callchain.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. /*
  2. * Performance events callchain code, extracted from core.c:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/slab.h>
  13. #include "internal.h"
  14. struct callchain_cpus_entries {
  15. struct rcu_head rcu_head;
  16. struct perf_callchain_entry *cpu_entries[0];
  17. };
  18. int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
  19. int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
  20. static inline size_t perf_callchain_entry__sizeof(void)
  21. {
  22. return (sizeof(struct perf_callchain_entry) +
  23. sizeof(__u64) * (sysctl_perf_event_max_stack +
  24. sysctl_perf_event_max_contexts_per_stack));
  25. }
  26. static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
  27. static atomic_t nr_callchain_events;
  28. static DEFINE_MUTEX(callchain_mutex);
  29. static struct callchain_cpus_entries *callchain_cpus_entries;
  30. __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
  31. struct pt_regs *regs)
  32. {
  33. }
  34. __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
  35. struct pt_regs *regs)
  36. {
  37. }
  38. static void release_callchain_buffers_rcu(struct rcu_head *head)
  39. {
  40. struct callchain_cpus_entries *entries;
  41. int cpu;
  42. entries = container_of(head, struct callchain_cpus_entries, rcu_head);
  43. for_each_possible_cpu(cpu)
  44. kfree(entries->cpu_entries[cpu]);
  45. kfree(entries);
  46. }
  47. static void release_callchain_buffers(void)
  48. {
  49. struct callchain_cpus_entries *entries;
  50. entries = callchain_cpus_entries;
  51. RCU_INIT_POINTER(callchain_cpus_entries, NULL);
  52. call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
  53. }
  54. static int alloc_callchain_buffers(void)
  55. {
  56. int cpu;
  57. int size;
  58. struct callchain_cpus_entries *entries;
  59. /*
  60. * We can't use the percpu allocation API for data that can be
  61. * accessed from NMI. Use a temporary manual per cpu allocation
  62. * until that gets sorted out.
  63. */
  64. size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
  65. entries = kzalloc(size, GFP_KERNEL);
  66. if (!entries)
  67. return -ENOMEM;
  68. size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
  69. for_each_possible_cpu(cpu) {
  70. entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
  71. cpu_to_node(cpu));
  72. if (!entries->cpu_entries[cpu])
  73. goto fail;
  74. }
  75. rcu_assign_pointer(callchain_cpus_entries, entries);
  76. return 0;
  77. fail:
  78. for_each_possible_cpu(cpu)
  79. kfree(entries->cpu_entries[cpu]);
  80. kfree(entries);
  81. return -ENOMEM;
  82. }
  83. int get_callchain_buffers(int event_max_stack)
  84. {
  85. int err = 0;
  86. int count;
  87. mutex_lock(&callchain_mutex);
  88. count = atomic_inc_return(&nr_callchain_events);
  89. if (WARN_ON_ONCE(count < 1)) {
  90. err = -EINVAL;
  91. goto exit;
  92. }
  93. if (count > 1) {
  94. /* If the allocation failed, give up */
  95. if (!callchain_cpus_entries)
  96. err = -ENOMEM;
  97. /*
  98. * If requesting per event more than the global cap,
  99. * return a different error to help userspace figure
  100. * this out.
  101. *
  102. * And also do it here so that we have &callchain_mutex held.
  103. */
  104. if (event_max_stack > sysctl_perf_event_max_stack)
  105. err = -EOVERFLOW;
  106. goto exit;
  107. }
  108. err = alloc_callchain_buffers();
  109. exit:
  110. if (err)
  111. atomic_dec(&nr_callchain_events);
  112. mutex_unlock(&callchain_mutex);
  113. return err;
  114. }
  115. void put_callchain_buffers(void)
  116. {
  117. if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
  118. release_callchain_buffers();
  119. mutex_unlock(&callchain_mutex);
  120. }
  121. }
  122. static struct perf_callchain_entry *get_callchain_entry(int *rctx)
  123. {
  124. int cpu;
  125. struct callchain_cpus_entries *entries;
  126. *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
  127. if (*rctx == -1)
  128. return NULL;
  129. entries = rcu_dereference(callchain_cpus_entries);
  130. if (!entries)
  131. return NULL;
  132. cpu = smp_processor_id();
  133. return (((void *)entries->cpu_entries[cpu]) +
  134. (*rctx * perf_callchain_entry__sizeof()));
  135. }
  136. static void
  137. put_callchain_entry(int rctx)
  138. {
  139. put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
  140. }
  141. struct perf_callchain_entry *
  142. perf_callchain(struct perf_event *event, struct pt_regs *regs)
  143. {
  144. bool kernel = !event->attr.exclude_callchain_kernel;
  145. bool user = !event->attr.exclude_callchain_user;
  146. /* Disallow cross-task user callchains. */
  147. bool crosstask = event->ctx->task && event->ctx->task != current;
  148. const u32 max_stack = event->attr.sample_max_stack;
  149. if (!kernel && !user)
  150. return NULL;
  151. return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
  152. }
  153. struct perf_callchain_entry *
  154. get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
  155. u32 max_stack, bool crosstask, bool add_mark)
  156. {
  157. struct perf_callchain_entry *entry;
  158. struct perf_callchain_entry_ctx ctx;
  159. int rctx;
  160. entry = get_callchain_entry(&rctx);
  161. if (rctx == -1)
  162. return NULL;
  163. if (!entry)
  164. goto exit_put;
  165. ctx.entry = entry;
  166. ctx.max_stack = max_stack;
  167. ctx.nr = entry->nr = init_nr;
  168. ctx.contexts = 0;
  169. ctx.contexts_maxed = false;
  170. if (kernel && !user_mode(regs)) {
  171. if (add_mark)
  172. perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
  173. perf_callchain_kernel(&ctx, regs);
  174. }
  175. if (user) {
  176. if (!user_mode(regs)) {
  177. if (current->mm)
  178. regs = task_pt_regs(current);
  179. else
  180. regs = NULL;
  181. }
  182. if (regs) {
  183. if (crosstask)
  184. goto exit_put;
  185. if (add_mark)
  186. perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
  187. perf_callchain_user(&ctx, regs);
  188. }
  189. }
  190. exit_put:
  191. put_callchain_entry(rctx);
  192. return entry;
  193. }
  194. /*
  195. * Used for sysctl_perf_event_max_stack and
  196. * sysctl_perf_event_max_contexts_per_stack.
  197. */
  198. int perf_event_max_stack_handler(struct ctl_table *table, int write,
  199. void __user *buffer, size_t *lenp, loff_t *ppos)
  200. {
  201. int *value = table->data;
  202. int new_value = *value, ret;
  203. struct ctl_table new_table = *table;
  204. new_table.data = &new_value;
  205. ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
  206. if (ret || !write)
  207. return ret;
  208. mutex_lock(&callchain_mutex);
  209. if (atomic_read(&nr_callchain_events))
  210. ret = -EBUSY;
  211. else
  212. *value = new_value;
  213. mutex_unlock(&callchain_mutex);
  214. return ret;
  215. }