jiffies.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3. #include <linux/math64.h>
  4. #include <linux/kernel.h>
  5. #include <linux/types.h>
  6. #include <linux/time.h>
  7. #include <linux/timex.h>
  8. #include <asm/param.h> /* for HZ */
  9. #include <generated/timeconst.h>
  10. /*
  11. * The following defines establish the engineering parameters of the PLL
  12. * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  13. * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  14. * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  15. * nearest power of two in order to avoid hardware multiply operations.
  16. */
  17. #if HZ >= 12 && HZ < 24
  18. # define SHIFT_HZ 4
  19. #elif HZ >= 24 && HZ < 48
  20. # define SHIFT_HZ 5
  21. #elif HZ >= 48 && HZ < 96
  22. # define SHIFT_HZ 6
  23. #elif HZ >= 96 && HZ < 192
  24. # define SHIFT_HZ 7
  25. #elif HZ >= 192 && HZ < 384
  26. # define SHIFT_HZ 8
  27. #elif HZ >= 384 && HZ < 768
  28. # define SHIFT_HZ 9
  29. #elif HZ >= 768 && HZ < 1536
  30. # define SHIFT_HZ 10
  31. #elif HZ >= 1536 && HZ < 3072
  32. # define SHIFT_HZ 11
  33. #elif HZ >= 3072 && HZ < 6144
  34. # define SHIFT_HZ 12
  35. #elif HZ >= 6144 && HZ < 12288
  36. # define SHIFT_HZ 13
  37. #else
  38. # error Invalid value of HZ.
  39. #endif
  40. /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  41. * improve accuracy by shifting LSH bits, hence calculating:
  42. * (NOM << LSH) / DEN
  43. * This however means trouble for large NOM, because (NOM << LSH) may no
  44. * longer fit in 32 bits. The following way of calculating this gives us
  45. * some slack, under the following conditions:
  46. * - (NOM / DEN) fits in (32 - LSH) bits.
  47. * - (NOM % DEN) fits in (32 - LSH) bits.
  48. */
  49. #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
  50. + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  51. /* LATCH is used in the interval timer and ftape setup. */
  52. #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
  53. extern int register_refined_jiffies(long clock_tick_rate);
  54. /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  55. #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  56. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  57. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  58. /* some arch's have a small-data section that can be accessed register-relative
  59. * but that can only take up to, say, 4-byte variables. jiffies being part of
  60. * an 8-byte variable may not be correctly accessed unless we force the issue
  61. */
  62. #define __jiffy_data __attribute__((section(".data")))
  63. /*
  64. * The 64-bit value is not atomic - you MUST NOT read it
  65. * without sampling the sequence number in jiffies_lock.
  66. * get_jiffies_64() will do this for you as appropriate.
  67. */
  68. extern u64 __jiffy_data jiffies_64;
  69. extern unsigned long volatile __jiffy_data jiffies;
  70. #if (BITS_PER_LONG < 64)
  71. u64 get_jiffies_64(void);
  72. #else
  73. static inline u64 get_jiffies_64(void)
  74. {
  75. return (u64)jiffies;
  76. }
  77. #endif
  78. /*
  79. * These inlines deal with timer wrapping correctly. You are
  80. * strongly encouraged to use them
  81. * 1. Because people otherwise forget
  82. * 2. Because if the timer wrap changes in future you won't have to
  83. * alter your driver code.
  84. *
  85. * time_after(a,b) returns true if the time a is after time b.
  86. *
  87. * Do this with "<0" and ">=0" to only test the sign of the result. A
  88. * good compiler would generate better code (and a really good compiler
  89. * wouldn't care). Gcc is currently neither.
  90. */
  91. #define time_after(a,b) \
  92. (typecheck(unsigned long, a) && \
  93. typecheck(unsigned long, b) && \
  94. ((long)((b) - (a)) < 0))
  95. #define time_before(a,b) time_after(b,a)
  96. #define time_after_eq(a,b) \
  97. (typecheck(unsigned long, a) && \
  98. typecheck(unsigned long, b) && \
  99. ((long)((a) - (b)) >= 0))
  100. #define time_before_eq(a,b) time_after_eq(b,a)
  101. /*
  102. * Calculate whether a is in the range of [b, c].
  103. */
  104. #define time_in_range(a,b,c) \
  105. (time_after_eq(a,b) && \
  106. time_before_eq(a,c))
  107. /*
  108. * Calculate whether a is in the range of [b, c).
  109. */
  110. #define time_in_range_open(a,b,c) \
  111. (time_after_eq(a,b) && \
  112. time_before(a,c))
  113. /* Same as above, but does so with platform independent 64bit types.
  114. * These must be used when utilizing jiffies_64 (i.e. return value of
  115. * get_jiffies_64() */
  116. #define time_after64(a,b) \
  117. (typecheck(__u64, a) && \
  118. typecheck(__u64, b) && \
  119. ((__s64)((b) - (a)) < 0))
  120. #define time_before64(a,b) time_after64(b,a)
  121. #define time_after_eq64(a,b) \
  122. (typecheck(__u64, a) && \
  123. typecheck(__u64, b) && \
  124. ((__s64)((a) - (b)) >= 0))
  125. #define time_before_eq64(a,b) time_after_eq64(b,a)
  126. #define time_in_range64(a, b, c) \
  127. (time_after_eq64(a, b) && \
  128. time_before_eq64(a, c))
  129. /*
  130. * These four macros compare jiffies and 'a' for convenience.
  131. */
  132. /* time_is_before_jiffies(a) return true if a is before jiffies */
  133. #define time_is_before_jiffies(a) time_after(jiffies, a)
  134. #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
  135. /* time_is_after_jiffies(a) return true if a is after jiffies */
  136. #define time_is_after_jiffies(a) time_before(jiffies, a)
  137. #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
  138. /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
  139. #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
  140. #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
  141. /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
  142. #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
  143. #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
  144. /*
  145. * Have the 32 bit jiffies value wrap 5 minutes after boot
  146. * so jiffies wrap bugs show up earlier.
  147. */
  148. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  149. /*
  150. * Change timeval to jiffies, trying to avoid the
  151. * most obvious overflows..
  152. *
  153. * And some not so obvious.
  154. *
  155. * Note that we don't want to return LONG_MAX, because
  156. * for various timeout reasons we often end up having
  157. * to wait "jiffies+1" in order to guarantee that we wait
  158. * at _least_ "jiffies" - so "jiffies+1" had better still
  159. * be positive.
  160. */
  161. #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
  162. extern unsigned long preset_lpj;
  163. /*
  164. * We want to do realistic conversions of time so we need to use the same
  165. * values the update wall clock code uses as the jiffies size. This value
  166. * is: TICK_NSEC (which is defined in timex.h). This
  167. * is a constant and is in nanoseconds. We will use scaled math
  168. * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
  169. * NSEC_JIFFIE_SC. Note that these defines contain nothing but
  170. * constants and so are computed at compile time. SHIFT_HZ (computed in
  171. * timex.h) adjusts the scaling for different HZ values.
  172. * Scaled math??? What is that?
  173. *
  174. * Scaled math is a way to do integer math on values that would,
  175. * otherwise, either overflow, underflow, or cause undesired div
  176. * instructions to appear in the execution path. In short, we "scale"
  177. * up the operands so they take more bits (more precision, less
  178. * underflow), do the desired operation and then "scale" the result back
  179. * by the same amount. If we do the scaling by shifting we avoid the
  180. * costly mpy and the dastardly div instructions.
  181. * Suppose, for example, we want to convert from seconds to jiffies
  182. * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
  183. * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  184. * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  185. * might calculate at compile time, however, the result will only have
  186. * about 3-4 bits of precision (less for smaller values of HZ).
  187. *
  188. * So, we scale as follows:
  189. * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  190. * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  191. * Then we make SCALE a power of two so:
  192. * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  193. * Now we define:
  194. * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  195. * jiff = (sec * SEC_CONV) >> SCALE;
  196. *
  197. * Often the math we use will expand beyond 32-bits so we tell C how to
  198. * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  199. * which should take the result back to 32-bits. We want this expansion
  200. * to capture as much precision as possible. At the same time we don't
  201. * want to overflow so we pick the SCALE to avoid this. In this file,
  202. * that means using a different scale for each range of HZ values (as
  203. * defined in timex.h).
  204. *
  205. * For those who want to know, gcc will give a 64-bit result from a "*"
  206. * operator if the result is a long long AND at least one of the
  207. * operands is cast to long long (usually just prior to the "*" so as
  208. * not to confuse it into thinking it really has a 64-bit operand,
  209. * which, buy the way, it can do, but it takes more code and at least 2
  210. * mpys).
  211. * We also need to be aware that one second in nanoseconds is only a
  212. * couple of bits away from overflowing a 32-bit word, so we MUST use
  213. * 64-bits to get the full range time in nanoseconds.
  214. */
  215. /*
  216. * Here are the scales we will use. One for seconds, nanoseconds and
  217. * microseconds.
  218. *
  219. * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  220. * check if the sign bit is set. If not, we bump the shift count by 1.
  221. * (Gets an extra bit of precision where we can use it.)
  222. * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  223. * Haven't tested others.
  224. * Limits of cpp (for #if expressions) only long (no long long), but
  225. * then we only need the most signicant bit.
  226. */
  227. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  228. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  229. #undef SEC_JIFFIE_SC
  230. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  231. #endif
  232. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  233. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  234. TICK_NSEC -1) / (u64)TICK_NSEC))
  235. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  236. TICK_NSEC -1) / (u64)TICK_NSEC))
  237. /*
  238. * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
  239. * into seconds. The 64-bit case will overflow if we are not careful,
  240. * so use the messy SH_DIV macro to do it. Still all constants.
  241. */
  242. #if BITS_PER_LONG < 64
  243. # define MAX_SEC_IN_JIFFIES \
  244. (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  245. #else /* take care of overflow on 64 bits machines */
  246. # define MAX_SEC_IN_JIFFIES \
  247. (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  248. #endif
  249. /*
  250. * Convert various time units to each other:
  251. */
  252. extern unsigned int jiffies_to_msecs(const unsigned long j);
  253. extern unsigned int jiffies_to_usecs(const unsigned long j);
  254. static inline u64 jiffies_to_nsecs(const unsigned long j)
  255. {
  256. return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
  257. }
  258. extern unsigned long __msecs_to_jiffies(const unsigned int m);
  259. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  260. /*
  261. * HZ is equal to or smaller than 1000, and 1000 is a nice round
  262. * multiple of HZ, divide with the factor between them, but round
  263. * upwards:
  264. */
  265. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  266. {
  267. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  268. }
  269. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  270. /*
  271. * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
  272. * simply multiply with the factor between them.
  273. *
  274. * But first make sure the multiplication result cannot overflow:
  275. */
  276. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  277. {
  278. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  279. return MAX_JIFFY_OFFSET;
  280. return m * (HZ / MSEC_PER_SEC);
  281. }
  282. #else
  283. /*
  284. * Generic case - multiply, round and divide. But first check that if
  285. * we are doing a net multiplication, that we wouldn't overflow:
  286. */
  287. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  288. {
  289. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  290. return MAX_JIFFY_OFFSET;
  291. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
  292. }
  293. #endif
  294. /**
  295. * msecs_to_jiffies: - convert milliseconds to jiffies
  296. * @m: time in milliseconds
  297. *
  298. * conversion is done as follows:
  299. *
  300. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  301. *
  302. * - 'too large' values [that would result in larger than
  303. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  304. *
  305. * - all other values are converted to jiffies by either multiplying
  306. * the input value by a factor or dividing it with a factor and
  307. * handling any 32-bit overflows.
  308. * for the details see __msecs_to_jiffies()
  309. *
  310. * msecs_to_jiffies() checks for the passed in value being a constant
  311. * via __builtin_constant_p() allowing gcc to eliminate most of the
  312. * code, __msecs_to_jiffies() is called if the value passed does not
  313. * allow constant folding and the actual conversion must be done at
  314. * runtime.
  315. * the HZ range specific helpers _msecs_to_jiffies() are called both
  316. * directly here and from __msecs_to_jiffies() in the case where
  317. * constant folding is not possible.
  318. */
  319. static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
  320. {
  321. if (__builtin_constant_p(m)) {
  322. if ((int)m < 0)
  323. return MAX_JIFFY_OFFSET;
  324. return _msecs_to_jiffies(m);
  325. } else {
  326. return __msecs_to_jiffies(m);
  327. }
  328. }
  329. extern unsigned long __usecs_to_jiffies(const unsigned int u);
  330. #if !(USEC_PER_SEC % HZ)
  331. static inline unsigned long _usecs_to_jiffies(const unsigned int u)
  332. {
  333. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  334. }
  335. #else
  336. static inline unsigned long _usecs_to_jiffies(const unsigned int u)
  337. {
  338. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  339. >> USEC_TO_HZ_SHR32;
  340. }
  341. #endif
  342. /**
  343. * usecs_to_jiffies: - convert microseconds to jiffies
  344. * @u: time in microseconds
  345. *
  346. * conversion is done as follows:
  347. *
  348. * - 'too large' values [that would result in larger than
  349. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  350. *
  351. * - all other values are converted to jiffies by either multiplying
  352. * the input value by a factor or dividing it with a factor and
  353. * handling any 32-bit overflows as for msecs_to_jiffies.
  354. *
  355. * usecs_to_jiffies() checks for the passed in value being a constant
  356. * via __builtin_constant_p() allowing gcc to eliminate most of the
  357. * code, __usecs_to_jiffies() is called if the value passed does not
  358. * allow constant folding and the actual conversion must be done at
  359. * runtime.
  360. * the HZ range specific helpers _usecs_to_jiffies() are called both
  361. * directly here and from __msecs_to_jiffies() in the case where
  362. * constant folding is not possible.
  363. */
  364. static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
  365. {
  366. if (__builtin_constant_p(u)) {
  367. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  368. return MAX_JIFFY_OFFSET;
  369. return _usecs_to_jiffies(u);
  370. } else {
  371. return __usecs_to_jiffies(u);
  372. }
  373. }
  374. extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
  375. extern void jiffies_to_timespec64(const unsigned long jiffies,
  376. struct timespec64 *value);
  377. static inline unsigned long timespec_to_jiffies(const struct timespec *value)
  378. {
  379. struct timespec64 ts = timespec_to_timespec64(*value);
  380. return timespec64_to_jiffies(&ts);
  381. }
  382. static inline void jiffies_to_timespec(const unsigned long jiffies,
  383. struct timespec *value)
  384. {
  385. struct timespec64 ts;
  386. jiffies_to_timespec64(jiffies, &ts);
  387. *value = timespec64_to_timespec(ts);
  388. }
  389. extern unsigned long timeval_to_jiffies(const struct timeval *value);
  390. extern void jiffies_to_timeval(const unsigned long jiffies,
  391. struct timeval *value);
  392. extern clock_t jiffies_to_clock_t(unsigned long x);
  393. static inline clock_t jiffies_delta_to_clock_t(long delta)
  394. {
  395. return jiffies_to_clock_t(max(0L, delta));
  396. }
  397. extern unsigned long clock_t_to_jiffies(unsigned long x);
  398. extern u64 jiffies_64_to_clock_t(u64 x);
  399. extern u64 nsec_to_clock_t(u64 x);
  400. extern u64 nsecs_to_jiffies64(u64 n);
  401. extern unsigned long nsecs_to_jiffies(u64 n);
  402. #define TIMESTAMP_SIZE 30
  403. #endif