1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693 |
- /*
- * Copyright (c) 2000-2005 Silicon Graphics, Inc.
- * All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it would be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- */
- #include "xfs.h"
- #include "xfs_fs.h"
- #include "xfs_format.h"
- #include "xfs_log_format.h"
- #include "xfs_trans_resv.h"
- #include "xfs_sb.h"
- #include "xfs_mount.h"
- #include "xfs_inode.h"
- #include "xfs_error.h"
- #include "xfs_trans.h"
- #include "xfs_trans_priv.h"
- #include "xfs_inode_item.h"
- #include "xfs_quota.h"
- #include "xfs_trace.h"
- #include "xfs_icache.h"
- #include "xfs_bmap_util.h"
- #include "xfs_dquot_item.h"
- #include "xfs_dquot.h"
- #include "xfs_reflink.h"
- #include <linux/kthread.h>
- #include <linux/freezer.h>
- /*
- * Allocate and initialise an xfs_inode.
- */
- struct xfs_inode *
- xfs_inode_alloc(
- struct xfs_mount *mp,
- xfs_ino_t ino)
- {
- struct xfs_inode *ip;
- /*
- * if this didn't occur in transactions, we could use
- * KM_MAYFAIL and return NULL here on ENOMEM. Set the
- * code up to do this anyway.
- */
- ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
- if (!ip)
- return NULL;
- if (inode_init_always(mp->m_super, VFS_I(ip))) {
- kmem_zone_free(xfs_inode_zone, ip);
- return NULL;
- }
- /* VFS doesn't initialise i_mode! */
- VFS_I(ip)->i_mode = 0;
- XFS_STATS_INC(mp, vn_active);
- ASSERT(atomic_read(&ip->i_pincount) == 0);
- ASSERT(!xfs_isiflocked(ip));
- ASSERT(ip->i_ino == 0);
- mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
- /* initialise the xfs inode */
- ip->i_ino = ino;
- ip->i_mount = mp;
- memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
- ip->i_afp = NULL;
- ip->i_cowfp = NULL;
- ip->i_cnextents = 0;
- ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
- memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
- ip->i_flags = 0;
- ip->i_delayed_blks = 0;
- memset(&ip->i_d, 0, sizeof(ip->i_d));
- return ip;
- }
- STATIC void
- xfs_inode_free_callback(
- struct rcu_head *head)
- {
- struct inode *inode = container_of(head, struct inode, i_rcu);
- struct xfs_inode *ip = XFS_I(inode);
- switch (VFS_I(ip)->i_mode & S_IFMT) {
- case S_IFREG:
- case S_IFDIR:
- case S_IFLNK:
- xfs_idestroy_fork(ip, XFS_DATA_FORK);
- break;
- }
- if (ip->i_afp)
- xfs_idestroy_fork(ip, XFS_ATTR_FORK);
- if (ip->i_cowfp)
- xfs_idestroy_fork(ip, XFS_COW_FORK);
- if (ip->i_itemp) {
- ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
- xfs_inode_item_destroy(ip);
- ip->i_itemp = NULL;
- }
- kmem_zone_free(xfs_inode_zone, ip);
- }
- static void
- __xfs_inode_free(
- struct xfs_inode *ip)
- {
- /* asserts to verify all state is correct here */
- ASSERT(atomic_read(&ip->i_pincount) == 0);
- XFS_STATS_DEC(ip->i_mount, vn_active);
- call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
- }
- void
- xfs_inode_free(
- struct xfs_inode *ip)
- {
- ASSERT(!xfs_isiflocked(ip));
- /*
- * Because we use RCU freeing we need to ensure the inode always
- * appears to be reclaimed with an invalid inode number when in the
- * free state. The ip->i_flags_lock provides the barrier against lookup
- * races.
- */
- spin_lock(&ip->i_flags_lock);
- ip->i_flags = XFS_IRECLAIM;
- ip->i_ino = 0;
- spin_unlock(&ip->i_flags_lock);
- __xfs_inode_free(ip);
- }
- /*
- * Queue a new inode reclaim pass if there are reclaimable inodes and there
- * isn't a reclaim pass already in progress. By default it runs every 5s based
- * on the xfs periodic sync default of 30s. Perhaps this should have it's own
- * tunable, but that can be done if this method proves to be ineffective or too
- * aggressive.
- */
- static void
- xfs_reclaim_work_queue(
- struct xfs_mount *mp)
- {
- rcu_read_lock();
- if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
- queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
- msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
- }
- rcu_read_unlock();
- }
- /*
- * This is a fast pass over the inode cache to try to get reclaim moving on as
- * many inodes as possible in a short period of time. It kicks itself every few
- * seconds, as well as being kicked by the inode cache shrinker when memory
- * goes low. It scans as quickly as possible avoiding locked inodes or those
- * already being flushed, and once done schedules a future pass.
- */
- void
- xfs_reclaim_worker(
- struct work_struct *work)
- {
- struct xfs_mount *mp = container_of(to_delayed_work(work),
- struct xfs_mount, m_reclaim_work);
- xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
- xfs_reclaim_work_queue(mp);
- }
- static void
- xfs_perag_set_reclaim_tag(
- struct xfs_perag *pag)
- {
- struct xfs_mount *mp = pag->pag_mount;
- lockdep_assert_held(&pag->pag_ici_lock);
- if (pag->pag_ici_reclaimable++)
- return;
- /* propagate the reclaim tag up into the perag radix tree */
- spin_lock(&mp->m_perag_lock);
- radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
- XFS_ICI_RECLAIM_TAG);
- spin_unlock(&mp->m_perag_lock);
- /* schedule periodic background inode reclaim */
- xfs_reclaim_work_queue(mp);
- trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
- }
- static void
- xfs_perag_clear_reclaim_tag(
- struct xfs_perag *pag)
- {
- struct xfs_mount *mp = pag->pag_mount;
- lockdep_assert_held(&pag->pag_ici_lock);
- if (--pag->pag_ici_reclaimable)
- return;
- /* clear the reclaim tag from the perag radix tree */
- spin_lock(&mp->m_perag_lock);
- radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
- XFS_ICI_RECLAIM_TAG);
- spin_unlock(&mp->m_perag_lock);
- trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
- }
- /*
- * We set the inode flag atomically with the radix tree tag.
- * Once we get tag lookups on the radix tree, this inode flag
- * can go away.
- */
- void
- xfs_inode_set_reclaim_tag(
- struct xfs_inode *ip)
- {
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- spin_lock(&pag->pag_ici_lock);
- spin_lock(&ip->i_flags_lock);
- radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
- XFS_ICI_RECLAIM_TAG);
- xfs_perag_set_reclaim_tag(pag);
- __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
- spin_unlock(&ip->i_flags_lock);
- spin_unlock(&pag->pag_ici_lock);
- xfs_perag_put(pag);
- }
- STATIC void
- xfs_inode_clear_reclaim_tag(
- struct xfs_perag *pag,
- xfs_ino_t ino)
- {
- radix_tree_tag_clear(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(pag->pag_mount, ino),
- XFS_ICI_RECLAIM_TAG);
- xfs_perag_clear_reclaim_tag(pag);
- }
- static void
- xfs_inew_wait(
- struct xfs_inode *ip)
- {
- wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
- DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
- do {
- prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
- if (!xfs_iflags_test(ip, XFS_INEW))
- break;
- schedule();
- } while (true);
- finish_wait(wq, &wait.wait);
- }
- /*
- * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
- * part of the structure. This is made more complex by the fact we store
- * information about the on-disk values in the VFS inode and so we can't just
- * overwrite the values unconditionally. Hence we save the parameters we
- * need to retain across reinitialisation, and rewrite them into the VFS inode
- * after reinitialisation even if it fails.
- */
- static int
- xfs_reinit_inode(
- struct xfs_mount *mp,
- struct inode *inode)
- {
- int error;
- uint32_t nlink = inode->i_nlink;
- uint32_t generation = inode->i_generation;
- uint64_t version = inode->i_version;
- umode_t mode = inode->i_mode;
- error = inode_init_always(mp->m_super, inode);
- set_nlink(inode, nlink);
- inode->i_generation = generation;
- inode->i_version = version;
- inode->i_mode = mode;
- return error;
- }
- /*
- * Check the validity of the inode we just found it the cache
- */
- static int
- xfs_iget_cache_hit(
- struct xfs_perag *pag,
- struct xfs_inode *ip,
- xfs_ino_t ino,
- int flags,
- int lock_flags) __releases(RCU)
- {
- struct inode *inode = VFS_I(ip);
- struct xfs_mount *mp = ip->i_mount;
- int error;
- /*
- * check for re-use of an inode within an RCU grace period due to the
- * radix tree nodes not being updated yet. We monitor for this by
- * setting the inode number to zero before freeing the inode structure.
- * If the inode has been reallocated and set up, then the inode number
- * will not match, so check for that, too.
- */
- spin_lock(&ip->i_flags_lock);
- if (ip->i_ino != ino) {
- trace_xfs_iget_skip(ip);
- XFS_STATS_INC(mp, xs_ig_frecycle);
- error = -EAGAIN;
- goto out_error;
- }
- /*
- * If we are racing with another cache hit that is currently
- * instantiating this inode or currently recycling it out of
- * reclaimabe state, wait for the initialisation to complete
- * before continuing.
- *
- * XXX(hch): eventually we should do something equivalent to
- * wait_on_inode to wait for these flags to be cleared
- * instead of polling for it.
- */
- if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
- trace_xfs_iget_skip(ip);
- XFS_STATS_INC(mp, xs_ig_frecycle);
- error = -EAGAIN;
- goto out_error;
- }
- /*
- * If lookup is racing with unlink return an error immediately.
- */
- if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
- error = -ENOENT;
- goto out_error;
- }
- /*
- * If IRECLAIMABLE is set, we've torn down the VFS inode already.
- * Need to carefully get it back into useable state.
- */
- if (ip->i_flags & XFS_IRECLAIMABLE) {
- trace_xfs_iget_reclaim(ip);
- /*
- * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
- * from stomping over us while we recycle the inode. We can't
- * clear the radix tree reclaimable tag yet as it requires
- * pag_ici_lock to be held exclusive.
- */
- ip->i_flags |= XFS_IRECLAIM;
- spin_unlock(&ip->i_flags_lock);
- rcu_read_unlock();
- error = xfs_reinit_inode(mp, inode);
- if (error) {
- bool wake;
- /*
- * Re-initializing the inode failed, and we are in deep
- * trouble. Try to re-add it to the reclaim list.
- */
- rcu_read_lock();
- spin_lock(&ip->i_flags_lock);
- wake = !!__xfs_iflags_test(ip, XFS_INEW);
- ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
- if (wake)
- wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
- ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
- trace_xfs_iget_reclaim_fail(ip);
- goto out_error;
- }
- spin_lock(&pag->pag_ici_lock);
- spin_lock(&ip->i_flags_lock);
- /*
- * Clear the per-lifetime state in the inode as we are now
- * effectively a new inode and need to return to the initial
- * state before reuse occurs.
- */
- ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
- ip->i_flags |= XFS_INEW;
- xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
- inode->i_state = I_NEW;
- ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
- mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
- spin_unlock(&ip->i_flags_lock);
- spin_unlock(&pag->pag_ici_lock);
- } else {
- /* If the VFS inode is being torn down, pause and try again. */
- if (!igrab(inode)) {
- trace_xfs_iget_skip(ip);
- error = -EAGAIN;
- goto out_error;
- }
- /* We've got a live one. */
- spin_unlock(&ip->i_flags_lock);
- rcu_read_unlock();
- trace_xfs_iget_hit(ip);
- }
- if (lock_flags != 0)
- xfs_ilock(ip, lock_flags);
- xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
- XFS_STATS_INC(mp, xs_ig_found);
- return 0;
- out_error:
- spin_unlock(&ip->i_flags_lock);
- rcu_read_unlock();
- return error;
- }
- static int
- xfs_iget_cache_miss(
- struct xfs_mount *mp,
- struct xfs_perag *pag,
- xfs_trans_t *tp,
- xfs_ino_t ino,
- struct xfs_inode **ipp,
- int flags,
- int lock_flags)
- {
- struct xfs_inode *ip;
- int error;
- xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
- int iflags;
- ip = xfs_inode_alloc(mp, ino);
- if (!ip)
- return -ENOMEM;
- error = xfs_iread(mp, tp, ip, flags);
- if (error)
- goto out_destroy;
- trace_xfs_iget_miss(ip);
- if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
- error = -ENOENT;
- goto out_destroy;
- }
- /*
- * Preload the radix tree so we can insert safely under the
- * write spinlock. Note that we cannot sleep inside the preload
- * region. Since we can be called from transaction context, don't
- * recurse into the file system.
- */
- if (radix_tree_preload(GFP_NOFS)) {
- error = -EAGAIN;
- goto out_destroy;
- }
- /*
- * Because the inode hasn't been added to the radix-tree yet it can't
- * be found by another thread, so we can do the non-sleeping lock here.
- */
- if (lock_flags) {
- if (!xfs_ilock_nowait(ip, lock_flags))
- BUG();
- }
- /*
- * These values must be set before inserting the inode into the radix
- * tree as the moment it is inserted a concurrent lookup (allowed by the
- * RCU locking mechanism) can find it and that lookup must see that this
- * is an inode currently under construction (i.e. that XFS_INEW is set).
- * The ip->i_flags_lock that protects the XFS_INEW flag forms the
- * memory barrier that ensures this detection works correctly at lookup
- * time.
- */
- iflags = XFS_INEW;
- if (flags & XFS_IGET_DONTCACHE)
- iflags |= XFS_IDONTCACHE;
- ip->i_udquot = NULL;
- ip->i_gdquot = NULL;
- ip->i_pdquot = NULL;
- xfs_iflags_set(ip, iflags);
- /* insert the new inode */
- spin_lock(&pag->pag_ici_lock);
- error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
- if (unlikely(error)) {
- WARN_ON(error != -EEXIST);
- XFS_STATS_INC(mp, xs_ig_dup);
- error = -EAGAIN;
- goto out_preload_end;
- }
- spin_unlock(&pag->pag_ici_lock);
- radix_tree_preload_end();
- *ipp = ip;
- return 0;
- out_preload_end:
- spin_unlock(&pag->pag_ici_lock);
- radix_tree_preload_end();
- if (lock_flags)
- xfs_iunlock(ip, lock_flags);
- out_destroy:
- __destroy_inode(VFS_I(ip));
- xfs_inode_free(ip);
- return error;
- }
- /*
- * Look up an inode by number in the given file system.
- * The inode is looked up in the cache held in each AG.
- * If the inode is found in the cache, initialise the vfs inode
- * if necessary.
- *
- * If it is not in core, read it in from the file system's device,
- * add it to the cache and initialise the vfs inode.
- *
- * The inode is locked according to the value of the lock_flags parameter.
- * This flag parameter indicates how and if the inode's IO lock and inode lock
- * should be taken.
- *
- * mp -- the mount point structure for the current file system. It points
- * to the inode hash table.
- * tp -- a pointer to the current transaction if there is one. This is
- * simply passed through to the xfs_iread() call.
- * ino -- the number of the inode desired. This is the unique identifier
- * within the file system for the inode being requested.
- * lock_flags -- flags indicating how to lock the inode. See the comment
- * for xfs_ilock() for a list of valid values.
- */
- int
- xfs_iget(
- xfs_mount_t *mp,
- xfs_trans_t *tp,
- xfs_ino_t ino,
- uint flags,
- uint lock_flags,
- xfs_inode_t **ipp)
- {
- xfs_inode_t *ip;
- int error;
- xfs_perag_t *pag;
- xfs_agino_t agino;
- /*
- * xfs_reclaim_inode() uses the ILOCK to ensure an inode
- * doesn't get freed while it's being referenced during a
- * radix tree traversal here. It assumes this function
- * aqcuires only the ILOCK (and therefore it has no need to
- * involve the IOLOCK in this synchronization).
- */
- ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
- /* reject inode numbers outside existing AGs */
- if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
- return -EINVAL;
- XFS_STATS_INC(mp, xs_ig_attempts);
- /* get the perag structure and ensure that it's inode capable */
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
- agino = XFS_INO_TO_AGINO(mp, ino);
- again:
- error = 0;
- rcu_read_lock();
- ip = radix_tree_lookup(&pag->pag_ici_root, agino);
- if (ip) {
- error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
- if (error)
- goto out_error_or_again;
- } else {
- rcu_read_unlock();
- XFS_STATS_INC(mp, xs_ig_missed);
- error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
- flags, lock_flags);
- if (error)
- goto out_error_or_again;
- }
- xfs_perag_put(pag);
- *ipp = ip;
- /*
- * If we have a real type for an on-disk inode, we can setup the inode
- * now. If it's a new inode being created, xfs_ialloc will handle it.
- */
- if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
- xfs_setup_existing_inode(ip);
- return 0;
- out_error_or_again:
- if (error == -EAGAIN) {
- delay(1);
- goto again;
- }
- xfs_perag_put(pag);
- return error;
- }
- /*
- * The inode lookup is done in batches to keep the amount of lock traffic and
- * radix tree lookups to a minimum. The batch size is a trade off between
- * lookup reduction and stack usage. This is in the reclaim path, so we can't
- * be too greedy.
- */
- #define XFS_LOOKUP_BATCH 32
- STATIC int
- xfs_inode_ag_walk_grab(
- struct xfs_inode *ip,
- int flags)
- {
- struct inode *inode = VFS_I(ip);
- bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
- ASSERT(rcu_read_lock_held());
- /*
- * check for stale RCU freed inode
- *
- * If the inode has been reallocated, it doesn't matter if it's not in
- * the AG we are walking - we are walking for writeback, so if it
- * passes all the "valid inode" checks and is dirty, then we'll write
- * it back anyway. If it has been reallocated and still being
- * initialised, the XFS_INEW check below will catch it.
- */
- spin_lock(&ip->i_flags_lock);
- if (!ip->i_ino)
- goto out_unlock_noent;
- /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
- if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
- __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
- goto out_unlock_noent;
- spin_unlock(&ip->i_flags_lock);
- /* nothing to sync during shutdown */
- if (XFS_FORCED_SHUTDOWN(ip->i_mount))
- return -EFSCORRUPTED;
- /* If we can't grab the inode, it must on it's way to reclaim. */
- if (!igrab(inode))
- return -ENOENT;
- /* inode is valid */
- return 0;
- out_unlock_noent:
- spin_unlock(&ip->i_flags_lock);
- return -ENOENT;
- }
- STATIC int
- xfs_inode_ag_walk(
- struct xfs_mount *mp,
- struct xfs_perag *pag,
- int (*execute)(struct xfs_inode *ip, int flags,
- void *args),
- int flags,
- void *args,
- int tag,
- int iter_flags)
- {
- uint32_t first_index;
- int last_error = 0;
- int skipped;
- int done;
- int nr_found;
- restart:
- done = 0;
- skipped = 0;
- first_index = 0;
- nr_found = 0;
- do {
- struct xfs_inode *batch[XFS_LOOKUP_BATCH];
- int error = 0;
- int i;
- rcu_read_lock();
- if (tag == -1)
- nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
- (void **)batch, first_index,
- XFS_LOOKUP_BATCH);
- else
- nr_found = radix_tree_gang_lookup_tag(
- &pag->pag_ici_root,
- (void **) batch, first_index,
- XFS_LOOKUP_BATCH, tag);
- if (!nr_found) {
- rcu_read_unlock();
- break;
- }
- /*
- * Grab the inodes before we drop the lock. if we found
- * nothing, nr == 0 and the loop will be skipped.
- */
- for (i = 0; i < nr_found; i++) {
- struct xfs_inode *ip = batch[i];
- if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
- batch[i] = NULL;
- /*
- * Update the index for the next lookup. Catch
- * overflows into the next AG range which can occur if
- * we have inodes in the last block of the AG and we
- * are currently pointing to the last inode.
- *
- * Because we may see inodes that are from the wrong AG
- * due to RCU freeing and reallocation, only update the
- * index if it lies in this AG. It was a race that lead
- * us to see this inode, so another lookup from the
- * same index will not find it again.
- */
- if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
- continue;
- first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
- if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
- done = 1;
- }
- /* unlock now we've grabbed the inodes. */
- rcu_read_unlock();
- for (i = 0; i < nr_found; i++) {
- if (!batch[i])
- continue;
- if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
- xfs_iflags_test(batch[i], XFS_INEW))
- xfs_inew_wait(batch[i]);
- error = execute(batch[i], flags, args);
- IRELE(batch[i]);
- if (error == -EAGAIN) {
- skipped++;
- continue;
- }
- if (error && last_error != -EFSCORRUPTED)
- last_error = error;
- }
- /* bail out if the filesystem is corrupted. */
- if (error == -EFSCORRUPTED)
- break;
- cond_resched();
- } while (nr_found && !done);
- if (skipped) {
- delay(1);
- goto restart;
- }
- return last_error;
- }
- /*
- * Background scanning to trim post-EOF preallocated space. This is queued
- * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
- */
- void
- xfs_queue_eofblocks(
- struct xfs_mount *mp)
- {
- rcu_read_lock();
- if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
- queue_delayed_work(mp->m_eofblocks_workqueue,
- &mp->m_eofblocks_work,
- msecs_to_jiffies(xfs_eofb_secs * 1000));
- rcu_read_unlock();
- }
- void
- xfs_eofblocks_worker(
- struct work_struct *work)
- {
- struct xfs_mount *mp = container_of(to_delayed_work(work),
- struct xfs_mount, m_eofblocks_work);
- xfs_icache_free_eofblocks(mp, NULL);
- xfs_queue_eofblocks(mp);
- }
- /*
- * Background scanning to trim preallocated CoW space. This is queued
- * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
- * (We'll just piggyback on the post-EOF prealloc space workqueue.)
- */
- STATIC void
- xfs_queue_cowblocks(
- struct xfs_mount *mp)
- {
- rcu_read_lock();
- if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
- queue_delayed_work(mp->m_eofblocks_workqueue,
- &mp->m_cowblocks_work,
- msecs_to_jiffies(xfs_cowb_secs * 1000));
- rcu_read_unlock();
- }
- void
- xfs_cowblocks_worker(
- struct work_struct *work)
- {
- struct xfs_mount *mp = container_of(to_delayed_work(work),
- struct xfs_mount, m_cowblocks_work);
- xfs_icache_free_cowblocks(mp, NULL);
- xfs_queue_cowblocks(mp);
- }
- int
- xfs_inode_ag_iterator_flags(
- struct xfs_mount *mp,
- int (*execute)(struct xfs_inode *ip, int flags,
- void *args),
- int flags,
- void *args,
- int iter_flags)
- {
- struct xfs_perag *pag;
- int error = 0;
- int last_error = 0;
- xfs_agnumber_t ag;
- ag = 0;
- while ((pag = xfs_perag_get(mp, ag))) {
- ag = pag->pag_agno + 1;
- error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
- iter_flags);
- xfs_perag_put(pag);
- if (error) {
- last_error = error;
- if (error == -EFSCORRUPTED)
- break;
- }
- }
- return last_error;
- }
- int
- xfs_inode_ag_iterator(
- struct xfs_mount *mp,
- int (*execute)(struct xfs_inode *ip, int flags,
- void *args),
- int flags,
- void *args)
- {
- return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
- }
- int
- xfs_inode_ag_iterator_tag(
- struct xfs_mount *mp,
- int (*execute)(struct xfs_inode *ip, int flags,
- void *args),
- int flags,
- void *args,
- int tag)
- {
- struct xfs_perag *pag;
- int error = 0;
- int last_error = 0;
- xfs_agnumber_t ag;
- ag = 0;
- while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
- ag = pag->pag_agno + 1;
- error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
- 0);
- xfs_perag_put(pag);
- if (error) {
- last_error = error;
- if (error == -EFSCORRUPTED)
- break;
- }
- }
- return last_error;
- }
- /*
- * Grab the inode for reclaim exclusively.
- * Return 0 if we grabbed it, non-zero otherwise.
- */
- STATIC int
- xfs_reclaim_inode_grab(
- struct xfs_inode *ip,
- int flags)
- {
- ASSERT(rcu_read_lock_held());
- /* quick check for stale RCU freed inode */
- if (!ip->i_ino)
- return 1;
- /*
- * If we are asked for non-blocking operation, do unlocked checks to
- * see if the inode already is being flushed or in reclaim to avoid
- * lock traffic.
- */
- if ((flags & SYNC_TRYLOCK) &&
- __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
- return 1;
- /*
- * The radix tree lock here protects a thread in xfs_iget from racing
- * with us starting reclaim on the inode. Once we have the
- * XFS_IRECLAIM flag set it will not touch us.
- *
- * Due to RCU lookup, we may find inodes that have been freed and only
- * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
- * aren't candidates for reclaim at all, so we must check the
- * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
- */
- spin_lock(&ip->i_flags_lock);
- if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
- __xfs_iflags_test(ip, XFS_IRECLAIM)) {
- /* not a reclaim candidate. */
- spin_unlock(&ip->i_flags_lock);
- return 1;
- }
- __xfs_iflags_set(ip, XFS_IRECLAIM);
- spin_unlock(&ip->i_flags_lock);
- return 0;
- }
- /*
- * Inodes in different states need to be treated differently. The following
- * table lists the inode states and the reclaim actions necessary:
- *
- * inode state iflush ret required action
- * --------------- ---------- ---------------
- * bad - reclaim
- * shutdown EIO unpin and reclaim
- * clean, unpinned 0 reclaim
- * stale, unpinned 0 reclaim
- * clean, pinned(*) 0 requeue
- * stale, pinned EAGAIN requeue
- * dirty, async - requeue
- * dirty, sync 0 reclaim
- *
- * (*) dgc: I don't think the clean, pinned state is possible but it gets
- * handled anyway given the order of checks implemented.
- *
- * Also, because we get the flush lock first, we know that any inode that has
- * been flushed delwri has had the flush completed by the time we check that
- * the inode is clean.
- *
- * Note that because the inode is flushed delayed write by AIL pushing, the
- * flush lock may already be held here and waiting on it can result in very
- * long latencies. Hence for sync reclaims, where we wait on the flush lock,
- * the caller should push the AIL first before trying to reclaim inodes to
- * minimise the amount of time spent waiting. For background relaim, we only
- * bother to reclaim clean inodes anyway.
- *
- * Hence the order of actions after gaining the locks should be:
- * bad => reclaim
- * shutdown => unpin and reclaim
- * pinned, async => requeue
- * pinned, sync => unpin
- * stale => reclaim
- * clean => reclaim
- * dirty, async => requeue
- * dirty, sync => flush, wait and reclaim
- */
- STATIC int
- xfs_reclaim_inode(
- struct xfs_inode *ip,
- struct xfs_perag *pag,
- int sync_mode)
- {
- struct xfs_buf *bp = NULL;
- xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
- int error;
- restart:
- error = 0;
- xfs_ilock(ip, XFS_ILOCK_EXCL);
- if (!xfs_iflock_nowait(ip)) {
- if (!(sync_mode & SYNC_WAIT))
- goto out;
- xfs_iflock(ip);
- }
- if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
- xfs_iunpin_wait(ip);
- /* xfs_iflush_abort() drops the flush lock */
- xfs_iflush_abort(ip, false);
- goto reclaim;
- }
- if (xfs_ipincount(ip)) {
- if (!(sync_mode & SYNC_WAIT))
- goto out_ifunlock;
- xfs_iunpin_wait(ip);
- }
- if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
- xfs_ifunlock(ip);
- goto reclaim;
- }
- /*
- * Never flush out dirty data during non-blocking reclaim, as it would
- * just contend with AIL pushing trying to do the same job.
- */
- if (!(sync_mode & SYNC_WAIT))
- goto out_ifunlock;
- /*
- * Now we have an inode that needs flushing.
- *
- * Note that xfs_iflush will never block on the inode buffer lock, as
- * xfs_ifree_cluster() can lock the inode buffer before it locks the
- * ip->i_lock, and we are doing the exact opposite here. As a result,
- * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
- * result in an ABBA deadlock with xfs_ifree_cluster().
- *
- * As xfs_ifree_cluser() must gather all inodes that are active in the
- * cache to mark them stale, if we hit this case we don't actually want
- * to do IO here - we want the inode marked stale so we can simply
- * reclaim it. Hence if we get an EAGAIN error here, just unlock the
- * inode, back off and try again. Hopefully the next pass through will
- * see the stale flag set on the inode.
- */
- error = xfs_iflush(ip, &bp);
- if (error == -EAGAIN) {
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- /* backoff longer than in xfs_ifree_cluster */
- delay(2);
- goto restart;
- }
- if (!error) {
- error = xfs_bwrite(bp);
- xfs_buf_relse(bp);
- }
- reclaim:
- ASSERT(!xfs_isiflocked(ip));
- /*
- * Because we use RCU freeing we need to ensure the inode always appears
- * to be reclaimed with an invalid inode number when in the free state.
- * We do this as early as possible under the ILOCK so that
- * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
- * detect races with us here. By doing this, we guarantee that once
- * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
- * it will see either a valid inode that will serialise correctly, or it
- * will see an invalid inode that it can skip.
- */
- spin_lock(&ip->i_flags_lock);
- ip->i_flags = XFS_IRECLAIM;
- ip->i_ino = 0;
- spin_unlock(&ip->i_flags_lock);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
- /*
- * Remove the inode from the per-AG radix tree.
- *
- * Because radix_tree_delete won't complain even if the item was never
- * added to the tree assert that it's been there before to catch
- * problems with the inode life time early on.
- */
- spin_lock(&pag->pag_ici_lock);
- if (!radix_tree_delete(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ino)))
- ASSERT(0);
- xfs_perag_clear_reclaim_tag(pag);
- spin_unlock(&pag->pag_ici_lock);
- /*
- * Here we do an (almost) spurious inode lock in order to coordinate
- * with inode cache radix tree lookups. This is because the lookup
- * can reference the inodes in the cache without taking references.
- *
- * We make that OK here by ensuring that we wait until the inode is
- * unlocked after the lookup before we go ahead and free it.
- */
- xfs_ilock(ip, XFS_ILOCK_EXCL);
- xfs_qm_dqdetach(ip);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- __xfs_inode_free(ip);
- return error;
- out_ifunlock:
- xfs_ifunlock(ip);
- out:
- xfs_iflags_clear(ip, XFS_IRECLAIM);
- xfs_iunlock(ip, XFS_ILOCK_EXCL);
- /*
- * We could return -EAGAIN here to make reclaim rescan the inode tree in
- * a short while. However, this just burns CPU time scanning the tree
- * waiting for IO to complete and the reclaim work never goes back to
- * the idle state. Instead, return 0 to let the next scheduled
- * background reclaim attempt to reclaim the inode again.
- */
- return 0;
- }
- /*
- * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
- * corrupted, we still want to try to reclaim all the inodes. If we don't,
- * then a shut down during filesystem unmount reclaim walk leak all the
- * unreclaimed inodes.
- */
- STATIC int
- xfs_reclaim_inodes_ag(
- struct xfs_mount *mp,
- int flags,
- int *nr_to_scan)
- {
- struct xfs_perag *pag;
- int error = 0;
- int last_error = 0;
- xfs_agnumber_t ag;
- int trylock = flags & SYNC_TRYLOCK;
- int skipped;
- restart:
- ag = 0;
- skipped = 0;
- while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
- unsigned long first_index = 0;
- int done = 0;
- int nr_found = 0;
- ag = pag->pag_agno + 1;
- if (trylock) {
- if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
- skipped++;
- xfs_perag_put(pag);
- continue;
- }
- first_index = pag->pag_ici_reclaim_cursor;
- } else
- mutex_lock(&pag->pag_ici_reclaim_lock);
- do {
- struct xfs_inode *batch[XFS_LOOKUP_BATCH];
- int i;
- rcu_read_lock();
- nr_found = radix_tree_gang_lookup_tag(
- &pag->pag_ici_root,
- (void **)batch, first_index,
- XFS_LOOKUP_BATCH,
- XFS_ICI_RECLAIM_TAG);
- if (!nr_found) {
- done = 1;
- rcu_read_unlock();
- break;
- }
- /*
- * Grab the inodes before we drop the lock. if we found
- * nothing, nr == 0 and the loop will be skipped.
- */
- for (i = 0; i < nr_found; i++) {
- struct xfs_inode *ip = batch[i];
- if (done || xfs_reclaim_inode_grab(ip, flags))
- batch[i] = NULL;
- /*
- * Update the index for the next lookup. Catch
- * overflows into the next AG range which can
- * occur if we have inodes in the last block of
- * the AG and we are currently pointing to the
- * last inode.
- *
- * Because we may see inodes that are from the
- * wrong AG due to RCU freeing and
- * reallocation, only update the index if it
- * lies in this AG. It was a race that lead us
- * to see this inode, so another lookup from
- * the same index will not find it again.
- */
- if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
- pag->pag_agno)
- continue;
- first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
- if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
- done = 1;
- }
- /* unlock now we've grabbed the inodes. */
- rcu_read_unlock();
- for (i = 0; i < nr_found; i++) {
- if (!batch[i])
- continue;
- error = xfs_reclaim_inode(batch[i], pag, flags);
- if (error && last_error != -EFSCORRUPTED)
- last_error = error;
- }
- *nr_to_scan -= XFS_LOOKUP_BATCH;
- cond_resched();
- } while (nr_found && !done && *nr_to_scan > 0);
- if (trylock && !done)
- pag->pag_ici_reclaim_cursor = first_index;
- else
- pag->pag_ici_reclaim_cursor = 0;
- mutex_unlock(&pag->pag_ici_reclaim_lock);
- xfs_perag_put(pag);
- }
- /*
- * if we skipped any AG, and we still have scan count remaining, do
- * another pass this time using blocking reclaim semantics (i.e
- * waiting on the reclaim locks and ignoring the reclaim cursors). This
- * ensure that when we get more reclaimers than AGs we block rather
- * than spin trying to execute reclaim.
- */
- if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
- trylock = 0;
- goto restart;
- }
- return last_error;
- }
- int
- xfs_reclaim_inodes(
- xfs_mount_t *mp,
- int mode)
- {
- int nr_to_scan = INT_MAX;
- return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
- }
- /*
- * Scan a certain number of inodes for reclaim.
- *
- * When called we make sure that there is a background (fast) inode reclaim in
- * progress, while we will throttle the speed of reclaim via doing synchronous
- * reclaim of inodes. That means if we come across dirty inodes, we wait for
- * them to be cleaned, which we hope will not be very long due to the
- * background walker having already kicked the IO off on those dirty inodes.
- */
- long
- xfs_reclaim_inodes_nr(
- struct xfs_mount *mp,
- int nr_to_scan)
- {
- /* kick background reclaimer and push the AIL */
- xfs_reclaim_work_queue(mp);
- xfs_ail_push_all(mp->m_ail);
- return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
- }
- /*
- * Return the number of reclaimable inodes in the filesystem for
- * the shrinker to determine how much to reclaim.
- */
- int
- xfs_reclaim_inodes_count(
- struct xfs_mount *mp)
- {
- struct xfs_perag *pag;
- xfs_agnumber_t ag = 0;
- int reclaimable = 0;
- while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
- ag = pag->pag_agno + 1;
- reclaimable += pag->pag_ici_reclaimable;
- xfs_perag_put(pag);
- }
- return reclaimable;
- }
- STATIC int
- xfs_inode_match_id(
- struct xfs_inode *ip,
- struct xfs_eofblocks *eofb)
- {
- if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
- !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
- return 0;
- if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
- !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
- return 0;
- if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
- xfs_get_projid(ip) != eofb->eof_prid)
- return 0;
- return 1;
- }
- /*
- * A union-based inode filtering algorithm. Process the inode if any of the
- * criteria match. This is for global/internal scans only.
- */
- STATIC int
- xfs_inode_match_id_union(
- struct xfs_inode *ip,
- struct xfs_eofblocks *eofb)
- {
- if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
- uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
- return 1;
- if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
- gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
- return 1;
- if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
- xfs_get_projid(ip) == eofb->eof_prid)
- return 1;
- return 0;
- }
- STATIC int
- xfs_inode_free_eofblocks(
- struct xfs_inode *ip,
- int flags,
- void *args)
- {
- int ret = 0;
- struct xfs_eofblocks *eofb = args;
- int match;
- if (!xfs_can_free_eofblocks(ip, false)) {
- /* inode could be preallocated or append-only */
- trace_xfs_inode_free_eofblocks_invalid(ip);
- xfs_inode_clear_eofblocks_tag(ip);
- return 0;
- }
- /*
- * If the mapping is dirty the operation can block and wait for some
- * time. Unless we are waiting, skip it.
- */
- if (!(flags & SYNC_WAIT) &&
- mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
- return 0;
- if (eofb) {
- if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
- match = xfs_inode_match_id_union(ip, eofb);
- else
- match = xfs_inode_match_id(ip, eofb);
- if (!match)
- return 0;
- /* skip the inode if the file size is too small */
- if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
- XFS_ISIZE(ip) < eofb->eof_min_file_size)
- return 0;
- }
- /*
- * If the caller is waiting, return -EAGAIN to keep the background
- * scanner moving and revisit the inode in a subsequent pass.
- */
- if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
- if (flags & SYNC_WAIT)
- ret = -EAGAIN;
- return ret;
- }
- ret = xfs_free_eofblocks(ip);
- xfs_iunlock(ip, XFS_IOLOCK_EXCL);
- return ret;
- }
- static int
- __xfs_icache_free_eofblocks(
- struct xfs_mount *mp,
- struct xfs_eofblocks *eofb,
- int (*execute)(struct xfs_inode *ip, int flags,
- void *args),
- int tag)
- {
- int flags = SYNC_TRYLOCK;
- if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
- flags = SYNC_WAIT;
- return xfs_inode_ag_iterator_tag(mp, execute, flags,
- eofb, tag);
- }
- int
- xfs_icache_free_eofblocks(
- struct xfs_mount *mp,
- struct xfs_eofblocks *eofb)
- {
- return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
- XFS_ICI_EOFBLOCKS_TAG);
- }
- /*
- * Run eofblocks scans on the quotas applicable to the inode. For inodes with
- * multiple quotas, we don't know exactly which quota caused an allocation
- * failure. We make a best effort by including each quota under low free space
- * conditions (less than 1% free space) in the scan.
- */
- static int
- __xfs_inode_free_quota_eofblocks(
- struct xfs_inode *ip,
- int (*execute)(struct xfs_mount *mp,
- struct xfs_eofblocks *eofb))
- {
- int scan = 0;
- struct xfs_eofblocks eofb = {0};
- struct xfs_dquot *dq;
- /*
- * Run a sync scan to increase effectiveness and use the union filter to
- * cover all applicable quotas in a single scan.
- */
- eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
- if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
- dq = xfs_inode_dquot(ip, XFS_DQ_USER);
- if (dq && xfs_dquot_lowsp(dq)) {
- eofb.eof_uid = VFS_I(ip)->i_uid;
- eofb.eof_flags |= XFS_EOF_FLAGS_UID;
- scan = 1;
- }
- }
- if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
- dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
- if (dq && xfs_dquot_lowsp(dq)) {
- eofb.eof_gid = VFS_I(ip)->i_gid;
- eofb.eof_flags |= XFS_EOF_FLAGS_GID;
- scan = 1;
- }
- }
- if (scan)
- execute(ip->i_mount, &eofb);
- return scan;
- }
- int
- xfs_inode_free_quota_eofblocks(
- struct xfs_inode *ip)
- {
- return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
- }
- static void
- __xfs_inode_set_eofblocks_tag(
- xfs_inode_t *ip,
- void (*execute)(struct xfs_mount *mp),
- void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
- int error, unsigned long caller_ip),
- int tag)
- {
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
- int tagged;
- /*
- * Don't bother locking the AG and looking up in the radix trees
- * if we already know that we have the tag set.
- */
- if (ip->i_flags & XFS_IEOFBLOCKS)
- return;
- spin_lock(&ip->i_flags_lock);
- ip->i_flags |= XFS_IEOFBLOCKS;
- spin_unlock(&ip->i_flags_lock);
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- spin_lock(&pag->pag_ici_lock);
- tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
- radix_tree_tag_set(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
- if (!tagged) {
- /* propagate the eofblocks tag up into the perag radix tree */
- spin_lock(&ip->i_mount->m_perag_lock);
- radix_tree_tag_set(&ip->i_mount->m_perag_tree,
- XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
- tag);
- spin_unlock(&ip->i_mount->m_perag_lock);
- /* kick off background trimming */
- execute(ip->i_mount);
- set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
- }
- spin_unlock(&pag->pag_ici_lock);
- xfs_perag_put(pag);
- }
- void
- xfs_inode_set_eofblocks_tag(
- xfs_inode_t *ip)
- {
- trace_xfs_inode_set_eofblocks_tag(ip);
- return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
- trace_xfs_perag_set_eofblocks,
- XFS_ICI_EOFBLOCKS_TAG);
- }
- static void
- __xfs_inode_clear_eofblocks_tag(
- xfs_inode_t *ip,
- void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
- int error, unsigned long caller_ip),
- int tag)
- {
- struct xfs_mount *mp = ip->i_mount;
- struct xfs_perag *pag;
- spin_lock(&ip->i_flags_lock);
- ip->i_flags &= ~XFS_IEOFBLOCKS;
- spin_unlock(&ip->i_flags_lock);
- pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
- spin_lock(&pag->pag_ici_lock);
- radix_tree_tag_clear(&pag->pag_ici_root,
- XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
- if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
- /* clear the eofblocks tag from the perag radix tree */
- spin_lock(&ip->i_mount->m_perag_lock);
- radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
- XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
- tag);
- spin_unlock(&ip->i_mount->m_perag_lock);
- clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
- }
- spin_unlock(&pag->pag_ici_lock);
- xfs_perag_put(pag);
- }
- void
- xfs_inode_clear_eofblocks_tag(
- xfs_inode_t *ip)
- {
- trace_xfs_inode_clear_eofblocks_tag(ip);
- return __xfs_inode_clear_eofblocks_tag(ip,
- trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
- }
- /*
- * Automatic CoW Reservation Freeing
- *
- * These functions automatically garbage collect leftover CoW reservations
- * that were made on behalf of a cowextsize hint when we start to run out
- * of quota or when the reservations sit around for too long. If the file
- * has dirty pages or is undergoing writeback, its CoW reservations will
- * be retained.
- *
- * The actual garbage collection piggybacks off the same code that runs
- * the speculative EOF preallocation garbage collector.
- */
- STATIC int
- xfs_inode_free_cowblocks(
- struct xfs_inode *ip,
- int flags,
- void *args)
- {
- int ret;
- struct xfs_eofblocks *eofb = args;
- int match;
- struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
- /*
- * Just clear the tag if we have an empty cow fork or none at all. It's
- * possible the inode was fully unshared since it was originally tagged.
- */
- if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
- trace_xfs_inode_free_cowblocks_invalid(ip);
- xfs_inode_clear_cowblocks_tag(ip);
- return 0;
- }
- /*
- * If the mapping is dirty or under writeback we cannot touch the
- * CoW fork. Leave it alone if we're in the midst of a directio.
- */
- if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
- mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
- mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
- atomic_read(&VFS_I(ip)->i_dio_count))
- return 0;
- if (eofb) {
- if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
- match = xfs_inode_match_id_union(ip, eofb);
- else
- match = xfs_inode_match_id(ip, eofb);
- if (!match)
- return 0;
- /* skip the inode if the file size is too small */
- if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
- XFS_ISIZE(ip) < eofb->eof_min_file_size)
- return 0;
- }
- /* Free the CoW blocks */
- xfs_ilock(ip, XFS_IOLOCK_EXCL);
- xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
- ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
- xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
- xfs_iunlock(ip, XFS_IOLOCK_EXCL);
- return ret;
- }
- int
- xfs_icache_free_cowblocks(
- struct xfs_mount *mp,
- struct xfs_eofblocks *eofb)
- {
- return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
- XFS_ICI_COWBLOCKS_TAG);
- }
- int
- xfs_inode_free_quota_cowblocks(
- struct xfs_inode *ip)
- {
- return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
- }
- void
- xfs_inode_set_cowblocks_tag(
- xfs_inode_t *ip)
- {
- trace_xfs_inode_set_cowblocks_tag(ip);
- return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
- trace_xfs_perag_set_cowblocks,
- XFS_ICI_COWBLOCKS_TAG);
- }
- void
- xfs_inode_clear_cowblocks_tag(
- xfs_inode_t *ip)
- {
- trace_xfs_inode_clear_cowblocks_tag(ip);
- return __xfs_inode_clear_eofblocks_tag(ip,
- trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
- }
|