struct rq *rq)
  4475. {
  4476. int core = cpu_of(rq);
  4477. int cpu;
  4478. rcu_read_lock();
  4479. if (test_idle_cores(core, true))
  4480. goto unlock;
  4481. for_each_cpu(cpu, cpu_smt_mask(core)) {
  4482. if (cpu == core)
  4483. continue;
  4484. if (!idle_cpu(cpu))
  4485. goto unlock;
  4486. }
  4487. set_idle_cores(core, 1);
  4488. unlock:
  4489. rcu_read_unlock();
  4490. }
  4491. /*
  4492. * Scan the entire LLC domain for idle cores; this dynamically switches off if
  4493. * there are no idle cores left in the system; tracked through
  4494. * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
  4495. */
  4496. static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
  4497. {
  4498. struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
  4499. int core, cpu;
  4500. if (!test_idle_cores(target, false))
  4501. return -1;
  4502. cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
  4503. for_each_cpu_wrap(core, cpus, target) {
  4504. bool idle = true;
  4505. for_each_cpu(cpu, cpu_smt_mask(core)) {
  4506. cpumask_clear_cpu(cpu, cpus);
  4507. if (!idle_cpu(cpu))
  4508. idle = false;
  4509. }
  4510. if (idle)
  4511. return core;
  4512. }
  4513. /*
  4514. * Failed to find an idle core; stop looking for one.
  4515. */
  4516. set_idle_cores(target, 0);
  4517. return -1;
  4518. }
  4519. /*
  4520. * Scan the local SMT mask for idle CPUs.
  4521. */
  4522. static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
  4523. {
  4524. int cpu;
  4525. for_each_cpu(cpu, cpu_smt_mask(target)) {
  4526. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  4527. continue;
  4528. if (idle_cpu(cpu))
  4529. return cpu;
  4530. }
  4531. return -1;
  4532. }
  4533. #else /* CONFIG_SCHED_SMT */
  4534. static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
  4535. {
  4536. return -1;
  4537. }
  4538. static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
  4539. {
  4540. return -1;
  4541. }
  4542. #endif /* CONFIG_SCHED_SMT */
  4543. /*
  4544. * Scan the LLC domain for idle CPUs; this is dynamically regulated by
  4545. * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
  4546. * average idle time for this rq (as found in rq->avg_idle).
  4547. */
  4548. static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
  4549. {
  4550. struct sched_domain *this_sd;
  4551. u64 avg_cost, avg_idle = this_rq()->avg_idle;
  4552. u64 time, cost;
  4553. s64 delta;
  4554. int cpu;
  4555. this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
  4556. if (!this_sd)
  4557. return -1;
  4558. avg_cost = this_sd->avg_scan_cost;
  4559. /*
  4560. * Due to large variance we need a large fuzz factor; hackbench in
  4561. * particularly is sensitive here.
  4562. */
  4563. if ((avg_idle / 512) < avg_cost)
  4564. return -1;
  4565. time = local_clock();
  4566. for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
  4567. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  4568. continue;
  4569. if (idle_cpu(cpu))
  4570. break;
  4571. }
  4572. time = local_clock() - time;
  4573. cost = this_sd->avg_scan_cost;
  4574. delta = (s64)(time - cost) / 8;
  4575. this_sd->avg_scan_cost += delta;
  4576. return cpu;
  4577. }
  4578. /*
  4579. * Try and locate an idle core/thread in the LLC cache domain.
  4580. */
  4581. static int select_idle_sibling(struct task_struct *p, int prev, int target)
  4582. {
  4583. struct sched_domain *sd;
  4584. int i;
  4585. if (idle_cpu(target))
  4586. return target;
  4587. /*
  4588. * If the previous cpu is cache affine and idle, don't be stupid.
  4589. */
  4590. if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
  4591. return prev;
  4592. sd = rcu_dereference(per_cpu(sd_llc, target));
  4593. if (!sd)
  4594. return target;
  4595. i = select_idle_core(p, sd, target);
  4596. if ((unsigned)i < nr_cpumask_bits)
  4597. return i;
  4598. i = select_idle_cpu(p, sd, target);
  4599. if ((unsigned)i < nr_cpumask_bits)
  4600. return i;
  4601. i = select_idle_smt(p, sd, target);
  4602. if ((unsigned)i < nr_cpumask_bits)
  4603. return i;
  4604. return target;
  4605. }
  4606. /*
  4607. * cpu_util returns the amount of capacity of a CPU that is used by CFS
  4608. * tasks. The unit of the return value must be the one of capacity so we can
  4609. * compare the utilization with the capacity of the CPU that is available for
  4610. * CFS task (ie cpu_capacity).
  4611. *
  4612. * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
  4613. * recent utilization of currently non-runnable tasks on a CPU. It represents
  4614. * the amount of utilization of a CPU in the range [0..capacity_orig] where
  4615. * capacity_orig is the cpu_capacity available at the highest frequency
  4616. * (arch_scale_freq_capacity()).
  4617. * The utilization of a CPU converges towards a sum equal to or less than the
  4618. * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
  4619. * the running time on this CPU scaled by capacity_curr.
  4620. *
  4621. * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
  4622. * higher than capacity_orig because of unfortunate rounding in
  4623. * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
  4624. * the average stabilizes with the new running time. We need to check that the
  4625. * utilization stays within the range of [0..capacity_orig] and cap it if
  4626. * necessary. Without utilization capping, a group could be seen as overloaded
  4627. * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
  4628. * available capacity. We allow utilization to overshoot capacity_curr (but not
  4629. * capacity_orig) as it useful for predicting the capacity required after task
  4630. * migrations (scheduler-driven DVFS).
  4631. */
  4632. static int cpu_util(int cpu)
  4633. {
  4634. unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
  4635. unsigned long capacity = capacity_orig_of(cpu);
  4636. return (util >= capacity) ? capacity : util;
  4637. }
  4638. static inline int task_util(struct task_struct *p)
  4639. {
  4640. return p->se.avg.util_avg;
  4641. }
  4642. /*
  4643. * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
  4644. * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
  4645. *
  4646. * In that case WAKE_AFFINE doesn't make sense and we'll let
  4647. * BALANCE_WAKE sort things out.
  4648. */
  4649. static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
  4650. {
  4651. long min_cap, max_cap;
  4652. min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
  4653. max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
  4654. /* Minimum capacity is close to max, no need to abort wake_affine */
  4655. if (max_cap - min_cap < max_cap >> 3)
  4656. return 0;
  4657. return min_cap * 1024 < task_util(p) * capacity_margin;
  4658. }
  4659. /*
  4660. * select_task_rq_fair: Select target runqueue for the waking task in domains
  4661. * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  4662. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  4663. *
  4664. * Balances load by selecting the idlest cpu in the idlest group, or under
  4665. * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
  4666. *
  4667. * Returns the target cpu number.
  4668. *
  4669. * preempt must be disabled.
  4670. */
  4671. static int
  4672. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  4673. {
  4674. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  4675. int cpu = smp_processor_id();
  4676. int new_cpu = prev_cpu;
  4677. int want_affine = 0;
  4678. int sync = wake_flags & WF_SYNC;
  4679. if (sd_flag & SD_BALANCE_WAKE) {
  4680. record_wakee(p);
  4681. want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
  4682. && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
  4683. }
  4684. rcu_read_lock();
  4685. for_each_domain(cpu, tmp) {
  4686. if (!(tmp->flags & SD_LOAD_BALANCE))
  4687. break;
  4688. /*
  4689. * If both cpu and prev_cpu are part of this domain,
  4690. * cpu is a valid SD_WAKE_AFFINE target.
  4691. */
  4692. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  4693. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  4694. affine_sd = tmp;
  4695. break;
  4696. }
  4697. if (tmp->flags & sd_flag)
  4698. sd = tmp;
  4699. else if (!want_affine)
  4700. break;
  4701. }
  4702. if (affine_sd) {
  4703. sd = NULL; /* Prefer wake_affine over balance flags */
  4704. if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
  4705. new_cpu = cpu;
  4706. }
  4707. if (!sd) {
  4708. if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
  4709. new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
  4710. } else while (sd) {
  4711. struct sched_group *group;
  4712. int weight;
  4713. if (!(sd->flags & sd_flag)) {
  4714. sd = sd->child;
  4715. continue;
  4716. }
  4717. group = find_idlest_group(sd, p, cpu, sd_flag);
  4718. if (!group) {
  4719. sd = sd->child;
  4720. continue;
  4721. }
  4722. new_cpu = find_idlest_cpu(group, p, cpu);
  4723. if (new_cpu == -1 || new_cpu == cpu) {
  4724. /* Now try balancing at a lower domain level of cpu */
  4725. sd = sd->child;
  4726. continue;
  4727. }
  4728. /* Now try balancing at a lower domain level of new_cpu */
  4729. cpu = new_cpu;
  4730. weight = sd->span_weight;
  4731. sd = NULL;
  4732. for_each_domain(cpu, tmp) {
  4733. if (weight <= tmp->span_weight)
  4734. break;
  4735. if (tmp->flags & sd_flag)
  4736. sd = tmp;
  4737. }
  4738. /* while loop will break here if sd == NULL */
  4739. }
  4740. rcu_read_unlock();
  4741. return new_cpu;
  4742. }
  4743. /*
  4744. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  4745. * cfs_rq_of(p) references at time of call are still valid and identify the
  4746. * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
  4747. */
  4748. static void migrate_task_rq_fair(struct task_struct *p)
  4749. {
  4750. /*
  4751. * As blocked tasks retain absolute vruntime the migration needs to
  4752. * deal with this by subtracting the old and adding the new
  4753. * min_vruntime -- the latter is done by enqueue_entity() when placing
  4754. * the task on the new runqueue.
  4755. */
  4756. if (p->state == TASK_WAKING) {
  4757. struct sched_entity *se = &p->se;
  4758. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4759. u64 min_vruntime;
  4760. #ifndef CONFIG_64BIT
  4761. u64 min_vruntime_copy;
  4762. do {
  4763. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  4764. smp_rmb();
  4765. min_vruntime = cfs_rq->min_vruntime;
  4766. } while (min_vruntime != min_vruntime_copy);
  4767. #else
  4768. min_vruntime = cfs_rq->min_vruntime;
  4769. #endif
  4770. se->vruntime -= min_vruntime;
  4771. }
  4772. /*
  4773. * We are supposed to update the task to "current" time, then its up to date
  4774. * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
  4775. * what current time is, so simply throw away the out-of-date time. This
  4776. * will result in the wakee task is less decayed, but giving the wakee more
  4777. * load sounds not bad.
  4778. */
  4779. remove_entity_load_avg(&p->se);
  4780. /* Tell new CPU we are migrated */
  4781. p->se.avg.last_update_time = 0;
  4782. /* We have migrated, no longer consider this task hot */
  4783. p->se.exec_start = 0;
  4784. }
  4785. static void task_dead_fair(struct task_struct *p)
  4786. {
  4787. remove_entity_load_avg(&p->se);
  4788. }
  4789. #endif /* CONFIG_SMP */
  4790. static unsigned long
  4791. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  4792. {
  4793. unsigned long gran = sysctl_sched_wakeup_granularity;
  4794. /*
  4795. * Since its curr running now, convert the gran from real-time
  4796. * to virtual-time in his units.
  4797. *
  4798. * By using 'se' instead of 'curr' we penalize light tasks, so
  4799. * they get preempted easier. That is, if 'se' < 'curr' then
  4800. * the resulting gran will be larger, therefore penalizing the
  4801. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  4802. * be smaller, again penalizing the lighter task.
  4803. *
  4804. * This is especially important for buddies when the leftmost
  4805. * task is higher priority than the buddy.
  4806. */
  4807. return calc_delta_fair(gran, se);
  4808. }
  4809. /*
  4810. * Should 'se' preempt 'curr'.
  4811. *
  4812. * |s1
  4813. * |s2
  4814. * |s3
  4815. * g
  4816. * |<--->|c
  4817. *
  4818. * w(c, s1) = -1
  4819. * w(c, s2) = 0
  4820. * w(c, s3) = 1
  4821. *
  4822. */
  4823. static int
  4824. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  4825. {
  4826. s64 gran, vdiff = curr->vruntime - se->vruntime;
  4827. if (vdiff <= 0)
  4828. return -1;
  4829. gran = wakeup_gran(curr, se);
  4830. if (vdiff > gran)
  4831. return 1;
  4832. return 0;
  4833. }
  4834. static void set_last_buddy(struct sched_entity *se)
  4835. {
  4836. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4837. return;
  4838. for_each_sched_entity(se)
  4839. cfs_rq_of(se)->last = se;
  4840. }
  4841. static void set_next_buddy(struct sched_entity *se)
  4842. {
  4843. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4844. return;
  4845. for_each_sched_entity(se)
  4846. cfs_rq_of(se)->next = se;
  4847. }
  4848. static void set_skip_buddy(struct sched_entity *se)
  4849. {
  4850. for_each_sched_entity(se)
  4851. cfs_rq_of(se)->skip = se;
  4852. }
  4853. /*
  4854. * Preempt the current task with a newly woken task if needed:
  4855. */
  4856. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  4857. {
  4858. struct task_struct *curr = rq->curr;
  4859. struct sched_entity *se = &curr->se, *pse = &p->se;
  4860. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4861. int scale = cfs_rq->nr_running >= sched_nr_latency;
  4862. int next_buddy_marked = 0;
  4863. if (unlikely(se == pse))
  4864. return;
  4865. /*
  4866. * This is possible from callers such as attach_tasks(), in which we
  4867. * unconditionally check_prempt_curr() after an enqueue (which may have
  4868. * lead to a throttle). This both saves work and prevents false
  4869. * next-buddy nomination below.
  4870. */
  4871. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  4872. return;
  4873. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  4874. set_next_buddy(pse);
  4875. next_buddy_marked = 1;
  4876. }
  4877. /*
  4878. * We can come here with TIF_NEED_RESCHED already set from new task
  4879. * wake up path.
  4880. *
  4881. * Note: this also catches the edge-case of curr being in a throttled
  4882. * group (e.g. via set_curr_task), since update_curr() (in the
  4883. * enqueue of curr) will have resulted in resched being set. This
  4884. * prevents us from potentially nominating it as a false LAST_BUDDY
  4885. * below.
  4886. */
  4887. if (test_tsk_need_resched(curr))
  4888. return;
  4889. /* Idle tasks are by definition preempted by non-idle tasks. */
  4890. if (unlikely(curr->policy == SCHED_IDLE) &&
  4891. likely(p->policy != SCHED_IDLE))
  4892. goto preempt;
  4893. /*
  4894. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  4895. * is driven by the tick):
  4896. */
  4897. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  4898. return;
  4899. find_matching_se(&se, &pse);
  4900. update_curr(cfs_rq_of(se));
  4901. BUG_ON(!pse);
  4902. if (wakeup_preempt_entity(se, pse) == 1) {
  4903. /*
  4904. * Bias pick_next to pick the sched entity that is
  4905. * triggering this preemption.
  4906. */
  4907. if (!next_buddy_marked)
  4908. set_next_buddy(pse);
  4909. goto preempt;
  4910. }
  4911. return;
  4912. preempt:
  4913. resched_curr(rq);
  4914. /*
  4915. * Only set the backward buddy when the current task is still
  4916. * on the rq. This can happen when a wakeup gets interleaved
  4917. * with schedule on the ->pre_schedule() or idle_balance()
  4918. * point, either of which can * drop the rq lock.
  4919. *
  4920. * Also, during early boot the idle thread is in the fair class,
  4921. * for obvious reasons its a bad idea to schedule back to it.
  4922. */
  4923. if (unlikely(!se->on_rq || curr == rq->idle))
  4924. return;
  4925. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  4926. set_last_buddy(se);
  4927. }
  4928. static struct task_struct *
  4929. pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
  4930. {
  4931. struct cfs_rq *cfs_rq = &rq->cfs;
  4932. struct sched_entity *se;
  4933. struct task_struct *p;
  4934. int new_tasks;
  4935. again:
  4936. #ifdef CONFIG_FAIR_GROUP_SCHED
  4937. if (!cfs_rq->nr_running)
  4938. goto idle;
  4939. if (prev->sched_class != &fair_sched_class)
  4940. goto simple;
  4941. /*
  4942. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  4943. * likely that a next task is from the same cgroup as the current.
  4944. *
  4945. * Therefore attempt to avoid putting and setting the entire cgroup
  4946. * hierarchy, only change the part that actually changes.
  4947. */
  4948. do {
  4949. struct sched_entity *curr = cfs_rq->curr;
  4950. /*
  4951. * Since we got here without doing put_prev_entity() we also
  4952. * have to consider cfs_rq->curr. If it is still a runnable
  4953. * entity, update_curr() will update its vruntime, otherwise
  4954. * forget we've ever seen it.
  4955. */
  4956. if (curr) {
  4957. if (curr->on_rq)
  4958. update_curr(cfs_rq);
  4959. else
  4960. curr = NULL;
  4961. /*
  4962. * This call to check_cfs_rq_runtime() will do the
  4963. * throttle and dequeue its entity in the parent(s).
  4964. * Therefore the 'simple' nr_running test will indeed
  4965. * be correct.
  4966. */
  4967. if (unlikely(check_cfs_rq_runtime(cfs_rq)))
  4968. goto simple;
  4969. }
  4970. se = pick_next_entity(cfs_rq, curr);
  4971. cfs_rq = group_cfs_rq(se);
  4972. } while (cfs_rq);
  4973. p = task_of(se);
  4974. /*
  4975. * Since we haven't yet done put_prev_entity and if the selected task
  4976. * is a different task than we started out with, try and touch the
  4977. * least amount of cfs_rqs.
  4978. */
  4979. if (prev != p) {
  4980. struct sched_entity *pse = &prev->se;
  4981. while (!(cfs_rq = is_same_group(se, pse))) {
  4982. int se_depth = se->depth;
  4983. int pse_depth = pse->depth;
  4984. if (se_depth <= pse_depth) {
  4985. put_prev_entity(cfs_rq_of(pse), pse);
  4986. pse = parent_entity(pse);
  4987. }
  4988. if (se_depth >= pse_depth) {
  4989. set_next_entity(cfs_rq_of(se), se);
  4990. se = parent_entity(se);
  4991. }
  4992. }
  4993. put_prev_entity(cfs_rq, pse);
  4994. set_next_entity(cfs_rq, se);
  4995. }
  4996. if (hrtick_enabled(rq))
  4997. hrtick_start_fair(rq, p);
  4998. return p;
  4999. simple:
  5000. cfs_rq = &rq->cfs;
  5001. #endif
  5002. if (!cfs_rq->nr_running)
  5003. goto idle;
  5004. put_prev_task(rq, prev);
  5005. do {
  5006. se = pick_next_entity(cfs_rq, NULL);
  5007. set_next_entity(cfs_rq, se);
  5008. cfs_rq = group_cfs_rq(se);
  5009. } while (cfs_rq);
  5010. p = task_of(se);
  5011. if (hrtick_enabled(rq))
  5012. hrtick_start_fair(rq, p);
  5013. return p;
  5014. idle:
  5015. /*
  5016. * This is OK, because current is on_cpu, which avoids it being picked
  5017. * for load-balance and preemption/IRQs are still disabled avoiding
  5018. * further scheduler activity on it and we're being very careful to
  5019. * re-start the picking loop.
  5020. */
  5021. lockdep_unpin_lock(&rq->lock, cookie);
  5022. new_tasks = idle_balance(rq);
  5023. lockdep_repin_lock(&rq->lock, cookie);
  5024. /*
  5025. * Because idle_balance() releases (and re-acquires) rq->lock, it is
  5026. * possible for any higher priority task to appear. In that case we
  5027. * must re-start the pick_next_entity() loop.
  5028. */
  5029. if (new_tasks < 0)
  5030. return RETRY_TASK;
  5031. if (new_tasks > 0)
  5032. goto again;
  5033. return NULL;
  5034. }
  5035. /*
  5036. * Account for a descheduled task:
  5037. */
  5038. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  5039. {
  5040. struct sched_entity *se = &prev->se;
  5041. struct cfs_rq *cfs_rq;
  5042. for_each_sched_entity(se) {
  5043. cfs_rq = cfs_rq_of(se);
  5044. put_prev_entity(cfs_rq, se);
  5045. }
  5046. }
  5047. /*
  5048. * sched_yield() is very simple
  5049. *
  5050. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  5051. */
  5052. static void yield_task_fair(struct rq *rq)
  5053. {
  5054. struct task_struct *curr = rq->curr;
  5055. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  5056. struct sched_entity *se = &curr->se;
  5057. /*
  5058. * Are we the only task in the tree?
  5059. */
  5060. if (unlikely(rq->nr_running == 1))
  5061. return;
  5062. clear_buddies(cfs_rq, se);
  5063. if (curr->policy != SCHED_BATCH) {
  5064. update_rq_clock(rq);
  5065. /*
  5066. * Update run-time statistics of the 'current'.
  5067. */
  5068. update_curr(cfs_rq);
  5069. /*
  5070. * Tell update_rq_clock() that we've just updated,
  5071. * so we don't do microscopic update in schedule()
  5072. * and double the fastpath cost.
  5073. */
  5074. rq_clock_skip_update(rq, true);
  5075. }
  5076. set_skip_buddy(se);
  5077. }
  5078. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  5079. {
  5080. struct sched_entity *se = &p->se;
  5081. /* throttled hierarchies are not runnable */
  5082. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  5083. return false;
  5084. /* Tell the scheduler that we'd really like pse to run next. */
  5085. set_next_buddy(se);
  5086. yield_task_fair(rq);
  5087. return true;
  5088. }
  5089. #ifdef CONFIG_SMP
  5090. /**************************************************
  5091. * Fair scheduling class load-balancing methods.
  5092. *
  5093. * BASICS
  5094. *
  5095. * The purpose of load-balancing is to achieve the same basic fairness the
  5096. * per-cpu scheduler provides, namely provide a proportional amount of compute
  5097. * time to each task. This is expressed in the following equation:
  5098. *
  5099. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  5100. *
  5101. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  5102. * W_i,0 is defined as:
  5103. *
  5104. * W_i,0 = \Sum_j w_i,j (2)
  5105. *
  5106. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  5107. * is derived from the nice value as per sched_prio_to_weight[].
  5108. *
  5109. * The weight average is an exponential decay average of the instantaneous
  5110. * weight:
  5111. *
  5112. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  5113. *
  5114. * C_i is the compute capacity of cpu i, typically it is the
  5115. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  5116. * can also include other factors [XXX].
  5117. *
  5118. * To achieve this balance we define a measure of imbalance which follows
  5119. * directly from (1):
  5120. *
  5121. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  5122. *
  5123. * We them move tasks around to minimize the imbalance. In the continuous
  5124. * function space it is obvious this converges, in the discrete case we get
  5125. * a few fun cases generally called infeasible weight scenarios.
  5126. *
  5127. * [XXX expand on:
  5128. * - infeasible weights;
  5129. * - local vs global optima in the discrete case. ]
  5130. *
  5131. *
  5132. * SCHED DOMAINS
  5133. *
  5134. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  5135. * for all i,j solution, we create a tree of cpus that follows the hardware
  5136. * topology where each level pairs two lower groups (or better). This results
  5137. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  5138. * tree to only the first of the previous level and we decrease the frequency
  5139. * of load-balance at each level inv. proportional to the number of cpus in
  5140. * the groups.
  5141. *
  5142. * This yields:
  5143. *
  5144. * log_2 n 1 n
  5145. * \Sum { --- * --- * 2^i } = O(n) (5)
  5146. * i = 0 2^i 2^i
  5147. * `- size of each group
  5148. * | | `- number of cpus doing load-balance
  5149. * | `- freq
  5150. * `- sum over all levels
  5151. *
  5152. * Coupled with a limit on how many tasks we can migrate every balance pass,
  5153. * this makes (5) the runtime complexity of the balancer.
  5154. *
  5155. * An important property here is that each CPU is still (indirectly) connected
  5156. * to every other cpu in at most O(log n) steps:
  5157. *
  5158. * The adjacency matrix of the resulting graph is given by:
  5159. *
  5160. * log_2 n
  5161. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  5162. * k = 0
  5163. *
  5164. * And you'll find that:
  5165. *
  5166. * A^(log_2 n)_i,j != 0 for all i,j (7)
  5167. *
  5168. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  5169. * The task movement gives a factor of O(m), giving a convergence complexity
  5170. * of:
  5171. *
  5172. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  5173. *
  5174. *
  5175. * WORK CONSERVING
  5176. *
  5177. * In order to avoid CPUs going idle while there's still work to do, new idle
  5178. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  5179. * tree itself instead of relying on other CPUs to bring it work.
  5180. *
  5181. * This adds some complexity to both (5) and (8) but it reduces the total idle
  5182. * time.
  5183. *
  5184. * [XXX more?]
  5185. *
  5186. *
  5187. * CGROUPS
  5188. *
  5189. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  5190. *
  5191. * s_k,i
  5192. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  5193. * S_k
  5194. *
  5195. * Where
  5196. *
  5197. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  5198. *
  5199. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  5200. *
  5201. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  5202. * property.
  5203. *
  5204. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  5205. * rewrite all of this once again.]
  5206. */
  5207. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  5208. enum fbq_type { regular, remote, all };
  5209. #define LBF_ALL_PINNED 0x01
  5210. #define LBF_NEED_BREAK 0x02
  5211. #define LBF_DST_PINNED 0x04
  5212. #define LBF_SOME_PINNED 0x08
  5213. struct lb_env {
  5214. struct sched_domain *sd;
  5215. struct rq *src_rq;
  5216. int src_cpu;
  5217. int dst_cpu;
  5218. struct rq *dst_rq;
  5219. struct cpumask *dst_grpmask;
  5220. int new_dst_cpu;
  5221. enum cpu_idle_type idle;
  5222. long imbalance;
  5223. /* The set of CPUs under consideration for load-balancing */
  5224. struct cpumask *cpus;
  5225. unsigned int flags;
  5226. unsigned int loop;
  5227. unsigned int loop_break;
  5228. unsigned int loop_max;
  5229. enum fbq_type fbq_type;
  5230. struct list_head tasks;
  5231. };
  5232. /*
  5233. * Is this task likely cache-hot:
  5234. */
  5235. static int task_hot(struct task_struct *p, struct lb_env *env)
  5236. {
  5237. s64 delta;
  5238. lockdep_assert_held(&env->src_rq->lock);
  5239. if (p->sched_class != &fair_sched_class)
  5240. return 0;
  5241. if (unlikely(p->policy == SCHED_IDLE))
  5242. return 0;
  5243. /*
  5244. * Buddy candidates are cache hot:
  5245. */
  5246. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  5247. (&p->se == cfs_rq_of(&p->se)->next ||
  5248. &p->se == cfs_rq_of(&p->se)->last))
  5249. return 1;
  5250. if (sysctl_sched_migration_cost == -1)
  5251. return 1;
  5252. if (sysctl_sched_migration_cost == 0)
  5253. return 0;
  5254. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  5255. return delta < (s64)sysctl_sched_migration_cost;
  5256. }
  5257. #ifdef CONFIG_NUMA_BALANCING
  5258. /*
  5259. * Returns 1, if task migration degrades locality
  5260. * Returns 0, if task migration improves locality i.e migration preferred.
  5261. * Returns -1, if task migration is not affected by locality.
  5262. */
  5263. static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  5264. {
  5265. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  5266. unsigned long src_faults, dst_faults;
  5267. int src_nid, dst_nid;
  5268. if (!static_branch_likely(&sched_numa_balancing))
  5269. return -1;
  5270. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  5271. return -1;
  5272. src_nid = cpu_to_node(env->src_cpu);
  5273. dst_nid = cpu_to_node(env->dst_cpu);
  5274. if (src_nid == dst_nid)
  5275. return -1;
  5276. /* Migrating away from the preferred node is always bad. */
  5277. if (src_nid == p->numa_preferred_nid) {
  5278. if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
  5279. return 1;
  5280. else
  5281. return -1;
  5282. }
  5283. /* Encourage migration to the preferred node. */
  5284. if (dst_nid == p->numa_preferred_nid)
  5285. return 0;
  5286. if (numa_group) {
  5287. src_faults = group_faults(p, src_nid);
  5288. dst_faults = group_faults(p, dst_nid);
  5289. } else {
  5290. src_faults = task_faults(p, src_nid);
  5291. dst_faults = task_faults(p, dst_nid);
  5292. }
  5293. return dst_faults < src_faults;
  5294. }
  5295. #else
  5296. static inline int migrate_degrades_locality(struct task_struct *p,
  5297. struct lb_env *env)
  5298. {
  5299. return -1;
  5300. }
  5301. #endif
  5302. /*
  5303. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  5304. */
  5305. static
  5306. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  5307. {
  5308. int tsk_cache_hot;
  5309. lockdep_assert_held(&env->src_rq->lock);
  5310. /*
  5311. * We do not migrate tasks that are:
  5312. * 1) throttled_lb_pair, or
  5313. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  5314. * 3) running (obviously), or
  5315. * 4) are cache-hot on their current CPU.
  5316. */
  5317. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  5318. return 0;
  5319. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  5320. int cpu;
  5321. schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
  5322. env->flags |= LBF_SOME_PINNED;
  5323. /*
  5324. * Remember if this task can be migrated to any other cpu in
  5325. * our sched_group. We may want to revisit it if we couldn't
  5326. * meet load balance goals by pulling other tasks on src_cpu.
  5327. *
  5328. * Also avoid computing new_dst_cpu if we have already computed
  5329. * one in current iteration.
  5330. */
  5331. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  5332. return 0;
  5333. /* Prevent to re-select dst_cpu via env's cpus */
  5334. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  5335. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  5336. env->flags |= LBF_DST_PINNED;
  5337. env->new_dst_cpu = cpu;
  5338. break;
  5339. }
  5340. }
  5341. return 0;
  5342. }
  5343. /* Record that we found atleast one task that could run on dst_cpu */
  5344. env->flags &= ~LBF_ALL_PINNED;
  5345. if (task_running(env->src_rq, p)) {
  5346. schedstat_inc(p->se.statistics.nr_failed_migrations_running);
  5347. return 0;
  5348. }
  5349. /*
  5350. * Aggressive migration if:
  5351. * 1) destination numa is preferred
  5352. * 2) task is cache cold, or
  5353. * 3) too many balance attempts have failed.
  5354. */
  5355. tsk_cache_hot = migrate_degrades_locality(p, env);
  5356. if (tsk_cache_hot == -1)
  5357. tsk_cache_hot = task_hot(p, env);
  5358. if (tsk_cache_hot <= 0 ||
  5359. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  5360. if (tsk_cache_hot == 1) {
  5361. schedstat_inc(env->sd->lb_hot_gained[env->idle]);
  5362. schedstat_inc(p->se.statistics.nr_forced_migrations);
  5363. }
  5364. return 1;
  5365. }
  5366. schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
  5367. return 0;
  5368. }
  5369. /*
  5370. * detach_task() -- detach the task for the migration specified in env
  5371. */
  5372. static void detach_task(struct task_struct *p, struct lb_env *env)
  5373. {
  5374. lockdep_assert_held(&env->src_rq->lock);
  5375. p->on_rq = TASK_ON_RQ_MIGRATING;
  5376. deactivate_task(env->src_rq, p, 0);
  5377. set_task_cpu(p, env->dst_cpu);
  5378. }
  5379. /*
  5380. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  5381. * part of active balancing operations within "domain".
  5382. *
  5383. * Returns a task if successful and NULL otherwise.
  5384. */
  5385. static struct task_struct *detach_one_task(struct lb_env *env)
  5386. {
  5387. struct task_struct *p, *n;
  5388. lockdep_assert_held(&env->src_rq->lock);
  5389. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  5390. if (!can_migrate_task(p, env))
  5391. continue;
  5392. detach_task(p, env);
  5393. /*
  5394. * Right now, this is only the second place where
  5395. * lb_gained[env->idle] is updated (other is detach_tasks)
  5396. * so we can safely collect stats here rather than
  5397. * inside detach_tasks().
  5398. */
  5399. schedstat_inc(env->sd->lb_gained[env->idle]);
  5400. return p;
  5401. }
  5402. return NULL;
  5403. }
  5404. static const unsigned int sched_nr_migrate_break = 32;
  5405. /*
  5406. * detach_tasks() -- tries to detach up to imbalance weighted load from
  5407. * busiest_rq, as part of a balancing operation within domain "sd".
  5408. *
  5409. * Returns number of detached tasks if successful and 0 otherwise.
  5410. */
  5411. static int detach_tasks(struct lb_env *env)
  5412. {
  5413. struct list_head *tasks = &env->src_rq->cfs_tasks;
  5414. struct task_struct *p;
  5415. unsigned long load;
  5416. int detached = 0;
  5417. lockdep_assert_held(&env->src_rq->lock);
  5418. if (env->imbalance <= 0)
  5419. return 0;
  5420. while (!list_empty(tasks)) {
  5421. /*
  5422. * We don't want to steal all, otherwise we may be treated likewise,
  5423. * which could at worst lead to a livelock crash.
  5424. */
  5425. if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  5426. break;
  5427. p = list_first_entry(tasks, struct task_struct, se.group_node);
  5428. env->loop++;
  5429. /* We've more or less seen every task there is, call it quits */
  5430. if (env->loop > env->loop_max)
  5431. break;
  5432. /* take a breather every nr_migrate tasks */
  5433. if (env->loop > env->loop_break) {
  5434. env->loop_break += sched_nr_migrate_break;
  5435. env->flags |= LBF_NEED_BREAK;
  5436. break;
  5437. }
  5438. if (!can_migrate_task(p, env))
  5439. goto next;
  5440. load = task_h_load(p);
  5441. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  5442. goto next;
  5443. if ((load / 2) > env->imbalance)
  5444. goto next;
  5445. detach_task(p, env);
  5446. list_add(&p->se.group_node, &env->tasks);
  5447. detached++;
  5448. env->imbalance -= load;
  5449. #ifdef CONFIG_PREEMPT
  5450. /*
  5451. * NEWIDLE balancing is a source of latency, so preemptible
  5452. * kernels will stop after the first task is detached to minimize
  5453. * the critical section.
  5454. */
  5455. if (env->idle == CPU_NEWLY_IDLE)
  5456. break;
  5457. #endif
  5458. /*
  5459. * We only want to steal up to the prescribed amount of
  5460. * weighted load.
  5461. */
  5462. if (env->imbalance <= 0)
  5463. break;
  5464. continue;
  5465. next:
  5466. list_move_tail(&p->se.group_node, tasks);
  5467. }
  5468. /*
  5469. * Right now, this is one of only two places we collect this stat
  5470. * so we can safely collect detach_one_task() stats here rather
  5471. * than inside detach_one_task().
  5472. */
  5473. schedstat_add(env->sd->lb_gained[env->idle], detached);
  5474. return detached;
  5475. }
  5476. /*
  5477. * attach_task() -- attach the task detached by detach_task() to its new rq.
  5478. */
  5479. static void attach_task(struct rq *rq, struct task_struct *p)
  5480. {
  5481. lockdep_assert_held(&rq->lock);
  5482. BUG_ON(task_rq(p) != rq);
  5483. activate_task(rq, p, 0);
  5484. p->on_rq = TASK_ON_RQ_QUEUED;
  5485. check_preempt_curr(rq, p, 0);
  5486. }
  5487. /*
  5488. * attach_one_task() -- attaches the task returned from detach_one_task() to
  5489. * its new rq.
  5490. */
  5491. static void attach_one_task(struct rq *rq, struct task_struct *p)
  5492. {
  5493. raw_spin_lock(&rq->lock);
  5494. attach_task(rq, p);
  5495. raw_spin_unlock(&rq->lock);
  5496. }
  5497. /*
  5498. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  5499. * new rq.
  5500. */
  5501. static void attach_tasks(struct lb_env *env)
  5502. {
  5503. struct list_head *tasks = &env->tasks;
  5504. struct task_struct *p;
  5505. raw_spin_lock(&env->dst_rq->lock);
  5506. while (!list_empty(tasks)) {
  5507. p = list_first_entry(tasks, struct task_struct, se.group_node);
  5508. list_del_init(&p->se.group_node);
  5509. attach_task(env->dst_rq, p);
  5510. }
  5511. raw_spin_unlock(&env->dst_rq->lock);
  5512. }
  5513. #ifdef CONFIG_FAIR_GROUP_SCHED
  5514. static void update_blocked_averages(int cpu)
  5515. {
  5516. struct rq *rq = cpu_rq(cpu);
  5517. struct cfs_rq *cfs_rq;
  5518. unsigned long flags;
  5519. raw_spin_lock_irqsave(&rq->lock, flags);
  5520. update_rq_clock(rq);
  5521. /*
  5522. * Iterates the task_group tree in a bottom up fashion, see
  5523. * list_add_leaf_cfs_rq() for details.
  5524. */
  5525. for_each_leaf_cfs_rq(rq, cfs_rq) {
  5526. /* throttled entities do not contribute to load */
  5527. if (throttled_hierarchy(cfs_rq))
  5528. continue;
  5529. if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
  5530. update_tg_load_avg(cfs_rq, 0);
  5531. }
  5532. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5533. }
  5534. /*
  5535. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  5536. * This needs to be done in a top-down fashion because the load of a child
  5537. * group is a fraction of its parents load.
  5538. */
  5539. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  5540. {
  5541. struct rq *rq = rq_of(cfs_rq);
  5542. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  5543. unsigned long now = jiffies;
  5544. unsigned long load;
  5545. if (cfs_rq->last_h_load_update == now)
  5546. return;
  5547. cfs_rq->h_load_next = NULL;
  5548. for_each_sched_entity(se) {
  5549. cfs_rq = cfs_rq_of(se);
  5550. cfs_rq->h_load_next = se;
  5551. if (cfs_rq->last_h_load_update == now)
  5552. break;
  5553. }
  5554. if (!se) {
  5555. cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
  5556. cfs_rq->last_h_load_update = now;
  5557. }
  5558. while ((se = cfs_rq->h_load_next) != NULL) {
  5559. load = cfs_rq->h_load;
  5560. load = div64_ul(load * se->avg.load_avg,
  5561. cfs_rq_load_avg(cfs_rq) + 1);
  5562. cfs_rq = group_cfs_rq(se);
  5563. cfs_rq->h_load = load;
  5564. cfs_rq->last_h_load_update = now;
  5565. }
  5566. }
  5567. static unsigned long task_h_load(struct task_struct *p)
  5568. {
  5569. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  5570. update_cfs_rq_h_load(cfs_rq);
  5571. return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
  5572. cfs_rq_load_avg(cfs_rq) + 1);
  5573. }
  5574. #else
  5575. static inline void update_blocked_averages(int cpu)
  5576. {
  5577. struct rq *rq = cpu_rq(cpu);
  5578. struct cfs_rq *cfs_rq = &rq->cfs;
  5579. unsigned long flags;
  5580. raw_spin_lock_irqsave(&rq->lock, flags);
  5581. update_rq_clock(rq);
  5582. update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
  5583. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5584. }
  5585. static unsigned long task_h_load(struct task_struct *p)
  5586. {
  5587. return p->se.avg.load_avg;
  5588. }
  5589. #endif
  5590. /********** Helpers for find_busiest_group ************************/
  5591. enum group_type {
  5592. group_other = 0,
  5593. group_imbalanced,
  5594. group_overloaded,
  5595. };
  5596. /*
  5597. * sg_lb_stats - stats of a sched_group required for load_balancing
  5598. */
  5599. struct sg_lb_stats {
  5600. unsigned long avg_load; /*Avg load across the CPUs of the group */
  5601. unsigned long group_load; /* Total load over the CPUs of the group */
  5602. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  5603. unsigned long load_per_task;
  5604. unsigned long group_capacity;
  5605. unsigned long group_util; /* Total utilization of the group */
  5606. unsigned int sum_nr_running; /* Nr tasks running in the group */
  5607. unsigned int idle_cpus;
  5608. unsigned int group_weight;
  5609. enum group_type group_type;
  5610. int group_no_capacity;
  5611. #ifdef CONFIG_NUMA_BALANCING
  5612. unsigned int nr_numa_running;
  5613. unsigned int nr_preferred_running;
  5614. #endif
  5615. };
  5616. /*
  5617. * sd_lb_stats - Structure to store the statistics of a sched_domain
  5618. * during load balancing.
  5619. */
  5620. struct sd_lb_stats {
  5621. struct sched_group *busiest; /* Busiest group in this sd */
  5622. struct sched_group *local; /* Local group in this sd */
  5623. unsigned long total_load; /* Total load of all groups in sd */
  5624. unsigned long total_capacity; /* Total capacity of all groups in sd */
  5625. unsigned long avg_load; /* Average load across all groups in sd */
  5626. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  5627. struct sg_lb_stats local_stat; /* Statistics of the local group */
  5628. };
  5629. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  5630. {
  5631. /*
  5632. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  5633. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  5634. * We must however clear busiest_stat::avg_load because
  5635. * update_sd_pick_busiest() reads this before assignment.
  5636. */
  5637. *sds = (struct sd_lb_stats){
  5638. .busiest = NULL,
  5639. .local = NULL,
  5640. .total_load = 0UL,
  5641. .total_capacity = 0UL,
  5642. .busiest_stat = {
  5643. .avg_load = 0UL,
  5644. .sum_nr_running = 0,
  5645. .group_type = group_other,
  5646. },
  5647. };
  5648. }
  5649. /**
  5650. * get_sd_load_idx - Obtain the load index for a given sched domain.
  5651. * @sd: The sched_domain whose load_idx is to be obtained.
  5652. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  5653. *
  5654. * Return: The load index.
  5655. */
  5656. static inline int get_sd_load_idx(struct sched_domain *sd,
  5657. enum cpu_idle_type idle)
  5658. {
  5659. int load_idx;
  5660. switch (idle) {
  5661. case CPU_NOT_IDLE:
  5662. load_idx = sd->busy_idx;
  5663. break;
  5664. case CPU_NEWLY_IDLE:
  5665. load_idx = sd->newidle_idx;
  5666. break;
  5667. default:
  5668. load_idx = sd->idle_idx;
  5669. break;
  5670. }
  5671. return load_idx;
  5672. }
  5673. static unsigned long scale_rt_capacity(int cpu)
  5674. {
  5675. struct rq *rq = cpu_rq(cpu);
  5676. u64 total, used, age_stamp, avg;
  5677. s64 delta;
  5678. /*
  5679. * Since we're reading these variables without serialization make sure
  5680. * we read them once before doing sanity checks on them.
  5681. */
  5682. age_stamp = READ_ONCE(rq->age_stamp);
  5683. avg = READ_ONCE(rq->rt_avg);
  5684. delta = __rq_clock_broken(rq) - age_stamp;
  5685. if (unlikely(delta < 0))
  5686. delta = 0;
  5687. total = sched_avg_period() + delta;
  5688. used = div_u64(avg, total);
  5689. if (likely(used < SCHED_CAPACITY_SCALE))
  5690. return SCHED_CAPACITY_SCALE - used;
  5691. return 1;
  5692. }
  5693. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  5694. {
  5695. unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
  5696. struct sched_group *sdg = sd->groups;
  5697. cpu_rq(cpu)->cpu_capacity_orig = capacity;
  5698. capacity *= scale_rt_capacity(cpu);
  5699. capacity >>= SCHED_CAPACITY_SHIFT;
  5700. if (!capacity)
  5701. capacity = 1;
  5702. cpu_rq(cpu)->cpu_capacity = capacity;
  5703. sdg->sgc->capacity = capacity;
  5704. }
  5705. void update_group_capacity(struct sched_domain *sd, int cpu)
  5706. {
  5707. struct sched_domain *child = sd->child;
  5708. struct sched_group *group, *sdg = sd->groups;
  5709. unsigned long capacity;
  5710. unsigned long interval;
  5711. interval = msecs_to_jiffies(sd->balance_interval);
  5712. interval = clamp(interval, 1UL, max_load_balance_interval);
  5713. sdg->sgc->next_update = jiffies + interval;
  5714. if (!child) {
  5715. update_cpu_capacity(sd, cpu);
  5716. return;
  5717. }
  5718. capacity = 0;
  5719. if (child->flags & SD_OVERLAP) {
  5720. /*
  5721. * SD_OVERLAP domains cannot assume that child groups
  5722. * span the current group.
  5723. */
  5724. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  5725. struct sched_group_capacity *sgc;
  5726. struct rq *rq = cpu_rq(cpu);
  5727. /*
  5728. * build_sched_domains() -> init_sched_groups_capacity()
  5729. * gets here before we've attached the domains to the
  5730. * runqueues.
  5731. *
  5732. * Use capacity_of(), which is set irrespective of domains
  5733. * in update_cpu_capacity().
  5734. *
  5735. * This avoids capacity from being 0 and
  5736. * causing divide-by-zero issues on boot.
  5737. */
  5738. if (unlikely(!rq->sd)) {
  5739. capacity += capacity_of(cpu);
  5740. continue;
  5741. }
  5742. sgc = rq->sd->groups->sgc;
  5743. capacity += sgc->capacity;
  5744. }
  5745. } else {
  5746. /*
  5747. * !SD_OVERLAP domains can assume that child groups
  5748. * span the current group.
  5749. */
  5750. group = child->groups;
  5751. do {
  5752. capacity += group->sgc->capacity;
  5753. group = group->next;
  5754. } while (group != child->groups);
  5755. }
  5756. sdg->sgc->capacity = capacity;
  5757. }
  5758. /*
  5759. * Check whether the capacity of the rq has been noticeably reduced by side
  5760. * activity. The imbalance_pct is used for the threshold.
  5761. * Return true is the capacity is reduced
  5762. */
  5763. static inline int
  5764. check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  5765. {
  5766. return ((rq->cpu_capacity * sd->imbalance_pct) <
  5767. (rq->cpu_capacity_orig * 100));
  5768. }
  5769. /*
  5770. * Group imbalance indicates (and tries to solve) the problem where balancing
  5771. * groups is inadequate due to tsk_cpus_allowed() constraints.
  5772. *
  5773. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  5774. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  5775. * Something like:
  5776. *
  5777. * { 0 1 2 3 } { 4 5 6 7 }
  5778. * * * * *
  5779. *
  5780. * If we were to balance group-wise we'd place two tasks in the first group and
  5781. * two tasks in the second group. Clearly this is undesired as it will overload
  5782. * cpu 3 and leave one of the cpus in the second group unused.
  5783. *
  5784. * The current solution to this issue is detecting the skew in the first group
  5785. * by noticing the lower domain failed to reach balance and had difficulty
  5786. * moving tasks due to affinity constraints.
  5787. *
  5788. * When this is so detected; this group becomes a candidate for busiest; see
  5789. * update_sd_pick_busiest(). And calculate_imbalance() and
  5790. * find_busiest_group() avoid some of the usual balance conditions to allow it
  5791. * to create an effective group imbalance.
  5792. *
  5793. * This is a somewhat tricky proposition since the next run might not find the
  5794. * group imbalance and decide the groups need to be balanced again. A most
  5795. * subtle and fragile situation.
  5796. */
  5797. static inline int sg_imbalanced(struct sched_group *group)
  5798. {
  5799. return group->sgc->imbalance;
  5800. }
  5801. /*
  5802. * group_has_capacity returns true if the group has spare capacity that could
  5803. * be used by some tasks.
  5804. * We consider that a group has spare capacity if the * number of task is
  5805. * smaller than the number of CPUs or if the utilization is lower than the
  5806. * available capacity for CFS tasks.
  5807. * For the latter, we use a threshold to stabilize the state, to take into
  5808. * account the variance of the tasks' load and to return true if the available
  5809. * capacity in meaningful for the load balancer.
  5810. * As an example, an available capacity of 1% can appear but it doesn't make
  5811. * any benefit for the load balance.
  5812. */
  5813. static inline bool
  5814. group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
  5815. {
  5816. if (sgs->sum_nr_running < sgs->group_weight)
  5817. return true;
  5818. if ((sgs->group_capacity * 100) >
  5819. (sgs->group_util * env->sd->imbalance_pct))
  5820. return true;
  5821. return false;
  5822. }
  5823. /*
  5824. * group_is_overloaded returns true if the group has more tasks than it can
  5825. * handle.
  5826. * group_is_overloaded is not equals to !group_has_capacity because a group
  5827. * with the exact right number of tasks, has no more spare capacity but is not
  5828. * overloaded so both group_has_capacity and group_is_overloaded return
  5829. * false.
  5830. */
  5831. static inline bool
  5832. group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
  5833. {
  5834. if (sgs->sum_nr_running <= sgs->group_weight)
  5835. return false;
  5836. if ((sgs->group_capacity * 100) <
  5837. (sgs->group_util * env->sd->imbalance_pct))
  5838. return true;
  5839. return false;
  5840. }
  5841. static inline enum
  5842. group_type group_classify(struct sched_group *group,
  5843. struct sg_lb_stats *sgs)
  5844. {
  5845. if (sgs->group_no_capacity)
  5846. return group_overloaded;
  5847. if (sg_imbalanced(group))
  5848. return group_imbalanced;
  5849. return group_other;
  5850. }
  5851. /**
  5852. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  5853. * @env: The load balancing environment.
  5854. * @group: sched_group whose statistics are to be updated.
  5855. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  5856. * @local_group: Does group contain this_cpu.
  5857. * @sgs: variable to hold the statistics for this group.
  5858. * @overload: Indicate more than one runnable task for any CPU.
  5859. */
  5860. static inline void update_sg_lb_stats(struct lb_env *env,
  5861. struct sched_group *group, int load_idx,
  5862. int local_group, struct sg_lb_stats *sgs,
  5863. bool *overload)
  5864. {
  5865. unsigned long load;
  5866. int i, nr_running;
  5867. memset(sgs, 0, sizeof(*sgs));
  5868. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5869. struct rq *rq = cpu_rq(i);
  5870. /* Bias balancing toward cpus of our domain */
  5871. if (local_group)
  5872. load = target_load(i, load_idx);
  5873. else
  5874. load = source_load(i, load_idx);
  5875. sgs->group_load += load;
  5876. sgs->group_util += cpu_util(i);
  5877. sgs->sum_nr_running += rq->cfs.h_nr_running;
  5878. nr_running = rq->nr_running;
  5879. if (nr_running > 1)
  5880. *overload = true;
  5881. #ifdef CONFIG_NUMA_BALANCING
  5882. sgs->nr_numa_running += rq->nr_numa_running;
  5883. sgs->nr_preferred_running += rq->nr_preferred_running;
  5884. #endif
  5885. sgs->sum_weighted_load += weighted_cpuload(i);
  5886. /*
  5887. * No need to call idle_cpu() if nr_running is not 0
  5888. */
  5889. if (!nr_running && idle_cpu(i))
  5890. sgs->idle_cpus++;
  5891. }
  5892. /* Adjust by relative CPU capacity of the group */
  5893. sgs->group_capacity = group->sgc->capacity;
  5894. sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
  5895. if (sgs->sum_nr_running)
  5896. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  5897. sgs->group_weight = group->group_weight;
  5898. sgs->group_no_capacity = group_is_overloaded(env, sgs);
  5899. sgs->group_type = group_classify(group, sgs);
  5900. }
  5901. /**
  5902. * update_sd_pick_busiest - return 1 on busiest group
  5903. * @env: The load balancing environment.
  5904. * @sds: sched_domain statistics
  5905. * @sg: sched_group candidate to be checked for being the busiest
  5906. * @sgs: sched_group statistics
  5907. *
  5908. * Determine if @sg is a busier group than the previously selected
  5909. * busiest group.
  5910. *
  5911. * Return: %true if @sg is a busier group than the previously selected
  5912. * busiest group. %false otherwise.
  5913. */
  5914. static bool update_sd_pick_busiest(struct lb_env *env,
  5915. struct sd_lb_stats *sds,
  5916. struct sched_group *sg,
  5917. struct sg_lb_stats *sgs)
  5918. {
  5919. struct sg_lb_stats *busiest = &sds->busiest_stat;
  5920. if (sgs->group_type > busiest->group_type)
  5921. return true;
  5922. if (sgs->group_type < busiest->group_type)
  5923. return false;
  5924. if (sgs->avg_load <= busiest->avg_load)
  5925. return false;
  5926. /* This is the busiest node in its class. */
  5927. if (!(env->sd->flags & SD_ASYM_PACKING))
  5928. return true;
  5929. /* No ASYM_PACKING if target cpu is already busy */
  5930. if (env->idle == CPU_NOT_IDLE)
  5931. return true;
  5932. /*
  5933. * ASYM_PACKING needs to move all the work to the lowest
  5934. * numbered CPUs in the group, therefore mark all groups
  5935. * higher than ourself as busy.
  5936. */
  5937. if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
  5938. if (!sds->busiest)
  5939. return true;
  5940. /* Prefer to move from highest possible cpu's work */
  5941. if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
  5942. return true;
  5943. }
  5944. return false;
  5945. }
  5946. #ifdef CONFIG_NUMA_BALANCING
  5947. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5948. {
  5949. if (sgs->sum_nr_running > sgs->nr_numa_running)
  5950. return regular;
  5951. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  5952. return remote;
  5953. return all;
  5954. }
  5955. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5956. {
  5957. if (rq->nr_running > rq->nr_numa_running)
  5958. return regular;
  5959. if (rq->nr_running > rq->nr_preferred_running)
  5960. return remote;
  5961. return all;
  5962. }
  5963. #else
  5964. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5965. {
  5966. return all;
  5967. }
  5968. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5969. {
  5970. return regular;
  5971. }
  5972. #endif /* CONFIG_NUMA_BALANCING */
  5973. /**
  5974. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  5975. * @env: The load balancing environment.
  5976. * @sds: variable to hold the statistics for this sched_domain.
  5977. */
  5978. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  5979. {
  5980. struct sched_domain *child = env->sd->child;
  5981. struct sched_group *sg = env->sd->groups;
  5982. struct sg_lb_stats tmp_sgs;
  5983. int load_idx, prefer_sibling = 0;
  5984. bool overload = false;
  5985. if (child && child->flags & SD_PREFER_SIBLING)
  5986. prefer_sibling = 1;
  5987. load_idx = get_sd_load_idx(env->sd, env->idle);
  5988. do {
  5989. struct sg_lb_stats *sgs = &tmp_sgs;
  5990. int local_group;
  5991. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  5992. if (local_group) {
  5993. sds->local = sg;
  5994. sgs = &sds->local_stat;
  5995. if (env->idle != CPU_NEWLY_IDLE ||
  5996. time_after_eq(jiffies, sg->sgc->next_update))
  5997. update_group_capacity(env->sd, env->dst_cpu);
  5998. }
  5999. update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
  6000. &overload);
  6001. if (local_group)
  6002. goto next_group;
  6003. /*
  6004. * In case the child domain prefers tasks go to siblings
  6005. * first, lower the sg capacity so that we'll try
  6006. * and move all the excess tasks away. We lower the capacity
  6007. * of a group only if the local group has the capacity to fit
  6008. * these excess tasks. The extra check prevents the case where
  6009. * you always pull from the heaviest group when it is already
  6010. * under-utilized (possible with a large weight task outweighs
  6011. * the tasks on the system).
  6012. */
  6013. if (prefer_sibling && sds->local &&
  6014. group_has_capacity(env, &sds->local_stat) &&
  6015. (sgs->sum_nr_running > 1)) {
  6016. sgs->group_no_capacity = 1;
  6017. sgs->group_type = group_classify(sg, sgs);
  6018. }
  6019. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  6020. sds->busiest = sg;
  6021. sds->busiest_stat = *sgs;
  6022. }
  6023. next_group:
  6024. /* Now, start updating sd_lb_stats */
  6025. sds->total_load += sgs->group_load;
  6026. sds->total_capacity += sgs->group_capacity;
  6027. sg = sg->next;
  6028. } while (sg != env->sd->groups);
  6029. if (env->sd->flags & SD_NUMA)
  6030. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  6031. if (!env->sd->parent) {
  6032. /* update overload indicator if we are at root domain */
  6033. if (env->dst_rq->rd->overload != overload)
  6034. env->dst_rq->rd->overload = overload;
  6035. }
  6036. }
  6037. /**
  6038. * check_asym_packing - Check to see if the group is packed into the
  6039. * sched doman.
  6040. *
  6041. * This is primarily intended to used at the sibling level. Some
  6042. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  6043. * case of POWER7, it can move to lower SMT modes only when higher
  6044. * threads are idle. When in lower SMT modes, the threads will
  6045. * perform better since they share less core resources. Hence when we
  6046. * have idle threads, we want them to be the higher ones.
  6047. *
  6048. * This packing function is run on idle threads. It checks to see if
  6049. * the busiest CPU in this domain (core in the P7 case) has a higher
  6050. * CPU number than the packing function is being run on. Here we are
  6051. * assuming lower CPU number will be equivalent to lower a SMT thread
  6052. * number.
  6053. *
  6054. * Return: 1 when packing is required and a task should be moved to
  6055. * this CPU. The amount of the imbalance is returned in *imbalance.
  6056. *
  6057. * @env: The load balancing environment.
  6058. * @sds: Statistics of the sched_domain which is to be packed
  6059. */
  6060. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  6061. {
  6062. int busiest_cpu;
  6063. if (!(env->sd->flags & SD_ASYM_PACKING))
  6064. return 0;
  6065. if (env->idle == CPU_NOT_IDLE)
  6066. return 0;
  6067. if (!sds->busiest)
  6068. return 0;
  6069. busiest_cpu = group_first_cpu(sds->busiest);
  6070. if (env->dst_cpu > busiest_cpu)
  6071. return 0;
  6072. env->imbalance = DIV_ROUND_CLOSEST(
  6073. sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
  6074. SCHED_CAPACITY_SCALE);
  6075. return 1;
  6076. }
  6077. /**
  6078. * fix_small_imbalance - Calculate the minor imbalance that exists
  6079. * amongst the groups of a sched_domain, during
  6080. * load balancing.
  6081. * @env: The load balancing environment.
  6082. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  6083. */
  6084. static inline
  6085. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  6086. {
  6087. unsigned long tmp, capa_now = 0, capa_move = 0;
  6088. unsigned int imbn = 2;
  6089. unsigned long scaled_busy_load_per_task;
  6090. struct sg_lb_stats *local, *busiest;
  6091. local = &sds->local_stat;
  6092. busiest = &sds->busiest_stat;
  6093. if (!local->sum_nr_running)
  6094. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  6095. else if (busiest->load_per_task > local->load_per_task)
  6096. imbn = 1;
  6097. scaled_busy_load_per_task =
  6098. (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  6099. busiest->group_capacity;
  6100. if (busiest->avg_load + scaled_busy_load_per_task >=
  6101. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  6102. env->imbalance = busiest->load_per_task;
  6103. return;
  6104. }
  6105. /*
  6106. * OK, we don't have enough imbalance to justify moving tasks,
  6107. * however we may be able to increase total CPU capacity used by
  6108. * moving them.
  6109. */
  6110. capa_now += busiest->group_capacity *
  6111. min(busiest->load_per_task, busiest->avg_load);
  6112. capa_now += local->group_capacity *
  6113. min(local->load_per_task, local->avg_load);
  6114. capa_now /= SCHED_CAPACITY_SCALE;
  6115. /* Amount of load we'd subtract */
  6116. if (busiest->avg_load > scaled_busy_load_per_task) {
  6117. capa_move += busiest->group_capacity *
  6118. min(busiest->load_per_task,
  6119. busiest->avg_load - scaled_busy_load_per_task);
  6120. }
  6121. /* Amount of load we'd add */
  6122. if (busiest->avg_load * busiest->group_capacity <
  6123. busiest->load_per_task * SCHED_CAPACITY_SCALE) {
  6124. tmp = (busiest->avg_load * busiest->group_capacity) /
  6125. local->group_capacity;
  6126. } else {
  6127. tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  6128. local->group_capacity;
  6129. }
  6130. capa_move += local->group_capacity *
  6131. min(local->load_per_task, local->avg_load + tmp);
  6132. capa_move /= SCHED_CAPACITY_SCALE;
  6133. /* Move if we gain throughput */
  6134. if (capa_move > capa_now)
  6135. env->imbalance = busiest->load_per_task;
  6136. }
  6137. /**
  6138. * calculate_imbalance - Calculate the amount of imbalance present within the
  6139. * groups of a given sched_domain during load balance.
  6140. * @env: load balance environment
  6141. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  6142. */
  6143. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  6144. {
  6145. unsigned long max_pull, load_above_capacity = ~0UL;
  6146. struct sg_lb_stats *local, *busiest;
  6147. local = &sds->local_stat;
  6148. busiest = &sds->busiest_stat;
  6149. if (busiest->group_type == group_imbalanced) {
  6150. /*
  6151. * In the group_imb case we cannot rely on group-wide averages
  6152. * to ensure cpu-load equilibrium, look at wider averages. XXX
  6153. */
  6154. busiest->load_per_task =
  6155. min(busiest->load_per_task, sds->avg_load);
  6156. }
  6157. /*
  6158. * Avg load of busiest sg can be less and avg load of local sg can
  6159. * be greater than avg load across all sgs of sd because avg load
  6160. * factors in sg capacity and sgs with smaller group_type are
  6161. * skipped when updating the busiest sg:
  6162. */
  6163. if (busiest->avg_load <= sds->avg_load ||
  6164. local->avg_load >= sds->avg_load) {
  6165. env->imbalance = 0;
  6166. return fix_small_imbalance(env, sds);
  6167. }
  6168. /*
  6169. * If there aren't any idle cpus, avoid creating some.
  6170. */
  6171. if (busiest->group_type == group_overloaded &&
  6172. local->group_type == group_overloaded) {
  6173. load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
  6174. if (load_above_capacity > busiest->group_capacity) {
  6175. load_above_capacity -= busiest->group_capacity;
  6176. load_above_capacity *= scale_load_down(NICE_0_LOAD);
  6177. load_above_capacity /= busiest->group_capacity;
  6178. } else
  6179. load_above_capacity = ~0UL;
  6180. }
  6181. /*
  6182. * We're trying to get all the cpus to the average_load, so we don't
  6183. * want to push ourselves above the average load, nor do we wish to
  6184. * reduce the max loaded cpu below the average load. At the same time,
  6185. * we also don't want to reduce the group load below the group
  6186. * capacity. Thus we look for the minimum possible imbalance.
  6187. */
  6188. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  6189. /* How much load to actually move to equalise the imbalance */
  6190. env->imbalance = min(
  6191. max_pull * busiest->group_capacity,
  6192. (sds->avg_load - local->avg_load) * local->group_capacity
  6193. ) / SCHED_CAPACITY_SCALE;
  6194. /*
  6195. * if *imbalance is less than the average load per runnable task
  6196. * there is no guarantee that any tasks will be moved so we'll have
  6197. * a think about bumping its value to force at least one task to be
  6198. * moved
  6199. */
  6200. if (env->imbalance < busiest->load_per_task)
  6201. return fix_small_imbalance(env, sds);
  6202. }
  6203. /******* find_busiest_group() helpers end here *********************/
  6204. /**
  6205. * find_busiest_group - Returns the busiest group within the sched_domain
  6206. * if there is an imbalance.
  6207. *
  6208. * Also calculates the amount of weighted load which should be moved
  6209. * to restore balance.
  6210. *
  6211. * @env: The load balancing environment.
  6212. *
  6213. * Return: - The busiest group if imbalance exists.
  6214. */
  6215. static struct sched_group *find_busiest_group(struct lb_env *env)
  6216. {
  6217. struct sg_lb_stats *local, *busiest;
  6218. struct sd_lb_stats sds;
  6219. init_sd_lb_stats(&sds);
  6220. /*
  6221. * Compute the various statistics relavent for load balancing at
  6222. * this level.
  6223. */
  6224. update_sd_lb_stats(env, &sds);
  6225. local = &sds.local_stat;
  6226. busiest = &sds.busiest_stat;
  6227. /* ASYM feature bypasses nice load balance check */
  6228. if (check_asym_packing(env, &sds))
  6229. return sds.busiest;
  6230. /* There is no busy sibling group to pull tasks from */
  6231. if (!sds.busiest || busiest->sum_nr_running == 0)
  6232. goto out_balanced;
  6233. sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
  6234. / sds.total_capacity;
  6235. /*
  6236. * If the busiest group is imbalanced the below checks don't
  6237. * work because they assume all things are equal, which typically
  6238. * isn't true due to cpus_allowed constraints and the like.
  6239. */
  6240. if (busiest->group_type == group_imbalanced)
  6241. goto force_balance;
  6242. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  6243. if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
  6244. busiest->group_no_capacity)
  6245. goto force_balance;
  6246. /*
  6247. * If the local group is busier than the selected busiest group
  6248. * don't try and pull any tasks.
  6249. */
  6250. if (local->avg_load >= busiest->avg_load)
  6251. goto out_balanced;
  6252. /*
  6253. * Don't pull any tasks if this group is already above the domain
  6254. * average load.
  6255. */
  6256. if (local->avg_load >= sds.avg_load)
  6257. goto out_balanced;
  6258. if (env->idle == CPU_IDLE) {
  6259. /*
  6260. * This cpu is idle. If the busiest group is not overloaded
  6261. * and there is no imbalance between this and busiest group
  6262. * wrt idle cpus, it is balanced. The imbalance becomes
  6263. * significant if the diff is greater than 1 otherwise we
  6264. * might end up to just move the imbalance on another group
  6265. */
  6266. if ((busiest->group_type != group_overloaded) &&
  6267. (local->idle_cpus <= (busiest->idle_cpus + 1)))
  6268. goto out_balanced;
  6269. } else {
  6270. /*
  6271. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  6272. * imbalance_pct to be conservative.
  6273. */
  6274. if (100 * busiest->avg_load <=
  6275. env->sd->imbalance_pct * local->avg_load)
  6276. goto out_balanced;
  6277. }
  6278. force_balance:
  6279. /* Looks like there is an imbalance. Compute it */
  6280. calculate_imbalance(env, &sds);
  6281. return sds.busiest;
  6282. out_balanced:
  6283. env->imbalance = 0;
  6284. return NULL;
  6285. }
  6286. /*
  6287. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  6288. */
  6289. static struct rq *find_busiest_queue(struct lb_env *env,
  6290. struct sched_group *group)
  6291. {
  6292. struct rq *busiest = NULL, *rq;
  6293. unsigned long busiest_load = 0, busiest_capacity = 1;
  6294. int i;
  6295. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  6296. unsigned long capacity, wl;
  6297. enum fbq_type rt;
  6298. rq = cpu_rq(i);
  6299. rt = fbq_classify_rq(rq);
  6300. /*
  6301. * We classify groups/runqueues into three groups:
  6302. * - regular: there are !numa tasks
  6303. * - remote: there are numa tasks that run on the 'wrong' node
  6304. * - all: there is no distinction
  6305. *
  6306. * In order to avoid migrating ideally placed numa tasks,
  6307. * ignore those when there's better options.
  6308. *
  6309. * If we ignore the actual busiest queue to migrate another
  6310. * task, the next balance pass can still reduce the busiest
  6311. * queue by moving tasks around inside the node.
  6312. *
  6313. * If we cannot move enough load due to this classification
  6314. * the next pass will adjust the group classification and
  6315. * allow migration of more tasks.
  6316. *
  6317. * Both cases only affect the total convergence complexity.
  6318. */
  6319. if (rt > env->fbq_type)
  6320. continue;
  6321. capacity = capacity_of(i);
  6322. wl = weighted_cpuload(i);
  6323. /*
  6324. * When comparing with imbalance, use weighted_cpuload()
  6325. * which is not scaled with the cpu capacity.
  6326. */
  6327. if (rq->nr_running == 1 && wl > env->imbalance &&
  6328. !check_cpu_capacity(rq, env->sd))
  6329. continue;
  6330. /*
  6331. * For the load comparisons with the other cpu's, consider
  6332. * the weighted_cpuload() scaled with the cpu capacity, so
  6333. * that the load can be moved away from the cpu that is
  6334. * potentially running at a lower capacity.
  6335. *
  6336. * Thus we're looking for max(wl_i / capacity_i), crosswise
  6337. * multiplication to rid ourselves of the division works out
  6338. * to: wl_i * capacity_j > wl_j * capacity_i; where j is
  6339. * our previous maximum.
  6340. */
  6341. if (wl * busiest_capacity > busiest_load * capacity) {
  6342. busiest_load = wl;
  6343. busiest_capacity = capacity;
  6344. busiest = rq;
  6345. }
  6346. }
  6347. return busiest;
  6348. }
  6349. /*
  6350. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  6351. * so long as it is large enough.
  6352. */
  6353. #define MAX_PINNED_INTERVAL 512
  6354. static int need_active_balance(struct lb_env *env)
  6355. {
  6356. struct sched_domain *sd = env->sd;
  6357. if (env->idle == CPU_NEWLY_IDLE) {
  6358. /*
  6359. * ASYM_PACKING needs to force migrate tasks from busy but
  6360. * higher numbered CPUs in order to pack all tasks in the
  6361. * lowest numbered CPUs.
  6362. */
  6363. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  6364. return 1;
  6365. }
  6366. /*
  6367. * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
  6368. * It's worth migrating the task if the src_cpu's capacity is reduced
  6369. * because of other sched_class or IRQs if more capacity stays
  6370. * available on dst_cpu.
  6371. */
  6372. if ((env->idle != CPU_NOT_IDLE) &&
  6373. (env->src_rq->cfs.h_nr_running == 1)) {
  6374. if ((check_cpu_capacity(env->src_rq, sd)) &&
  6375. (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
  6376. return 1;
  6377. }
  6378. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  6379. }
  6380. static int active_load_balance_cpu_stop(void *data);
  6381. static int should_we_balance(struct lb_env *env)
  6382. {
  6383. struct sched_group *sg = env->sd->groups;
  6384. struct cpumask *sg_cpus, *sg_mask;
  6385. int cpu, balance_cpu = -1;
  6386. /*
  6387. * In the newly idle case, we will allow all the cpu's
  6388. * to do the newly idle load balance.
  6389. */
  6390. if (env->idle == CPU_NEWLY_IDLE)
  6391. return 1;
  6392. sg_cpus = sched_group_cpus(sg);
  6393. sg_mask = sched_group_mask(sg);
  6394. /* Try to find first idle cpu */
  6395. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  6396. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  6397. continue;
  6398. balance_cpu = cpu;
  6399. break;
  6400. }
  6401. if (balance_cpu == -1)
  6402. balance_cpu = group_balance_cpu(sg);
  6403. /*
  6404. * First idle cpu or the first cpu(busiest) in this sched group
  6405. * is eligible for doing load balancing at this and above domains.
  6406. */
  6407. return balance_cpu == env->dst_cpu;
  6408. }
  6409. /*
  6410. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  6411. * tasks if there is an imbalance.
  6412. */
  6413. static int load_balance(int this_cpu, struct rq *this_rq,
  6414. struct sched_domain *sd, enum cpu_idle_type idle,
  6415. int *continue_balancing)
  6416. {
  6417. int ld_moved, cur_ld_moved, active_balance = 0;
  6418. struct sched_domain *sd_parent = sd->parent;
  6419. struct sched_group *group;
  6420. struct rq *busiest;
  6421. unsigned long flags;
  6422. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  6423. struct lb_env env = {
  6424. .sd = sd,
  6425. .dst_cpu = this_cpu,
  6426. .dst_rq = this_rq,
  6427. .dst_grpmask = sched_group_cpus(sd->groups),
  6428. .idle = idle,
  6429. .loop_break = sched_nr_migrate_break,
  6430. .cpus = cpus,
  6431. .fbq_type = all,
  6432. .tasks = LIST_HEAD_INIT(env.tasks),
  6433. };
  6434. /*
  6435. * For NEWLY_IDLE load_balancing, we don't need to consider
  6436. * other cpus in our group
  6437. */
  6438. if (idle == CPU_NEWLY_IDLE)
  6439. env.dst_grpmask = NULL;
  6440. cpumask_copy(cpus, cpu_active_mask);
  6441. schedstat_inc(sd->lb_count[idle]);
  6442. redo:
  6443. if (!should_we_balance(&env)) {
  6444. *continue_balancing = 0;
  6445. goto out_balanced;
  6446. }
  6447. group = find_busiest_group(&env);
  6448. if (!group) {
  6449. schedstat_inc(sd->lb_nobusyg[idle]);
  6450. goto out_balanced;
  6451. }
  6452. busiest = find_busiest_queue(&env, group);
  6453. if (!busiest) {
  6454. schedstat_inc(sd->lb_nobusyq[idle]);
  6455. goto out_balanced;
  6456. }
  6457. BUG_ON(busiest == env.dst_rq);
  6458. schedstat_add(sd->lb_imbalance[idle], env.imbalance);
  6459. env.src_cpu = busiest->cpu;
  6460. env.src_rq = busiest;
  6461. ld_moved = 0;
  6462. if (busiest->nr_running > 1) {
  6463. /*
  6464. * Attempt to move tasks. If find_busiest_group has found
  6465. * an imbalance but busiest->nr_running <= 1, the group is
  6466. * still unbalanced. ld_moved simply stays zero, so it is
  6467. * correctly treated as an imbalance.
  6468. */
  6469. env.flags |= LBF_ALL_PINNED;
  6470. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  6471. more_balance:
  6472. raw_spin_lock_irqsave(&busiest->lock, flags);
  6473. /*
  6474. * cur_ld_moved - load moved in current iteration
  6475. * ld_moved - cumulative load moved across iterations
  6476. */
  6477. cur_ld_moved = detach_tasks(&env);
  6478. /*
  6479. * We've detached some tasks from busiest_rq. Every
  6480. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  6481. * unlock busiest->lock, and we are able to be sure
  6482. * that nobody can manipulate the tasks in parallel.
  6483. * See task_rq_lock() family for the details.
  6484. */
  6485. raw_spin_unlock(&busiest->lock);
  6486. if (cur_ld_moved) {
  6487. attach_tasks(&env);
  6488. ld_moved += cur_ld_moved;
  6489. }
  6490. local_irq_restore(flags);
  6491. if (env.flags & LBF_NEED_BREAK) {
  6492. env.flags &= ~LBF_NEED_BREAK;
  6493. goto more_balance;
  6494. }
  6495. /*
  6496. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  6497. * us and move them to an alternate dst_cpu in our sched_group
  6498. * where they can run. The upper limit on how many times we
  6499. * iterate on same src_cpu is dependent on number of cpus in our
  6500. * sched_group.
  6501. *
  6502. * This changes load balance semantics a bit on who can move
  6503. * load to a given_cpu. In addition to the given_cpu itself
  6504. * (or a ilb_cpu acting on its behalf where given_cpu is
  6505. * nohz-idle), we now have balance_cpu in a position to move
  6506. * load to given_cpu. In rare situations, this may cause
  6507. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  6508. * _independently_ and at _same_ time to move some load to
  6509. * given_cpu) causing exceess load to be moved to given_cpu.
  6510. * This however should not happen so much in practice and
  6511. * moreover subsequent load balance cycles should correct the
  6512. * excess load moved.
  6513. */
  6514. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  6515. /* Prevent to re-select dst_cpu via env's cpus */
  6516. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  6517. env.dst_rq = cpu_rq(env.new_dst_cpu);
  6518. env.dst_cpu = env.new_dst_cpu;
  6519. env.flags &= ~LBF_DST_PINNED;
  6520. env.loop = 0;
  6521. env.loop_break = sched_nr_migrate_break;
  6522. /*
  6523. * Go back to "more_balance" rather than "redo" since we
  6524. * need to continue with same src_cpu.
  6525. */
  6526. goto more_balance;
  6527. }
  6528. /*
  6529. * We failed to reach balance because of affinity.
  6530. */
  6531. if (sd_parent) {
  6532. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  6533. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  6534. *group_imbalance = 1;
  6535. }
  6536. /* All tasks on this runqueue were pinned by CPU affinity */
  6537. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  6538. cpumask_clear_cpu(cpu_of(busiest), cpus);
  6539. if (!cpumask_empty(cpus)) {
  6540. env.loop = 0;
  6541. env.loop_break = sched_nr_migrate_break;
  6542. goto redo;
  6543. }
  6544. goto out_all_pinned;
  6545. }
  6546. }
  6547. if (!ld_moved) {
  6548. schedstat_inc(sd->lb_failed[idle]);
  6549. /*
  6550. * Increment the failure counter only on periodic balance.
  6551. * We do not want newidle balance, which can be very
  6552. * frequent, pollute the failure counter causing
  6553. * excessive cache_hot migrations and active balances.
  6554. */
  6555. if (idle != CPU_NEWLY_IDLE)
  6556. sd->nr_balance_failed++;
  6557. if (need_active_balance(&env)) {
  6558. raw_spin_lock_irqsave(&busiest->lock, flags);
  6559. /* don't kick the active_load_balance_cpu_stop,
  6560. * if the curr task on busiest cpu can't be
  6561. * moved to this_cpu
  6562. */
  6563. if (!cpumask_test_cpu(this_cpu,
  6564. tsk_cpus_allowed(busiest->curr))) {
  6565. raw_spin_unlock_irqrestore(&busiest->lock,
  6566. flags);
  6567. env.flags |= LBF_ALL_PINNED;
  6568. goto out_one_pinned;
  6569. }
  6570. /*
  6571. * ->active_balance synchronizes accesses to
  6572. * ->active_balance_work. Once set, it's cleared
  6573. * only after active load balance is finished.
  6574. */
  6575. if (!busiest->active_balance) {
  6576. busiest->active_balance = 1;
  6577. busiest->push_cpu = this_cpu;
  6578. active_balance = 1;
  6579. }
  6580. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  6581. if (active_balance) {
  6582. stop_one_cpu_nowait(cpu_of(busiest),
  6583. active_load_balance_cpu_stop, busiest,
  6584. &busiest->active_balance_work);
  6585. }
  6586. /* We've kicked active balancing, force task migration. */
  6587. sd->nr_balance_failed = sd->cache_nice_tries+1;
  6588. }
  6589. } else
  6590. sd->nr_balance_failed = 0;
  6591. if (likely(!active_balance)) {
  6592. /* We were unbalanced, so reset the balancing interval */
  6593. sd->balance_interval = sd->min_interval;
  6594. } else {
  6595. /*
  6596. * If we've begun active balancing, start to back off. This
  6597. * case may not be covered by the all_pinned logic if there
  6598. * is only 1 task on the busy runqueue (because we don't call
  6599. * detach_tasks).
  6600. */
  6601. if (sd->balance_interval < sd->max_interval)
  6602. sd->balance_interval *= 2;
  6603. }
  6604. goto out;
  6605. out_balanced:
  6606. /*
  6607. * We reach balance although we may have faced some affinity
  6608. * constraints. Clear the imbalance flag if it was set.
  6609. */
  6610. if (sd_parent) {
  6611. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  6612. if (*group_imbalance)
  6613. *group_imbalance = 0;
  6614. }
  6615. out_all_pinned:
  6616. /*
  6617. * We reach balance because all tasks are pinned at this level so
  6618. * we can't migrate them. Let the imbalance flag set so parent level
  6619. * can try to migrate them.
  6620. */
  6621. schedstat_inc(sd->lb_balanced[idle]);
  6622. sd->nr_balance_failed = 0;
  6623. out_one_pinned:
  6624. /* tune up the balancing interval */
  6625. if (((env.flags & LBF_ALL_PINNED) &&
  6626. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  6627. (sd->balance_interval < sd->max_interval))
  6628. sd->balance_interval *= 2;
  6629. ld_moved = 0;
  6630. out:
  6631. return ld_moved;
  6632. }
  6633. static inline unsigned long
  6634. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  6635. {
  6636. unsigned long interval = sd->balance_interval;
  6637. if (cpu_busy)
  6638. interval *= sd->busy_factor;
  6639. /* scale ms to jiffies */
  6640. interval = msecs_to_jiffies(interval);
  6641. interval = clamp(interval, 1UL, max_load_balance_interval);
  6642. return interval;
  6643. }
  6644. static inline void
  6645. update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
  6646. {
  6647. unsigned long interval, next;
  6648. /* used by idle balance, so cpu_busy = 0 */
  6649. interval = get_sd_balance_interval(sd, 0);
  6650. next = sd->last_balance + interval;
  6651. if (time_after(*next_balance, next))
  6652. *next_balance = next;
  6653. }
  6654. /*
  6655. * idle_balance is called by schedule() if this_cpu is about to become
  6656. * idle. Attempts to pull tasks from other CPUs.
  6657. */
  6658. static int idle_balance(struct rq *this_rq)
  6659. {
  6660. unsigned long next_balance = jiffies + HZ;
  6661. int this_cpu = this_rq->cpu;
  6662. struct sched_domain *sd;
  6663. int pulled_task = 0;
  6664. u64 curr_cost = 0;
  6665. /*
  6666. * We must set idle_stamp _before_ calling idle_balance(), such that we
  6667. * measure the duration of idle_balance() as idle time.
  6668. */
  6669. this_rq->idle_stamp = rq_clock(this_rq);
  6670. if (this_rq->avg_idle < sysctl_sched_migration_cost ||
  6671. !this_rq->rd->overload) {
  6672. rcu_read_lock();
  6673. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  6674. if (sd)
  6675. update_next_balance(sd, &next_balance);
  6676. rcu_read_unlock();
  6677. goto out;
  6678. }
  6679. raw_spin_unlock(&this_rq->lock);
  6680. update_blocked_averages(this_cpu);
  6681. rcu_read_lock();
  6682. for_each_domain(this_cpu, sd) {
  6683. int continue_balancing = 1;
  6684. u64 t0, domain_cost;
  6685. if (!(sd->flags & SD_LOAD_BALANCE))
  6686. continue;
  6687. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
  6688. update_next_balance(sd, &next_balance);
  6689. break;
  6690. }
  6691. if (sd->flags & SD_BALANCE_NEWIDLE) {
  6692. t0 = sched_clock_cpu(this_cpu);
  6693. pulled_task = load_balance(this_cpu, this_rq,
  6694. sd, CPU_NEWLY_IDLE,
  6695. &continue_balancing);
  6696. domain_cost = sched_clock_cpu(this_cpu) - t0;
  6697. if (domain_cost > sd->max_newidle_lb_cost)
  6698. sd->max_newidle_lb_cost = domain_cost;
  6699. curr_cost += domain_cost;
  6700. }
  6701. update_next_balance(sd, &next_balance);
  6702. /*
  6703. * Stop searching for tasks to pull if there are
  6704. * now runnable tasks on this rq.
  6705. */
  6706. if (pulled_task || this_rq->nr_running > 0)
  6707. break;
  6708. }
  6709. rcu_read_unlock();
  6710. raw_spin_lock(&this_rq->lock);
  6711. if (curr_cost > this_rq->max_idle_balance_cost)
  6712. this_rq->max_idle_balance_cost = curr_cost;
  6713. /*
  6714. * While browsing the domains, we released the rq lock, a task could
  6715. * have been enqueued in the meantime. Since we're not going idle,
  6716. * pretend we pulled a task.
  6717. */
  6718. if (this_rq->cfs.h_nr_running && !pulled_task)
  6719. pulled_task = 1;
  6720. out:
  6721. /* Move the next balance forward */
  6722. if (time_after(this_rq->next_balance, next_balance))
  6723. this_rq->next_balance = next_balance;
  6724. /* Is there a task of a high priority class? */
  6725. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  6726. pulled_task = -1;
  6727. if (pulled_task)
  6728. this_rq->idle_stamp = 0;
  6729. return pulled_task;
  6730. }
  6731. /*
  6732. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  6733. * running tasks off the busiest CPU onto idle CPUs. It requires at
  6734. * least 1 task to be running on each physical CPU where possible, and
  6735. * avoids physical / logical imbalances.
  6736. */
  6737. static int active_load_balance_cpu_stop(void *data)
  6738. {
  6739. struct rq *busiest_rq = data;
  6740. int busiest_cpu = cpu_of(busiest_rq);
  6741. int target_cpu = busiest_rq->push_cpu;
  6742. struct rq *target_rq = cpu_rq(target_cpu);
  6743. struct sched_domain *sd;
  6744. struct task_struct *p = NULL;
  6745. raw_spin_lock_irq(&busiest_rq->lock);
  6746. /* make sure the requested cpu hasn't gone down in the meantime */
  6747. if (unlikely(busiest_cpu != smp_processor_id() ||
  6748. !busiest_rq->active_balance))
  6749. goto out_unlock;
  6750. /* Is there any task to move? */
  6751. if (busiest_rq->nr_running <= 1)
  6752. goto out_unlock;
  6753. /*
  6754. * This condition is "impossible", if it occurs
  6755. * we need to fix it. Originally reported by
  6756. * Bjorn Helgaas on a 128-cpu setup.
  6757. */
  6758. BUG_ON(busiest_rq == target_rq);
  6759. /* Search for an sd spanning us and the target CPU. */
  6760. rcu_read_lock();
  6761. for_each_domain(target_cpu, sd) {
  6762. if ((sd->flags & SD_LOAD_BALANCE) &&
  6763. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  6764. break;
  6765. }
  6766. if (likely(sd)) {
  6767. struct lb_env env = {
  6768. .sd = sd,
  6769. .dst_cpu = target_cpu,
  6770. .dst_rq = target_rq,
  6771. .src_cpu = busiest_rq->cpu,
  6772. .src_rq = busiest_rq,
  6773. .idle = CPU_IDLE,
  6774. };
  6775. schedstat_inc(sd->alb_count);
  6776. p = detach_one_task(&env);
  6777. if (p) {
  6778. schedstat_inc(sd->alb_pushed);
  6779. /* Active balancing done, reset the failure counter. */
  6780. sd->nr_balance_failed = 0;
  6781. } else {
  6782. schedstat_inc(sd->alb_failed);
  6783. }
  6784. }
  6785. rcu_read_unlock();
  6786. out_unlock:
  6787. busiest_rq->active_balance = 0;
  6788. raw_spin_unlock(&busiest_rq->lock);
  6789. if (p)
  6790. attach_one_task(target_rq, p);
  6791. local_irq_enable();
  6792. return 0;
  6793. }
  6794. static inline int on_null_domain(struct rq *rq)
  6795. {
  6796. return unlikely(!rcu_dereference_sched(rq->sd));
  6797. }
  6798. #ifdef CONFIG_NO_HZ_COMMON
  6799. /*
  6800. * idle load balancing details
  6801. * - When one of the busy CPUs notice that there may be an idle rebalancing
  6802. * needed, they will kick the idle load balancer, which then does idle
  6803. * load balancing for all the idle CPUs.
  6804. */
  6805. static struct {
  6806. cpumask_var_t idle_cpus_mask;
  6807. atomic_t nr_cpus;
  6808. unsigned long next_balance; /* in jiffy units */
  6809. } nohz ____cacheline_aligned;
  6810. static inline int find_new_ilb(void)
  6811. {
  6812. int ilb = cpumask_first(nohz.idle_cpus_mask);
  6813. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  6814. return ilb;
  6815. return nr_cpu_ids;
  6816. }
  6817. /*
  6818. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  6819. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  6820. * CPU (if there is one).
  6821. */
  6822. static void nohz_balancer_kick(void)
  6823. {
  6824. int ilb_cpu;
  6825. nohz.next_balance++;
  6826. ilb_cpu = find_new_ilb();
  6827. if (ilb_cpu >= nr_cpu_ids)
  6828. return;
  6829. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  6830. return;
  6831. /*
  6832. * Use smp_send_reschedule() instead of resched_cpu().
  6833. * This way we generate a sched IPI on the target cpu which
  6834. * is idle. And the softirq performing nohz idle load balance
  6835. * will be run before returning from the IPI.
  6836. */
  6837. smp_send_reschedule(ilb_cpu);
  6838. return;
  6839. }
  6840. void nohz_balance_exit_idle(unsigned int cpu)
  6841. {
  6842. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  6843. /*
  6844. * Completely isolated CPUs don't ever set, so we must test.
  6845. */
  6846. if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
  6847. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  6848. atomic_dec(&nohz.nr_cpus);
  6849. }
  6850. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6851. }
  6852. }
  6853. static inline void set_cpu_sd_state_busy(void)
  6854. {
  6855. struct sched_domain *sd;
  6856. int cpu = smp_processor_id();
  6857. rcu_read_lock();
  6858. sd = rcu_dereference(per_cpu(sd_llc, cpu));
  6859. if (!sd || !sd->nohz_idle)
  6860. goto unlock;
  6861. sd->nohz_idle = 0;
  6862. atomic_inc(&sd->shared->nr_busy_cpus);
  6863. unlock:
  6864. rcu_read_unlock();
  6865. }
  6866. void set_cpu_sd_state_idle(void)
  6867. {
  6868. struct sched_domain *sd;
  6869. int cpu = smp_processor_id();
  6870. rcu_read_lock();
  6871. sd = rcu_dereference(per_cpu(sd_llc, cpu));
  6872. if (!sd || sd->nohz_idle)
  6873. goto unlock;
  6874. sd->nohz_idle = 1;
  6875. atomic_dec(&sd->shared->nr_busy_cpus);
  6876. unlock:
  6877. rcu_read_unlock();
  6878. }
  6879. /*
  6880. * This routine will record that the cpu is going idle with tick stopped.
  6881. * This info will be used in performing idle load balancing in the future.
  6882. */
  6883. void nohz_balance_enter_idle(int cpu)
  6884. {
  6885. /*
  6886. * If this cpu is going down, then nothing needs to be done.
  6887. */
  6888. if (!cpu_active(cpu))
  6889. return;
  6890. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  6891. return;
  6892. /*
  6893. * If we're a completely isolated CPU, we don't play.
  6894. */
  6895. if (on_null_domain(cpu_rq(cpu)))
  6896. return;
  6897. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  6898. atomic_inc(&nohz.nr_cpus);
  6899. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6900. }
  6901. #endif
  6902. static DEFINE_SPINLOCK(balancing);
  6903. /*
  6904. * Scale the max load_balance interval with the number of CPUs in the system.
  6905. * This trades load-balance latency on larger machines for less cross talk.
  6906. */
  6907. void update_max_interval(void)
  6908. {
  6909. max_load_balance_interval = HZ*num_online_cpus()/10;
  6910. }
  6911. /*
  6912. * It checks each scheduling domain to see if it is due to be balanced,
  6913. * and initiates a balancing operation if so.
  6914. *
  6915. * Balancing parameters are set up in init_sched_domains.
  6916. */
  6917. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  6918. {
  6919. int continue_balancing = 1;
  6920. int cpu = rq->cpu;
  6921. unsigned long interval;
  6922. struct sched_domain *sd;
  6923. /* Earliest time when we have to do rebalance again */
  6924. unsigned long next_balance = jiffies + 60*HZ;
  6925. int update_next_balance = 0;
  6926. int need_serialize, need_decay = 0;
  6927. u64 max_cost = 0;
  6928. update_blocked_averages(cpu);
  6929. rcu_read_lock();
  6930. for_each_domain(cpu, sd) {
  6931. /*
  6932. * Decay the newidle max times here because this is a regular
  6933. * visit to all the domains. Decay ~1% per second.
  6934. */
  6935. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  6936. sd->max_newidle_lb_cost =
  6937. (sd->max_newidle_lb_cost * 253) / 256;
  6938. sd->next_decay_max_lb_cost = jiffies + HZ;
  6939. need_decay = 1;
  6940. }
  6941. max_cost += sd->max_newidle_lb_cost;
  6942. if (!(sd->flags & SD_LOAD_BALANCE))
  6943. continue;
  6944. /*
  6945. * Stop the load balance at this level. There is another
  6946. * CPU in our sched group which is doing load balancing more
  6947. * actively.
  6948. */
  6949. if (!continue_balancing) {
  6950. if (need_decay)
  6951. continue;
  6952. break;
  6953. }
  6954. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6955. need_serialize = sd->flags & SD_SERIALIZE;
  6956. if (need_serialize) {
  6957. if (!spin_trylock(&balancing))
  6958. goto out;
  6959. }
  6960. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  6961. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  6962. /*
  6963. * The LBF_DST_PINNED logic could have changed
  6964. * env->dst_cpu, so we can't know our idle
  6965. * state even if we migrated tasks. Update it.
  6966. */
  6967. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  6968. }
  6969. sd->last_balance = jiffies;
  6970. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6971. }
  6972. if (need_serialize)
  6973. spin_unlock(&balancing);
  6974. out:
  6975. if (time_after(next_balance, sd->last_balance + interval)) {
  6976. next_balance = sd->last_balance + interval;
  6977. update_next_balance = 1;
  6978. }
  6979. }
  6980. if (need_decay) {
  6981. /*
  6982. * Ensure the rq-wide value also decays but keep it at a
  6983. * reasonable floor to avoid funnies with rq->avg_idle.
  6984. */
  6985. rq->max_idle_balance_cost =
  6986. max((u64)sysctl_sched_migration_cost, max_cost);
  6987. }
  6988. rcu_read_unlock();
  6989. /*
  6990. * next_balance will be updated only when there is a need.
  6991. * When the cpu is attached to null domain for ex, it will not be
  6992. * updated.
  6993. */
  6994. if (likely(update_next_balance)) {
  6995. rq->next_balance = next_balance;
  6996. #ifdef CONFIG_NO_HZ_COMMON
  6997. /*
  6998. * If this CPU has been elected to perform the nohz idle
  6999. * balance. Other idle CPUs have already rebalanced with
  7000. * nohz_idle_balance() and nohz.next_balance has been
  7001. * updated accordingly. This CPU is now running the idle load
  7002. * balance for itself and we need to update the
  7003. * nohz.next_balance accordingly.
  7004. */
  7005. if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
  7006. nohz.next_balance = rq->next_balance;
  7007. #endif
  7008. }
  7009. }
  7010. #ifdef CONFIG_NO_HZ_COMMON
  7011. /*
  7012. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  7013. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  7014. */
  7015. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  7016. {
  7017. int this_cpu = this_rq->cpu;
  7018. struct rq *rq;
  7019. int balance_cpu;
  7020. /* Earliest time when we have to do rebalance again */
  7021. unsigned long next_balance = jiffies + 60*HZ;
  7022. int update_next_balance = 0;
  7023. if (idle != CPU_IDLE ||
  7024. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  7025. goto end;
  7026. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  7027. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  7028. continue;
  7029. /*
  7030. * If this cpu gets work to do, stop the load balancing
  7031. * work being done for other cpus. Next load
  7032. * balancing owner will pick it up.
  7033. */
  7034. if (need_resched())
  7035. break;
  7036. rq = cpu_rq(balance_cpu);
  7037. /*
  7038. * If time for next balance is due,
  7039. * do the balance.
  7040. */
  7041. if (time_after_eq(jiffies, rq->next_balance)) {
  7042. raw_spin_lock_irq(&rq->lock);
  7043. update_rq_clock(rq);
  7044. cpu_load_update_idle(rq);
  7045. raw_spin_unlock_irq(&rq->lock);
  7046. rebalance_domains(rq, CPU_IDLE);
  7047. }
  7048. if (time_after(next_balance, rq->next_balance)) {
  7049. next_balance = rq->next_balance;
  7050. update_next_balance = 1;
  7051. }
  7052. }
  7053. /*
  7054. * next_balance will be updated only when there is a need.
  7055. * When the CPU is attached to null domain for ex, it will not be
  7056. * updated.
  7057. */
  7058. if (likely(update_next_balance))
  7059. nohz.next_balance = next_balance;
  7060. end:
  7061. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  7062. }
  7063. /*
  7064. * Current heuristic for kicking the idle load balancer in the presence
  7065. * of an idle cpu in the system.
  7066. * - This rq has more than one task.
  7067. * - This rq has at least one CFS task and the capacity of the CPU is
  7068. * significantly reduced because of RT tasks or IRQs.
  7069. * - At parent of LLC scheduler domain level, this cpu's scheduler group has
  7070. * multiple busy cpu.
  7071. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  7072. * domain span are idle.
  7073. */
  7074. static inline bool nohz_kick_needed(struct rq *rq)
  7075. {
  7076. unsigned long now = jiffies;
  7077. struct sched_domain_shared *sds;
  7078. struct sched_domain *sd;
  7079. int nr_busy, cpu = rq->cpu;
  7080. bool kick = false;
  7081. if (unlikely(rq->idle_balance))
  7082. return false;
  7083. /*
  7084. * We may be recently in ticked or tickless idle mode. At the first
  7085. * busy tick after returning from idle, we will update the busy stats.
  7086. */
  7087. set_cpu_sd_state_busy();
  7088. nohz_balance_exit_idle(cpu);
  7089. /*
  7090. * None are in tickless mode and hence no need for NOHZ idle load
  7091. * balancing.
  7092. */
  7093. if (likely(!atomic_read(&nohz.nr_cpus)))
  7094. return false;
  7095. if (time_before(now, nohz.next_balance))
  7096. return false;
  7097. if (rq->nr_running >= 2)
  7098. return true;
  7099. rcu_read_lock();
  7100. sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
  7101. if (sds) {
  7102. /*
  7103. * XXX: write a coherent comment on why we do this.
  7104. * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
  7105. */
  7106. nr_busy = atomic_read(&sds->nr_busy_cpus);
  7107. if (nr_busy > 1) {
  7108. kick = true;
  7109. goto unlock;
  7110. }
  7111. }
  7112. sd = rcu_dereference(rq->sd);
  7113. if (sd) {
  7114. if ((rq->cfs.h_nr_running >= 1) &&
  7115. check_cpu_capacity(rq, sd)) {
  7116. kick = true;
  7117. goto unlock;
  7118. }
  7119. }
  7120. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  7121. if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
  7122. sched_domain_span(sd)) < cpu)) {
  7123. kick = true;
  7124. goto unlock;
  7125. }
  7126. unlock:
  7127. rcu_read_unlock();
  7128. return kick;
  7129. }
  7130. #else
  7131. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
  7132. #endif
  7133. /*
  7134. * run_rebalance_domains is triggered when needed from the scheduler tick.
  7135. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  7136. */
  7137. static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
  7138. {
  7139. struct rq *this_rq = this_rq();
  7140. enum cpu_idle_type idle = this_rq->idle_balance ?
  7141. CPU_IDLE : CPU_NOT_IDLE;
  7142. /*
  7143. * If this cpu has a pending nohz_balance_kick, then do the
  7144. * balancing on behalf of the other idle cpus whose ticks are
  7145. * stopped. Do nohz_idle_balance *before* rebalance_domains to
  7146. * give the idle cpus a chance to load balance. Else we may
  7147. * load balance only within the local sched_domain hierarchy
  7148. * and abort nohz_idle_balance altogether if we pull some load.
  7149. */
  7150. nohz_idle_balance(this_rq, idle);
  7151. rebalance_domains(this_rq, idle);
  7152. }
  7153. /*
  7154. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  7155. */
  7156. void trigger_load_balance(struct rq *rq)
  7157. {
  7158. /* Don't need to rebalance while attached to NULL domain */
  7159. if (unlikely(on_null_domain(rq)))
  7160. return;
  7161. if (time_after_eq(jiffies, rq->next_balance))
  7162. raise_softirq(SCHED_SOFTIRQ);
  7163. #ifdef CONFIG_NO_HZ_COMMON
  7164. if (nohz_kick_needed(rq))
  7165. nohz_balancer_kick();
  7166. #endif
  7167. }
  7168. static void rq_online_fair(struct rq *rq)
  7169. {
  7170. update_sysctl();
  7171. update_runtime_enabled(rq);
  7172. }
  7173. static void rq_offline_fair(struct rq *rq)
  7174. {
  7175. update_sysctl();
  7176. /* Ensure any throttled groups are reachable by pick_next_task */
  7177. unthrottle_offline_cfs_rqs(rq);
  7178. }
  7179. #endif /* CONFIG_SMP */
  7180. /*
  7181. * scheduler tick hitting a task of our scheduling class:
  7182. */
  7183. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  7184. {
  7185. struct cfs_rq *cfs_rq;
  7186. struct sched_entity *se = &curr->se;
  7187. for_each_sched_entity(se) {
  7188. cfs_rq = cfs_rq_of(se);
  7189. entity_tick(cfs_rq, se, queued);
  7190. }
  7191. if (static_branch_unlikely(&sched_numa_balancing))
  7192. task_tick_numa(rq, curr);
  7193. }
  7194. /*
  7195. * called on fork with the child task as argument from the parent's context
  7196. * - child not yet on the tasklist
  7197. * - preemption disabled
  7198. */
  7199. static void task_fork_fair(struct task_struct *p)
  7200. {
  7201. struct cfs_rq *cfs_rq;
  7202. struct sched_entity *se = &p->se, *curr;
  7203. struct rq *rq = this_rq();
  7204. raw_spin_lock(&rq->lock);
  7205. update_rq_clock(rq);
  7206. cfs_rq = task_cfs_rq(current);
  7207. curr = cfs_rq->curr;
  7208. if (curr) {
  7209. update_curr(cfs_rq);
  7210. se->vruntime = curr->vruntime;
  7211. }
  7212. place_entity(cfs_rq, se, 1);
  7213. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  7214. /*
  7215. * Upon rescheduling, sched_class::put_prev_task() will place
  7216. * 'current' within the tree based on its new key value.
  7217. */
  7218. swap(curr->vruntime, se->vruntime);
  7219. resched_curr(rq);
  7220. }
  7221. se->vruntime -= cfs_rq->min_vruntime;
  7222. raw_spin_unlock(&rq->lock);
  7223. }
  7224. /*
  7225. * Priority of the task has changed. Check to see if we preempt
  7226. * the current task.
  7227. */
  7228. static void
  7229. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  7230. {
  7231. if (!task_on_rq_queued(p))
  7232. return;
  7233. /*
  7234. * Reschedule if we are currently running on this runqueue and
  7235. * our priority decreased, or if we are not currently running on
  7236. * this runqueue and our priority is higher than the current's
  7237. */
  7238. if (rq->curr == p) {
  7239. if (p->prio > oldprio)
  7240. resched_curr(rq);
  7241. } else
  7242. check_preempt_curr(rq, p, 0);
  7243. }
  7244. static inline bool vruntime_normalized(struct task_struct *p)
  7245. {
  7246. struct sched_entity *se = &p->se;
  7247. /*
  7248. * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
  7249. * the dequeue_entity(.flags=0) will already have normalized the
  7250. * vruntime.
  7251. */
  7252. if (p->on_rq)
  7253. return true;
  7254. /*
  7255. * When !on_rq, vruntime of the task has usually NOT been normalized.
  7256. * But there are some cases where it has already been normalized:
  7257. *
  7258. * - A forked child which is waiting for being woken up by
  7259. * wake_up_new_task().
  7260. * - A task which has been woken up by try_to_wake_up() and
  7261. * waiting for actually being woken up by sched_ttwu_pending().
  7262. */
  7263. if (!se->sum_exec_runtime || p->state == TASK_WAKING)
  7264. return true;
  7265. return false;
  7266. }
  7267. static void detach_task_cfs_rq(struct task_struct *p)
  7268. {
  7269. struct sched_entity *se = &p->se;
  7270. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  7271. u64 now = cfs_rq_clock_task(cfs_rq);
  7272. if (!vruntime_normalized(p)) {
  7273. /*
  7274. * Fix up our vruntime so that the current sleep doesn't
  7275. * cause 'unlimited' sleep bonus.
  7276. */
  7277. place_entity(cfs_rq, se, 0);
  7278. se->vruntime -= cfs_rq->min_vruntime;
  7279. }
  7280. /* Catch up with the cfs_rq and remove our load when we leave */
  7281. update_cfs_rq_load_avg(now, cfs_rq, false);
  7282. detach_entity_load_avg(cfs_rq, se);
  7283. update_tg_load_avg(cfs_rq, false);
  7284. }
  7285. static void attach_task_cfs_rq(struct task_struct *p)
  7286. {
  7287. struct sched_entity *se = &p->se;
  7288. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  7289. u64 now = cfs_rq_clock_task(cfs_rq);
  7290. #ifdef CONFIG_FAIR_GROUP_SCHED
  7291. /*
  7292. * Since the real-depth could have been changed (only FAIR
  7293. * class maintain depth value), reset depth properly.
  7294. */
  7295. se->depth = se->parent ? se->parent->depth + 1 : 0;
  7296. #endif
  7297. /* Synchronize task with its cfs_rq */
  7298. update_cfs_rq_load_avg(now, cfs_rq, false);
  7299. attach_entity_load_avg(cfs_rq, se);
  7300. update_tg_load_avg(cfs_rq, false);
  7301. if (!vruntime_normalized(p))
  7302. se->vruntime += cfs_rq->min_vruntime;
  7303. }
  7304. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  7305. {
  7306. detach_task_cfs_rq(p);
  7307. }
  7308. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  7309. {
  7310. attach_task_cfs_rq(p);
  7311. if (task_on_rq_queued(p)) {
  7312. /*
  7313. * We were most likely switched from sched_rt, so
  7314. * kick off the schedule if running, otherwise just see
  7315. * if we can still preempt the current task.
  7316. */
  7317. if (rq->curr == p)
  7318. resched_curr(rq);
  7319. else
  7320. check_preempt_curr(rq, p, 0);
  7321. }
  7322. }
  7323. /* Account for a task changing its policy or group.
  7324. *
  7325. * This routine is mostly called to set cfs_rq->curr field when a task
  7326. * migrates between groups/classes.
  7327. */
  7328. static void set_curr_task_fair(struct rq *rq)
  7329. {
  7330. struct sched_entity *se = &rq->curr->se;
  7331. for_each_sched_entity(se) {
  7332. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  7333. set_next_entity(cfs_rq, se);
  7334. /* ensure bandwidth has been allocated on our new cfs_rq */
  7335. account_cfs_rq_runtime(cfs_rq, 0);
  7336. }
  7337. }
  7338. void init_cfs_rq(struct cfs_rq *cfs_rq)
  7339. {
  7340. cfs_rq->tasks_timeline = RB_ROOT;
  7341. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7342. #ifndef CONFIG_64BIT
  7343. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  7344. #endif
  7345. #ifdef CONFIG_SMP
  7346. atomic_long_set(&cfs_rq->removed_load_avg, 0);
  7347. atomic_long_set(&cfs_rq->removed_util_avg, 0);
  7348. #endif
  7349. }
  7350. #ifdef CONFIG_FAIR_GROUP_SCHED
  7351. static void task_set_group_fair(struct task_struct *p)
  7352. {
  7353. struct sched_entity *se = &p->se;
  7354. set_task_rq(p, task_cpu(p));
  7355. se->depth = se->parent ? se->parent->depth + 1 : 0;
  7356. }
  7357. static void task_move_group_fair(struct task_struct *p)
  7358. {
  7359. detach_task_cfs_rq(p);
  7360. set_task_rq(p, task_cpu(p));
  7361. #ifdef CONFIG_SMP
  7362. /* Tell se's cfs_rq has been changed -- migrated */
  7363. p->se.avg.last_update_time = 0;
  7364. #endif
  7365. attach_task_cfs_rq(p);
  7366. }
  7367. static void task_change_group_fair(struct task_struct *p, int type)
  7368. {
  7369. switch (type) {
  7370. case TASK_SET_GROUP:
  7371. task_set_group_fair(p);
  7372. break;
  7373. case TASK_MOVE_GROUP:
  7374. task_move_group_fair(p);
  7375. break;
  7376. }
  7377. }
  7378. void free_fair_sched_group(struct task_group *tg)
  7379. {
  7380. int i;
  7381. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7382. for_each_possible_cpu(i) {
  7383. if (tg->cfs_rq)
  7384. kfree(tg->cfs_rq[i]);
  7385. if (tg->se)
  7386. kfree(tg->se[i]);
  7387. }
  7388. kfree(tg->cfs_rq);
  7389. kfree(tg->se);
  7390. }
  7391. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7392. {
  7393. struct sched_entity *se;
  7394. struct cfs_rq *cfs_rq;
  7395. int i;
  7396. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7397. if (!tg->cfs_rq)
  7398. goto err;
  7399. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7400. if (!tg->se)
  7401. goto err;
  7402. tg->shares = NICE_0_LOAD;
  7403. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7404. for_each_possible_cpu(i) {
  7405. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7406. GFP_KERNEL, cpu_to_node(i));
  7407. if (!cfs_rq)
  7408. goto err;
  7409. se = kzalloc_node(sizeof(struct sched_entity),
  7410. GFP_KERNEL, cpu_to_node(i));
  7411. if (!se)
  7412. goto err_free_rq;
  7413. init_cfs_rq(cfs_rq);
  7414. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7415. init_entity_runnable_average(se);
  7416. }
  7417. return 1;
  7418. err_free_rq:
  7419. kfree(cfs_rq);
  7420. err:
  7421. return 0;
  7422. }
  7423. void online_fair_sched_group(struct task_group *tg)
  7424. {
  7425. struct sched_entity *se;
  7426. struct rq *rq;
  7427. int i;
  7428. for_each_possible_cpu(i) {
  7429. rq = cpu_rq(i);
  7430. se = tg->se[i];
  7431. raw_spin_lock_irq(&rq->lock);
  7432. post_init_entity_util_avg(se);
  7433. sync_throttle(tg, i);
  7434. raw_spin_unlock_irq(&rq->lock);
  7435. }
  7436. }
  7437. void unregister_fair_sched_group(struct task_group *tg)
  7438. {
  7439. unsigned long flags;
  7440. struct rq *rq;
  7441. int cpu;
  7442. for_each_possible_cpu(cpu) {
  7443. if (tg->se[cpu])
  7444. remove_entity_load_avg(tg->se[cpu]);
  7445. /*
  7446. * Only empty task groups can be destroyed; so we can speculatively
  7447. * check on_list without danger of it being re-added.
  7448. */
  7449. if (!tg->cfs_rq[cpu]->on_list)
  7450. continue;
  7451. rq = cpu_rq(cpu);
  7452. raw_spin_lock_irqsave(&rq->lock, flags);
  7453. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7454. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7455. }
  7456. }
  7457. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7458. struct sched_entity *se, int cpu,
  7459. struct sched_entity *parent)
  7460. {
  7461. struct rq *rq = cpu_rq(cpu);
  7462. cfs_rq->tg = tg;
  7463. cfs_rq->rq = rq;
  7464. init_cfs_rq_runtime(cfs_rq);
  7465. tg->cfs_rq[cpu] = cfs_rq;
  7466. tg->se[cpu] = se;
  7467. /* se could be NULL for root_task_group */
  7468. if (!se)
  7469. return;
  7470. if (!parent) {
  7471. se->cfs_rq = &rq->cfs;
  7472. se->depth = 0;
  7473. } else {
  7474. se->cfs_rq = parent->my_q;
  7475. se->depth = parent->depth + 1;
  7476. }
  7477. se->my_q = cfs_rq;
  7478. /* guarantee group entities always have weight */
  7479. update_load_set(&se->load, NICE_0_LOAD);
  7480. se->parent = parent;
  7481. }
  7482. static DEFINE_MUTEX(shares_mutex);
  7483. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7484. {
  7485. int i;
  7486. unsigned long flags;
  7487. /*
  7488. * We can't change the weight of the root cgroup.
  7489. */
  7490. if (!tg->se[0])
  7491. return -EINVAL;
  7492. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7493. mutex_lock(&shares_mutex);
  7494. if (tg->shares == shares)
  7495. goto done;
  7496. tg->shares = shares;
  7497. for_each_possible_cpu(i) {
  7498. struct rq *rq = cpu_rq(i);
  7499. struct sched_entity *se;
  7500. se = tg->se[i];
  7501. /* Propagate contribution to hierarchy */
  7502. raw_spin_lock_irqsave(&rq->lock, flags);
  7503. /* Possible calls to update_curr() need rq clock */
  7504. update_rq_clock(rq);
  7505. for_each_sched_entity(se)
  7506. update_cfs_shares(group_cfs_rq(se));
  7507. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7508. }
  7509. done:
  7510. mutex_unlock(&shares_mutex);
  7511. return 0;
  7512. }
  7513. #else /* CONFIG_FAIR_GROUP_SCHED */
  7514. void free_fair_sched_group(struct task_group *tg) { }
  7515. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7516. {
  7517. return 1;
  7518. }
  7519. void online_fair_sched_group(struct task_group *tg) { }
  7520. void unregister_fair_sched_group(struct task_group *tg) { }
  7521. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7522. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  7523. {
  7524. struct sched_entity *se = &task->se;
  7525. unsigned int rr_interval = 0;
  7526. /*
  7527. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  7528. * idle runqueue:
  7529. */
  7530. if (rq->cfs.load.weight)
  7531. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  7532. return rr_interval;
  7533. }
  7534. /*
  7535. * All the scheduling class methods:
  7536. */
  7537. const struct sched_class fair_sched_class = {
  7538. .next = &idle_sched_class,
  7539. .enqueue_task = enqueue_task_fair,
  7540. .dequeue_task = dequeue_task_fair,
  7541. .yield_task = yield_task_fair,
  7542. .yield_to_task = yield_to_task_fair,
  7543. .check_preempt_curr = check_preempt_wakeup,
  7544. .pick_next_task = pick_next_task_fair,
  7545. .put_prev_task = put_prev_task_fair,
  7546. #ifdef CONFIG_SMP
  7547. .select_task_rq = select_task_rq_fair,
  7548. .migrate_task_rq = migrate_task_rq_fair,
  7549. .rq_online = rq_online_fair,
  7550. .rq_offline = rq_offline_fair,
  7551. .task_dead = task_dead_fair,
  7552. .set_cpus_allowed = set_cpus_allowed_common,
  7553. #endif
  7554. .set_curr_task = set_curr_task_fair,
  7555. .task_tick = task_tick_fair,
  7556. .task_fork = task_fork_fair,
  7557. .prio_changed = prio_changed_fair,
  7558. .switched_from = switched_from_fair,
  7559. .switched_to = switched_to_fair,
  7560. .get_rr_interval = get_rr_interval_fair,
  7561. .update_curr = update_curr_fair,
  7562. #ifdef CONFIG_FAIR_GROUP_SCHED
  7563. .task_change_group = task_change_group_fair,
  7564. #endif
  7565. };
  7566. #ifdef CONFIG_SCHED_DEBUG
  7567. void print_cfs_stats(struct seq_file *m, int cpu)
  7568. {
  7569. struct cfs_rq *cfs_rq;
  7570. rcu_read_lock();
  7571. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  7572. print_cfs_rq(m, cpu, cfs_rq);
  7573. rcu_read_unlock();
  7574. }
  7575. #ifdef CONFIG_NUMA_BALANCING
  7576. void show_numa_stats(struct task_struct *p, struct seq_file *m)
  7577. {
  7578. int node;
  7579. unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
  7580. for_each_online_node(node) {
  7581. if (p->numa_faults) {
  7582. tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
  7583. tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
  7584. }
  7585. if (p->numa_group) {
  7586. gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
  7587. gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
  7588. }
  7589. print_numa_stats(m, node, tsf, tpf, gsf, gpf);
  7590. }
  7591. }
  7592. #endif /* CONFIG_NUMA_BALANCING */
  7593. #endif /* CONFIG_SCHED_DEBUG */
  7594. __init void init_sched_fair_class(void)
  7595. {
  7596. #ifdef CONFIG_SMP
  7597. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7598. #ifdef CONFIG_NO_HZ_COMMON
  7599. nohz.next_balance = jiffies;
  7600. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7601. #endif
  7602. #endif /* SMP */
  7603. }