file.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uuid.h>
  24. #include <linux/file.h>
  25. #include "f2fs.h"
  26. #include "node.h"
  27. #include "segment.h"
  28. #include "xattr.h"
  29. #include "acl.h"
  30. #include "gc.h"
  31. #include "trace.h"
  32. #include <trace/events/f2fs.h>
  33. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  34. struct vm_fault *vmf)
  35. {
  36. struct page *page = vmf->page;
  37. struct inode *inode = file_inode(vma->vm_file);
  38. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  39. struct dnode_of_data dn;
  40. int err;
  41. sb_start_pagefault(inode->i_sb);
  42. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  43. /* block allocation */
  44. f2fs_lock_op(sbi);
  45. set_new_dnode(&dn, inode, NULL, NULL, 0);
  46. err = f2fs_reserve_block(&dn, page->index);
  47. if (err) {
  48. f2fs_unlock_op(sbi);
  49. goto out;
  50. }
  51. f2fs_put_dnode(&dn);
  52. f2fs_unlock_op(sbi);
  53. f2fs_balance_fs(sbi, dn.node_changed);
  54. file_update_time(vma->vm_file);
  55. lock_page(page);
  56. if (unlikely(page->mapping != inode->i_mapping ||
  57. page_offset(page) > i_size_read(inode) ||
  58. !PageUptodate(page))) {
  59. unlock_page(page);
  60. err = -EFAULT;
  61. goto out;
  62. }
  63. /*
  64. * check to see if the page is mapped already (no holes)
  65. */
  66. if (PageMappedToDisk(page))
  67. goto mapped;
  68. /* page is wholly or partially inside EOF */
  69. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  70. i_size_read(inode)) {
  71. unsigned offset;
  72. offset = i_size_read(inode) & ~PAGE_MASK;
  73. zero_user_segment(page, offset, PAGE_SIZE);
  74. }
  75. set_page_dirty(page);
  76. if (!PageUptodate(page))
  77. SetPageUptodate(page);
  78. trace_f2fs_vm_page_mkwrite(page, DATA);
  79. mapped:
  80. /* fill the page */
  81. f2fs_wait_on_page_writeback(page, DATA, false);
  82. /* wait for GCed encrypted page writeback */
  83. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  84. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  85. /* if gced page is attached, don't write to cold segment */
  86. clear_cold_data(page);
  87. out:
  88. sb_end_pagefault(inode->i_sb);
  89. f2fs_update_time(sbi, REQ_TIME);
  90. return block_page_mkwrite_return(err);
  91. }
  92. static const struct vm_operations_struct f2fs_file_vm_ops = {
  93. .fault = filemap_fault,
  94. .map_pages = filemap_map_pages,
  95. .page_mkwrite = f2fs_vm_page_mkwrite,
  96. };
  97. static int get_parent_ino(struct inode *inode, nid_t *pino)
  98. {
  99. struct dentry *dentry;
  100. inode = igrab(inode);
  101. dentry = d_find_any_alias(inode);
  102. iput(inode);
  103. if (!dentry)
  104. return 0;
  105. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  106. dput(dentry);
  107. return 0;
  108. }
  109. *pino = parent_ino(dentry);
  110. dput(dentry);
  111. return 1;
  112. }
  113. static inline bool need_do_checkpoint(struct inode *inode)
  114. {
  115. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  116. bool need_cp = false;
  117. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  118. need_cp = true;
  119. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  120. need_cp = true;
  121. else if (file_wrong_pino(inode))
  122. need_cp = true;
  123. else if (!space_for_roll_forward(sbi))
  124. need_cp = true;
  125. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  126. need_cp = true;
  127. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  128. need_cp = true;
  129. else if (test_opt(sbi, FASTBOOT))
  130. need_cp = true;
  131. else if (sbi->active_logs == 2)
  132. need_cp = true;
  133. return need_cp;
  134. }
  135. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  136. {
  137. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  138. bool ret = false;
  139. /* But we need to avoid that there are some inode updates */
  140. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  141. ret = true;
  142. f2fs_put_page(i, 0);
  143. return ret;
  144. }
  145. static void try_to_fix_pino(struct inode *inode)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. nid_t pino;
  149. down_write(&fi->i_sem);
  150. fi->xattr_ver = 0;
  151. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  152. get_parent_ino(inode, &pino)) {
  153. f2fs_i_pino_write(inode, pino);
  154. file_got_pino(inode);
  155. }
  156. up_write(&fi->i_sem);
  157. }
  158. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  159. int datasync, bool atomic)
  160. {
  161. struct inode *inode = file->f_mapping->host;
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. nid_t ino = inode->i_ino;
  164. int ret = 0;
  165. bool need_cp = false;
  166. struct writeback_control wbc = {
  167. .sync_mode = WB_SYNC_ALL,
  168. .nr_to_write = LONG_MAX,
  169. .for_reclaim = 0,
  170. };
  171. if (unlikely(f2fs_readonly(inode->i_sb)))
  172. return 0;
  173. trace_f2fs_sync_file_enter(inode);
  174. /* if fdatasync is triggered, let's do in-place-update */
  175. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  176. set_inode_flag(inode, FI_NEED_IPU);
  177. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  178. clear_inode_flag(inode, FI_NEED_IPU);
  179. if (ret) {
  180. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  181. return ret;
  182. }
  183. /* if the inode is dirty, let's recover all the time */
  184. if (!datasync && !f2fs_skip_inode_update(inode)) {
  185. f2fs_write_inode(inode, NULL);
  186. goto go_write;
  187. }
  188. /*
  189. * if there is no written data, don't waste time to write recovery info.
  190. */
  191. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  192. !exist_written_data(sbi, ino, APPEND_INO)) {
  193. /* it may call write_inode just prior to fsync */
  194. if (need_inode_page_update(sbi, ino))
  195. goto go_write;
  196. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  197. exist_written_data(sbi, ino, UPDATE_INO))
  198. goto flush_out;
  199. goto out;
  200. }
  201. go_write:
  202. /*
  203. * Both of fdatasync() and fsync() are able to be recovered from
  204. * sudden-power-off.
  205. */
  206. down_read(&F2FS_I(inode)->i_sem);
  207. need_cp = need_do_checkpoint(inode);
  208. up_read(&F2FS_I(inode)->i_sem);
  209. if (need_cp) {
  210. /* all the dirty node pages should be flushed for POR */
  211. ret = f2fs_sync_fs(inode->i_sb, 1);
  212. /*
  213. * We've secured consistency through sync_fs. Following pino
  214. * will be used only for fsynced inodes after checkpoint.
  215. */
  216. try_to_fix_pino(inode);
  217. clear_inode_flag(inode, FI_APPEND_WRITE);
  218. clear_inode_flag(inode, FI_UPDATE_WRITE);
  219. goto out;
  220. }
  221. sync_nodes:
  222. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  223. if (ret)
  224. goto out;
  225. /* if cp_error was enabled, we should avoid infinite loop */
  226. if (unlikely(f2fs_cp_error(sbi))) {
  227. ret = -EIO;
  228. goto out;
  229. }
  230. if (need_inode_block_update(sbi, ino)) {
  231. f2fs_mark_inode_dirty_sync(inode);
  232. f2fs_write_inode(inode, NULL);
  233. goto sync_nodes;
  234. }
  235. ret = wait_on_node_pages_writeback(sbi, ino);
  236. if (ret)
  237. goto out;
  238. /* once recovery info is written, don't need to tack this */
  239. remove_ino_entry(sbi, ino, APPEND_INO);
  240. clear_inode_flag(inode, FI_APPEND_WRITE);
  241. flush_out:
  242. remove_ino_entry(sbi, ino, UPDATE_INO);
  243. clear_inode_flag(inode, FI_UPDATE_WRITE);
  244. ret = f2fs_issue_flush(sbi);
  245. f2fs_update_time(sbi, REQ_TIME);
  246. out:
  247. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  248. f2fs_trace_ios(NULL, 1);
  249. return ret;
  250. }
  251. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  252. {
  253. return f2fs_do_sync_file(file, start, end, datasync, false);
  254. }
  255. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  256. pgoff_t pgofs, int whence)
  257. {
  258. struct pagevec pvec;
  259. int nr_pages;
  260. if (whence != SEEK_DATA)
  261. return 0;
  262. /* find first dirty page index */
  263. pagevec_init(&pvec, 0);
  264. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  265. PAGECACHE_TAG_DIRTY, 1);
  266. pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
  267. pagevec_release(&pvec);
  268. return pgofs;
  269. }
  270. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  271. int whence)
  272. {
  273. switch (whence) {
  274. case SEEK_DATA:
  275. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  276. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  277. return true;
  278. break;
  279. case SEEK_HOLE:
  280. if (blkaddr == NULL_ADDR)
  281. return true;
  282. break;
  283. }
  284. return false;
  285. }
  286. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  287. {
  288. struct inode *inode = file->f_mapping->host;
  289. loff_t maxbytes = inode->i_sb->s_maxbytes;
  290. struct dnode_of_data dn;
  291. pgoff_t pgofs, end_offset, dirty;
  292. loff_t data_ofs = offset;
  293. loff_t isize;
  294. int err = 0;
  295. inode_lock(inode);
  296. isize = i_size_read(inode);
  297. if (offset >= isize)
  298. goto fail;
  299. /* handle inline data case */
  300. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  301. if (whence == SEEK_HOLE)
  302. data_ofs = isize;
  303. goto found;
  304. }
  305. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  306. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  307. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  308. set_new_dnode(&dn, inode, NULL, NULL, 0);
  309. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  310. if (err && err != -ENOENT) {
  311. goto fail;
  312. } else if (err == -ENOENT) {
  313. /* direct node does not exists */
  314. if (whence == SEEK_DATA) {
  315. pgofs = get_next_page_offset(&dn, pgofs);
  316. continue;
  317. } else {
  318. goto found;
  319. }
  320. }
  321. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  322. /* find data/hole in dnode block */
  323. for (; dn.ofs_in_node < end_offset;
  324. dn.ofs_in_node++, pgofs++,
  325. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  326. block_t blkaddr;
  327. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  328. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  329. f2fs_put_dnode(&dn);
  330. goto found;
  331. }
  332. }
  333. f2fs_put_dnode(&dn);
  334. }
  335. if (whence == SEEK_DATA)
  336. goto fail;
  337. found:
  338. if (whence == SEEK_HOLE && data_ofs > isize)
  339. data_ofs = isize;
  340. inode_unlock(inode);
  341. return vfs_setpos(file, data_ofs, maxbytes);
  342. fail:
  343. inode_unlock(inode);
  344. return -ENXIO;
  345. }
  346. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  347. {
  348. struct inode *inode = file->f_mapping->host;
  349. loff_t maxbytes = inode->i_sb->s_maxbytes;
  350. switch (whence) {
  351. case SEEK_SET:
  352. case SEEK_CUR:
  353. case SEEK_END:
  354. return generic_file_llseek_size(file, offset, whence,
  355. maxbytes, i_size_read(inode));
  356. case SEEK_DATA:
  357. case SEEK_HOLE:
  358. if (offset < 0)
  359. return -ENXIO;
  360. return f2fs_seek_block(file, offset, whence);
  361. }
  362. return -EINVAL;
  363. }
  364. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  365. {
  366. struct inode *inode = file_inode(file);
  367. int err;
  368. if (f2fs_encrypted_inode(inode)) {
  369. err = fscrypt_get_encryption_info(inode);
  370. if (err)
  371. return 0;
  372. if (!f2fs_encrypted_inode(inode))
  373. return -ENOKEY;
  374. }
  375. /* we don't need to use inline_data strictly */
  376. err = f2fs_convert_inline_inode(inode);
  377. if (err)
  378. return err;
  379. file_accessed(file);
  380. vma->vm_ops = &f2fs_file_vm_ops;
  381. return 0;
  382. }
  383. static int f2fs_file_open(struct inode *inode, struct file *filp)
  384. {
  385. int ret = generic_file_open(inode, filp);
  386. struct dentry *dir;
  387. if (!ret && f2fs_encrypted_inode(inode)) {
  388. ret = fscrypt_get_encryption_info(inode);
  389. if (ret)
  390. return -EACCES;
  391. if (!fscrypt_has_encryption_key(inode))
  392. return -ENOKEY;
  393. }
  394. dir = dget_parent(file_dentry(filp));
  395. if (f2fs_encrypted_inode(d_inode(dir)) &&
  396. !fscrypt_has_permitted_context(d_inode(dir), inode)) {
  397. dput(dir);
  398. return -EPERM;
  399. }
  400. dput(dir);
  401. return ret;
  402. }
  403. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  404. {
  405. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  406. struct f2fs_node *raw_node;
  407. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  408. __le32 *addr;
  409. raw_node = F2FS_NODE(dn->node_page);
  410. addr = blkaddr_in_node(raw_node) + ofs;
  411. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  412. block_t blkaddr = le32_to_cpu(*addr);
  413. if (blkaddr == NULL_ADDR)
  414. continue;
  415. dn->data_blkaddr = NULL_ADDR;
  416. set_data_blkaddr(dn);
  417. invalidate_blocks(sbi, blkaddr);
  418. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  419. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  420. nr_free++;
  421. }
  422. if (nr_free) {
  423. pgoff_t fofs;
  424. /*
  425. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  426. * we will invalidate all blkaddr in the whole range.
  427. */
  428. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  429. dn->inode) + ofs;
  430. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  431. dec_valid_block_count(sbi, dn->inode, nr_free);
  432. }
  433. dn->ofs_in_node = ofs;
  434. f2fs_update_time(sbi, REQ_TIME);
  435. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  436. dn->ofs_in_node, nr_free);
  437. return nr_free;
  438. }
  439. void truncate_data_blocks(struct dnode_of_data *dn)
  440. {
  441. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  442. }
  443. static int truncate_partial_data_page(struct inode *inode, u64 from,
  444. bool cache_only)
  445. {
  446. unsigned offset = from & (PAGE_SIZE - 1);
  447. pgoff_t index = from >> PAGE_SHIFT;
  448. struct address_space *mapping = inode->i_mapping;
  449. struct page *page;
  450. if (!offset && !cache_only)
  451. return 0;
  452. if (cache_only) {
  453. page = find_lock_page(mapping, index);
  454. if (page && PageUptodate(page))
  455. goto truncate_out;
  456. f2fs_put_page(page, 1);
  457. return 0;
  458. }
  459. page = get_lock_data_page(inode, index, true);
  460. if (IS_ERR(page))
  461. return 0;
  462. truncate_out:
  463. f2fs_wait_on_page_writeback(page, DATA, true);
  464. zero_user(page, offset, PAGE_SIZE - offset);
  465. if (!cache_only || !f2fs_encrypted_inode(inode) ||
  466. !S_ISREG(inode->i_mode))
  467. set_page_dirty(page);
  468. f2fs_put_page(page, 1);
  469. return 0;
  470. }
  471. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  472. {
  473. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  474. unsigned int blocksize = inode->i_sb->s_blocksize;
  475. struct dnode_of_data dn;
  476. pgoff_t free_from;
  477. int count = 0, err = 0;
  478. struct page *ipage;
  479. bool truncate_page = false;
  480. trace_f2fs_truncate_blocks_enter(inode, from);
  481. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  482. if (free_from >= sbi->max_file_blocks)
  483. goto free_partial;
  484. if (lock)
  485. f2fs_lock_op(sbi);
  486. ipage = get_node_page(sbi, inode->i_ino);
  487. if (IS_ERR(ipage)) {
  488. err = PTR_ERR(ipage);
  489. goto out;
  490. }
  491. if (f2fs_has_inline_data(inode)) {
  492. if (truncate_inline_inode(ipage, from))
  493. set_page_dirty(ipage);
  494. f2fs_put_page(ipage, 1);
  495. truncate_page = true;
  496. goto out;
  497. }
  498. set_new_dnode(&dn, inode, ipage, NULL, 0);
  499. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  500. if (err) {
  501. if (err == -ENOENT)
  502. goto free_next;
  503. goto out;
  504. }
  505. count = ADDRS_PER_PAGE(dn.node_page, inode);
  506. count -= dn.ofs_in_node;
  507. f2fs_bug_on(sbi, count < 0);
  508. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  509. truncate_data_blocks_range(&dn, count);
  510. free_from += count;
  511. }
  512. f2fs_put_dnode(&dn);
  513. free_next:
  514. err = truncate_inode_blocks(inode, free_from);
  515. out:
  516. if (lock)
  517. f2fs_unlock_op(sbi);
  518. free_partial:
  519. /* lastly zero out the first data page */
  520. if (!err)
  521. err = truncate_partial_data_page(inode, from, truncate_page);
  522. trace_f2fs_truncate_blocks_exit(inode, err);
  523. return err;
  524. }
  525. int f2fs_truncate(struct inode *inode)
  526. {
  527. int err;
  528. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  529. S_ISLNK(inode->i_mode)))
  530. return 0;
  531. trace_f2fs_truncate(inode);
  532. /* we should check inline_data size */
  533. if (!f2fs_may_inline_data(inode)) {
  534. err = f2fs_convert_inline_inode(inode);
  535. if (err)
  536. return err;
  537. }
  538. err = truncate_blocks(inode, i_size_read(inode), true);
  539. if (err)
  540. return err;
  541. inode->i_mtime = inode->i_ctime = current_time(inode);
  542. f2fs_mark_inode_dirty_sync(inode);
  543. return 0;
  544. }
  545. int f2fs_getattr(struct vfsmount *mnt,
  546. struct dentry *dentry, struct kstat *stat)
  547. {
  548. struct inode *inode = d_inode(dentry);
  549. generic_fillattr(inode, stat);
  550. stat->blocks <<= 3;
  551. return 0;
  552. }
  553. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  554. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  555. {
  556. unsigned int ia_valid = attr->ia_valid;
  557. if (ia_valid & ATTR_UID)
  558. inode->i_uid = attr->ia_uid;
  559. if (ia_valid & ATTR_GID)
  560. inode->i_gid = attr->ia_gid;
  561. if (ia_valid & ATTR_ATIME)
  562. inode->i_atime = timespec_trunc(attr->ia_atime,
  563. inode->i_sb->s_time_gran);
  564. if (ia_valid & ATTR_MTIME)
  565. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  566. inode->i_sb->s_time_gran);
  567. if (ia_valid & ATTR_CTIME)
  568. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  569. inode->i_sb->s_time_gran);
  570. if (ia_valid & ATTR_MODE) {
  571. umode_t mode = attr->ia_mode;
  572. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  573. mode &= ~S_ISGID;
  574. set_acl_inode(inode, mode);
  575. }
  576. }
  577. #else
  578. #define __setattr_copy setattr_copy
  579. #endif
  580. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  581. {
  582. struct inode *inode = d_inode(dentry);
  583. int err;
  584. err = setattr_prepare(dentry, attr);
  585. if (err)
  586. return err;
  587. if (attr->ia_valid & ATTR_SIZE) {
  588. if (f2fs_encrypted_inode(inode) &&
  589. fscrypt_get_encryption_info(inode))
  590. return -EACCES;
  591. if (attr->ia_size <= i_size_read(inode)) {
  592. truncate_setsize(inode, attr->ia_size);
  593. err = f2fs_truncate(inode);
  594. if (err)
  595. return err;
  596. f2fs_balance_fs(F2FS_I_SB(inode), true);
  597. } else {
  598. /*
  599. * do not trim all blocks after i_size if target size is
  600. * larger than i_size.
  601. */
  602. truncate_setsize(inode, attr->ia_size);
  603. /* should convert inline inode here */
  604. if (!f2fs_may_inline_data(inode)) {
  605. err = f2fs_convert_inline_inode(inode);
  606. if (err)
  607. return err;
  608. }
  609. inode->i_mtime = inode->i_ctime = current_time(inode);
  610. }
  611. }
  612. __setattr_copy(inode, attr);
  613. if (attr->ia_valid & ATTR_MODE) {
  614. err = posix_acl_chmod(inode, get_inode_mode(inode));
  615. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  616. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  617. clear_inode_flag(inode, FI_ACL_MODE);
  618. }
  619. }
  620. f2fs_mark_inode_dirty_sync(inode);
  621. return err;
  622. }
  623. const struct inode_operations f2fs_file_inode_operations = {
  624. .getattr = f2fs_getattr,
  625. .setattr = f2fs_setattr,
  626. .get_acl = f2fs_get_acl,
  627. .set_acl = f2fs_set_acl,
  628. #ifdef CONFIG_F2FS_FS_XATTR
  629. .listxattr = f2fs_listxattr,
  630. #endif
  631. .fiemap = f2fs_fiemap,
  632. };
  633. static int fill_zero(struct inode *inode, pgoff_t index,
  634. loff_t start, loff_t len)
  635. {
  636. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  637. struct page *page;
  638. if (!len)
  639. return 0;
  640. f2fs_balance_fs(sbi, true);
  641. f2fs_lock_op(sbi);
  642. page = get_new_data_page(inode, NULL, index, false);
  643. f2fs_unlock_op(sbi);
  644. if (IS_ERR(page))
  645. return PTR_ERR(page);
  646. f2fs_wait_on_page_writeback(page, DATA, true);
  647. zero_user(page, start, len);
  648. set_page_dirty(page);
  649. f2fs_put_page(page, 1);
  650. return 0;
  651. }
  652. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  653. {
  654. int err;
  655. while (pg_start < pg_end) {
  656. struct dnode_of_data dn;
  657. pgoff_t end_offset, count;
  658. set_new_dnode(&dn, inode, NULL, NULL, 0);
  659. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  660. if (err) {
  661. if (err == -ENOENT) {
  662. pg_start++;
  663. continue;
  664. }
  665. return err;
  666. }
  667. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  668. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  669. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  670. truncate_data_blocks_range(&dn, count);
  671. f2fs_put_dnode(&dn);
  672. pg_start += count;
  673. }
  674. return 0;
  675. }
  676. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  677. {
  678. pgoff_t pg_start, pg_end;
  679. loff_t off_start, off_end;
  680. int ret;
  681. ret = f2fs_convert_inline_inode(inode);
  682. if (ret)
  683. return ret;
  684. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  685. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  686. off_start = offset & (PAGE_SIZE - 1);
  687. off_end = (offset + len) & (PAGE_SIZE - 1);
  688. if (pg_start == pg_end) {
  689. ret = fill_zero(inode, pg_start, off_start,
  690. off_end - off_start);
  691. if (ret)
  692. return ret;
  693. } else {
  694. if (off_start) {
  695. ret = fill_zero(inode, pg_start++, off_start,
  696. PAGE_SIZE - off_start);
  697. if (ret)
  698. return ret;
  699. }
  700. if (off_end) {
  701. ret = fill_zero(inode, pg_end, 0, off_end);
  702. if (ret)
  703. return ret;
  704. }
  705. if (pg_start < pg_end) {
  706. struct address_space *mapping = inode->i_mapping;
  707. loff_t blk_start, blk_end;
  708. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  709. f2fs_balance_fs(sbi, true);
  710. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  711. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  712. truncate_inode_pages_range(mapping, blk_start,
  713. blk_end - 1);
  714. f2fs_lock_op(sbi);
  715. ret = truncate_hole(inode, pg_start, pg_end);
  716. f2fs_unlock_op(sbi);
  717. }
  718. }
  719. return ret;
  720. }
  721. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  722. int *do_replace, pgoff_t off, pgoff_t len)
  723. {
  724. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  725. struct dnode_of_data dn;
  726. int ret, done, i;
  727. next_dnode:
  728. set_new_dnode(&dn, inode, NULL, NULL, 0);
  729. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  730. if (ret && ret != -ENOENT) {
  731. return ret;
  732. } else if (ret == -ENOENT) {
  733. if (dn.max_level == 0)
  734. return -ENOENT;
  735. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  736. blkaddr += done;
  737. do_replace += done;
  738. goto next;
  739. }
  740. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  741. dn.ofs_in_node, len);
  742. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  743. *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  744. if (!is_checkpointed_data(sbi, *blkaddr)) {
  745. if (test_opt(sbi, LFS)) {
  746. f2fs_put_dnode(&dn);
  747. return -ENOTSUPP;
  748. }
  749. /* do not invalidate this block address */
  750. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  751. *do_replace = 1;
  752. }
  753. }
  754. f2fs_put_dnode(&dn);
  755. next:
  756. len -= done;
  757. off += done;
  758. if (len)
  759. goto next_dnode;
  760. return 0;
  761. }
  762. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  763. int *do_replace, pgoff_t off, int len)
  764. {
  765. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  766. struct dnode_of_data dn;
  767. int ret, i;
  768. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  769. if (*do_replace == 0)
  770. continue;
  771. set_new_dnode(&dn, inode, NULL, NULL, 0);
  772. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  773. if (ret) {
  774. dec_valid_block_count(sbi, inode, 1);
  775. invalidate_blocks(sbi, *blkaddr);
  776. } else {
  777. f2fs_update_data_blkaddr(&dn, *blkaddr);
  778. }
  779. f2fs_put_dnode(&dn);
  780. }
  781. return 0;
  782. }
  783. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  784. block_t *blkaddr, int *do_replace,
  785. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  786. {
  787. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  788. pgoff_t i = 0;
  789. int ret;
  790. while (i < len) {
  791. if (blkaddr[i] == NULL_ADDR && !full) {
  792. i++;
  793. continue;
  794. }
  795. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  796. struct dnode_of_data dn;
  797. struct node_info ni;
  798. size_t new_size;
  799. pgoff_t ilen;
  800. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  801. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  802. if (ret)
  803. return ret;
  804. get_node_info(sbi, dn.nid, &ni);
  805. ilen = min((pgoff_t)
  806. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  807. dn.ofs_in_node, len - i);
  808. do {
  809. dn.data_blkaddr = datablock_addr(dn.node_page,
  810. dn.ofs_in_node);
  811. truncate_data_blocks_range(&dn, 1);
  812. if (do_replace[i]) {
  813. f2fs_i_blocks_write(src_inode,
  814. 1, false);
  815. f2fs_i_blocks_write(dst_inode,
  816. 1, true);
  817. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  818. blkaddr[i], ni.version, true, false);
  819. do_replace[i] = 0;
  820. }
  821. dn.ofs_in_node++;
  822. i++;
  823. new_size = (dst + i) << PAGE_SHIFT;
  824. if (dst_inode->i_size < new_size)
  825. f2fs_i_size_write(dst_inode, new_size);
  826. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  827. f2fs_put_dnode(&dn);
  828. } else {
  829. struct page *psrc, *pdst;
  830. psrc = get_lock_data_page(src_inode, src + i, true);
  831. if (IS_ERR(psrc))
  832. return PTR_ERR(psrc);
  833. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  834. true);
  835. if (IS_ERR(pdst)) {
  836. f2fs_put_page(psrc, 1);
  837. return PTR_ERR(pdst);
  838. }
  839. f2fs_copy_page(psrc, pdst);
  840. set_page_dirty(pdst);
  841. f2fs_put_page(pdst, 1);
  842. f2fs_put_page(psrc, 1);
  843. ret = truncate_hole(src_inode, src + i, src + i + 1);
  844. if (ret)
  845. return ret;
  846. i++;
  847. }
  848. }
  849. return 0;
  850. }
  851. static int __exchange_data_block(struct inode *src_inode,
  852. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  853. pgoff_t len, bool full)
  854. {
  855. block_t *src_blkaddr;
  856. int *do_replace;
  857. pgoff_t olen;
  858. int ret;
  859. while (len) {
  860. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  861. src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
  862. if (!src_blkaddr)
  863. return -ENOMEM;
  864. do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
  865. if (!do_replace) {
  866. kvfree(src_blkaddr);
  867. return -ENOMEM;
  868. }
  869. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  870. do_replace, src, olen);
  871. if (ret)
  872. goto roll_back;
  873. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  874. do_replace, src, dst, olen, full);
  875. if (ret)
  876. goto roll_back;
  877. src += olen;
  878. dst += olen;
  879. len -= olen;
  880. kvfree(src_blkaddr);
  881. kvfree(do_replace);
  882. }
  883. return 0;
  884. roll_back:
  885. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  886. kvfree(src_blkaddr);
  887. kvfree(do_replace);
  888. return ret;
  889. }
  890. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  891. {
  892. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  893. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  894. int ret;
  895. f2fs_balance_fs(sbi, true);
  896. f2fs_lock_op(sbi);
  897. f2fs_drop_extent_tree(inode);
  898. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  899. f2fs_unlock_op(sbi);
  900. return ret;
  901. }
  902. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  903. {
  904. pgoff_t pg_start, pg_end;
  905. loff_t new_size;
  906. int ret;
  907. if (offset + len >= i_size_read(inode))
  908. return -EINVAL;
  909. /* collapse range should be aligned to block size of f2fs. */
  910. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  911. return -EINVAL;
  912. ret = f2fs_convert_inline_inode(inode);
  913. if (ret)
  914. return ret;
  915. pg_start = offset >> PAGE_SHIFT;
  916. pg_end = (offset + len) >> PAGE_SHIFT;
  917. /* write out all dirty pages from offset */
  918. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  919. if (ret)
  920. return ret;
  921. truncate_pagecache(inode, offset);
  922. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  923. if (ret)
  924. return ret;
  925. /* write out all moved pages, if possible */
  926. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  927. truncate_pagecache(inode, offset);
  928. new_size = i_size_read(inode) - len;
  929. truncate_pagecache(inode, new_size);
  930. ret = truncate_blocks(inode, new_size, true);
  931. if (!ret)
  932. f2fs_i_size_write(inode, new_size);
  933. return ret;
  934. }
  935. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  936. pgoff_t end)
  937. {
  938. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  939. pgoff_t index = start;
  940. unsigned int ofs_in_node = dn->ofs_in_node;
  941. blkcnt_t count = 0;
  942. int ret;
  943. for (; index < end; index++, dn->ofs_in_node++) {
  944. if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
  945. count++;
  946. }
  947. dn->ofs_in_node = ofs_in_node;
  948. ret = reserve_new_blocks(dn, count);
  949. if (ret)
  950. return ret;
  951. dn->ofs_in_node = ofs_in_node;
  952. for (index = start; index < end; index++, dn->ofs_in_node++) {
  953. dn->data_blkaddr =
  954. datablock_addr(dn->node_page, dn->ofs_in_node);
  955. /*
  956. * reserve_new_blocks will not guarantee entire block
  957. * allocation.
  958. */
  959. if (dn->data_blkaddr == NULL_ADDR) {
  960. ret = -ENOSPC;
  961. break;
  962. }
  963. if (dn->data_blkaddr != NEW_ADDR) {
  964. invalidate_blocks(sbi, dn->data_blkaddr);
  965. dn->data_blkaddr = NEW_ADDR;
  966. set_data_blkaddr(dn);
  967. }
  968. }
  969. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  970. return ret;
  971. }
  972. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  973. int mode)
  974. {
  975. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  976. struct address_space *mapping = inode->i_mapping;
  977. pgoff_t index, pg_start, pg_end;
  978. loff_t new_size = i_size_read(inode);
  979. loff_t off_start, off_end;
  980. int ret = 0;
  981. ret = inode_newsize_ok(inode, (len + offset));
  982. if (ret)
  983. return ret;
  984. ret = f2fs_convert_inline_inode(inode);
  985. if (ret)
  986. return ret;
  987. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  988. if (ret)
  989. return ret;
  990. truncate_pagecache_range(inode, offset, offset + len - 1);
  991. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  992. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  993. off_start = offset & (PAGE_SIZE - 1);
  994. off_end = (offset + len) & (PAGE_SIZE - 1);
  995. if (pg_start == pg_end) {
  996. ret = fill_zero(inode, pg_start, off_start,
  997. off_end - off_start);
  998. if (ret)
  999. return ret;
  1000. if (offset + len > new_size)
  1001. new_size = offset + len;
  1002. new_size = max_t(loff_t, new_size, offset + len);
  1003. } else {
  1004. if (off_start) {
  1005. ret = fill_zero(inode, pg_start++, off_start,
  1006. PAGE_SIZE - off_start);
  1007. if (ret)
  1008. return ret;
  1009. new_size = max_t(loff_t, new_size,
  1010. (loff_t)pg_start << PAGE_SHIFT);
  1011. }
  1012. for (index = pg_start; index < pg_end;) {
  1013. struct dnode_of_data dn;
  1014. unsigned int end_offset;
  1015. pgoff_t end;
  1016. f2fs_lock_op(sbi);
  1017. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1018. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1019. if (ret) {
  1020. f2fs_unlock_op(sbi);
  1021. goto out;
  1022. }
  1023. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1024. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1025. ret = f2fs_do_zero_range(&dn, index, end);
  1026. f2fs_put_dnode(&dn);
  1027. f2fs_unlock_op(sbi);
  1028. if (ret)
  1029. goto out;
  1030. index = end;
  1031. new_size = max_t(loff_t, new_size,
  1032. (loff_t)index << PAGE_SHIFT);
  1033. }
  1034. if (off_end) {
  1035. ret = fill_zero(inode, pg_end, 0, off_end);
  1036. if (ret)
  1037. goto out;
  1038. new_size = max_t(loff_t, new_size, offset + len);
  1039. }
  1040. }
  1041. out:
  1042. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1043. f2fs_i_size_write(inode, new_size);
  1044. return ret;
  1045. }
  1046. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1047. {
  1048. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1049. pgoff_t nr, pg_start, pg_end, delta, idx;
  1050. loff_t new_size;
  1051. int ret = 0;
  1052. new_size = i_size_read(inode) + len;
  1053. if (new_size > inode->i_sb->s_maxbytes)
  1054. return -EFBIG;
  1055. if (offset >= i_size_read(inode))
  1056. return -EINVAL;
  1057. /* insert range should be aligned to block size of f2fs. */
  1058. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1059. return -EINVAL;
  1060. ret = f2fs_convert_inline_inode(inode);
  1061. if (ret)
  1062. return ret;
  1063. f2fs_balance_fs(sbi, true);
  1064. ret = truncate_blocks(inode, i_size_read(inode), true);
  1065. if (ret)
  1066. return ret;
  1067. /* write out all dirty pages from offset */
  1068. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1069. if (ret)
  1070. return ret;
  1071. truncate_pagecache(inode, offset);
  1072. pg_start = offset >> PAGE_SHIFT;
  1073. pg_end = (offset + len) >> PAGE_SHIFT;
  1074. delta = pg_end - pg_start;
  1075. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1076. while (!ret && idx > pg_start) {
  1077. nr = idx - pg_start;
  1078. if (nr > delta)
  1079. nr = delta;
  1080. idx -= nr;
  1081. f2fs_lock_op(sbi);
  1082. f2fs_drop_extent_tree(inode);
  1083. ret = __exchange_data_block(inode, inode, idx,
  1084. idx + delta, nr, false);
  1085. f2fs_unlock_op(sbi);
  1086. }
  1087. /* write out all moved pages, if possible */
  1088. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1089. truncate_pagecache(inode, offset);
  1090. if (!ret)
  1091. f2fs_i_size_write(inode, new_size);
  1092. return ret;
  1093. }
  1094. static int expand_inode_data(struct inode *inode, loff_t offset,
  1095. loff_t len, int mode)
  1096. {
  1097. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1098. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1099. pgoff_t pg_end;
  1100. loff_t new_size = i_size_read(inode);
  1101. loff_t off_end;
  1102. int ret;
  1103. ret = inode_newsize_ok(inode, (len + offset));
  1104. if (ret)
  1105. return ret;
  1106. ret = f2fs_convert_inline_inode(inode);
  1107. if (ret)
  1108. return ret;
  1109. f2fs_balance_fs(sbi, true);
  1110. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1111. off_end = (offset + len) & (PAGE_SIZE - 1);
  1112. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1113. map.m_len = pg_end - map.m_lblk;
  1114. if (off_end)
  1115. map.m_len++;
  1116. ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1117. if (ret) {
  1118. pgoff_t last_off;
  1119. if (!map.m_len)
  1120. return ret;
  1121. last_off = map.m_lblk + map.m_len - 1;
  1122. /* update new size to the failed position */
  1123. new_size = (last_off == pg_end) ? offset + len:
  1124. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1125. } else {
  1126. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1127. }
  1128. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
  1129. f2fs_i_size_write(inode, new_size);
  1130. return ret;
  1131. }
  1132. static long f2fs_fallocate(struct file *file, int mode,
  1133. loff_t offset, loff_t len)
  1134. {
  1135. struct inode *inode = file_inode(file);
  1136. long ret = 0;
  1137. /* f2fs only support ->fallocate for regular file */
  1138. if (!S_ISREG(inode->i_mode))
  1139. return -EINVAL;
  1140. if (f2fs_encrypted_inode(inode) &&
  1141. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1142. return -EOPNOTSUPP;
  1143. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1144. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1145. FALLOC_FL_INSERT_RANGE))
  1146. return -EOPNOTSUPP;
  1147. inode_lock(inode);
  1148. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1149. if (offset >= inode->i_size)
  1150. goto out;
  1151. ret = punch_hole(inode, offset, len);
  1152. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1153. ret = f2fs_collapse_range(inode, offset, len);
  1154. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1155. ret = f2fs_zero_range(inode, offset, len, mode);
  1156. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1157. ret = f2fs_insert_range(inode, offset, len);
  1158. } else {
  1159. ret = expand_inode_data(inode, offset, len, mode);
  1160. }
  1161. if (!ret) {
  1162. inode->i_mtime = inode->i_ctime = current_time(inode);
  1163. f2fs_mark_inode_dirty_sync(inode);
  1164. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1165. }
  1166. out:
  1167. inode_unlock(inode);
  1168. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1169. return ret;
  1170. }
  1171. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1172. {
  1173. /*
  1174. * f2fs_relase_file is called at every close calls. So we should
  1175. * not drop any inmemory pages by close called by other process.
  1176. */
  1177. if (!(filp->f_mode & FMODE_WRITE) ||
  1178. atomic_read(&inode->i_writecount) != 1)
  1179. return 0;
  1180. /* some remained atomic pages should discarded */
  1181. if (f2fs_is_atomic_file(inode))
  1182. drop_inmem_pages(inode);
  1183. if (f2fs_is_volatile_file(inode)) {
  1184. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1185. set_inode_flag(inode, FI_DROP_CACHE);
  1186. filemap_fdatawrite(inode->i_mapping);
  1187. clear_inode_flag(inode, FI_DROP_CACHE);
  1188. }
  1189. return 0;
  1190. }
  1191. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1192. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1193. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1194. {
  1195. if (S_ISDIR(mode))
  1196. return flags;
  1197. else if (S_ISREG(mode))
  1198. return flags & F2FS_REG_FLMASK;
  1199. else
  1200. return flags & F2FS_OTHER_FLMASK;
  1201. }
  1202. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1203. {
  1204. struct inode *inode = file_inode(filp);
  1205. struct f2fs_inode_info *fi = F2FS_I(inode);
  1206. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1207. return put_user(flags, (int __user *)arg);
  1208. }
  1209. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1210. {
  1211. struct inode *inode = file_inode(filp);
  1212. struct f2fs_inode_info *fi = F2FS_I(inode);
  1213. unsigned int flags;
  1214. unsigned int oldflags;
  1215. int ret;
  1216. if (!inode_owner_or_capable(inode))
  1217. return -EACCES;
  1218. if (get_user(flags, (int __user *)arg))
  1219. return -EFAULT;
  1220. ret = mnt_want_write_file(filp);
  1221. if (ret)
  1222. return ret;
  1223. flags = f2fs_mask_flags(inode->i_mode, flags);
  1224. inode_lock(inode);
  1225. oldflags = fi->i_flags;
  1226. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1227. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1228. inode_unlock(inode);
  1229. ret = -EPERM;
  1230. goto out;
  1231. }
  1232. }
  1233. flags = flags & FS_FL_USER_MODIFIABLE;
  1234. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1235. fi->i_flags = flags;
  1236. inode_unlock(inode);
  1237. inode->i_ctime = current_time(inode);
  1238. f2fs_set_inode_flags(inode);
  1239. out:
  1240. mnt_drop_write_file(filp);
  1241. return ret;
  1242. }
  1243. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1244. {
  1245. struct inode *inode = file_inode(filp);
  1246. return put_user(inode->i_generation, (int __user *)arg);
  1247. }
  1248. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1249. {
  1250. struct inode *inode = file_inode(filp);
  1251. int ret;
  1252. if (!inode_owner_or_capable(inode))
  1253. return -EACCES;
  1254. ret = mnt_want_write_file(filp);
  1255. if (ret)
  1256. return ret;
  1257. inode_lock(inode);
  1258. if (f2fs_is_atomic_file(inode))
  1259. goto out;
  1260. ret = f2fs_convert_inline_inode(inode);
  1261. if (ret)
  1262. goto out;
  1263. set_inode_flag(inode, FI_ATOMIC_FILE);
  1264. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1265. if (!get_dirty_pages(inode))
  1266. goto out;
  1267. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1268. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1269. inode->i_ino, get_dirty_pages(inode));
  1270. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1271. if (ret)
  1272. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1273. out:
  1274. inode_unlock(inode);
  1275. mnt_drop_write_file(filp);
  1276. return ret;
  1277. }
  1278. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1279. {
  1280. struct inode *inode = file_inode(filp);
  1281. int ret;
  1282. if (!inode_owner_or_capable(inode))
  1283. return -EACCES;
  1284. ret = mnt_want_write_file(filp);
  1285. if (ret)
  1286. return ret;
  1287. inode_lock(inode);
  1288. if (f2fs_is_volatile_file(inode))
  1289. goto err_out;
  1290. if (f2fs_is_atomic_file(inode)) {
  1291. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1292. ret = commit_inmem_pages(inode);
  1293. if (ret) {
  1294. set_inode_flag(inode, FI_ATOMIC_FILE);
  1295. goto err_out;
  1296. }
  1297. }
  1298. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1299. err_out:
  1300. inode_unlock(inode);
  1301. mnt_drop_write_file(filp);
  1302. return ret;
  1303. }
  1304. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1305. {
  1306. struct inode *inode = file_inode(filp);
  1307. int ret;
  1308. if (!inode_owner_or_capable(inode))
  1309. return -EACCES;
  1310. ret = mnt_want_write_file(filp);
  1311. if (ret)
  1312. return ret;
  1313. inode_lock(inode);
  1314. if (f2fs_is_volatile_file(inode))
  1315. goto out;
  1316. ret = f2fs_convert_inline_inode(inode);
  1317. if (ret)
  1318. goto out;
  1319. set_inode_flag(inode, FI_VOLATILE_FILE);
  1320. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1321. out:
  1322. inode_unlock(inode);
  1323. mnt_drop_write_file(filp);
  1324. return ret;
  1325. }
  1326. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1327. {
  1328. struct inode *inode = file_inode(filp);
  1329. int ret;
  1330. if (!inode_owner_or_capable(inode))
  1331. return -EACCES;
  1332. ret = mnt_want_write_file(filp);
  1333. if (ret)
  1334. return ret;
  1335. inode_lock(inode);
  1336. if (!f2fs_is_volatile_file(inode))
  1337. goto out;
  1338. if (!f2fs_is_first_block_written(inode)) {
  1339. ret = truncate_partial_data_page(inode, 0, true);
  1340. goto out;
  1341. }
  1342. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1343. out:
  1344. inode_unlock(inode);
  1345. mnt_drop_write_file(filp);
  1346. return ret;
  1347. }
  1348. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1349. {
  1350. struct inode *inode = file_inode(filp);
  1351. int ret;
  1352. if (!inode_owner_or_capable(inode))
  1353. return -EACCES;
  1354. ret = mnt_want_write_file(filp);
  1355. if (ret)
  1356. return ret;
  1357. inode_lock(inode);
  1358. if (f2fs_is_atomic_file(inode))
  1359. drop_inmem_pages(inode);
  1360. if (f2fs_is_volatile_file(inode)) {
  1361. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1362. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1363. }
  1364. inode_unlock(inode);
  1365. mnt_drop_write_file(filp);
  1366. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1367. return ret;
  1368. }
  1369. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1370. {
  1371. struct inode *inode = file_inode(filp);
  1372. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1373. struct super_block *sb = sbi->sb;
  1374. __u32 in;
  1375. int ret;
  1376. if (!capable(CAP_SYS_ADMIN))
  1377. return -EPERM;
  1378. if (get_user(in, (__u32 __user *)arg))
  1379. return -EFAULT;
  1380. ret = mnt_want_write_file(filp);
  1381. if (ret)
  1382. return ret;
  1383. switch (in) {
  1384. case F2FS_GOING_DOWN_FULLSYNC:
  1385. sb = freeze_bdev(sb->s_bdev);
  1386. if (sb && !IS_ERR(sb)) {
  1387. f2fs_stop_checkpoint(sbi, false);
  1388. thaw_bdev(sb->s_bdev, sb);
  1389. }
  1390. break;
  1391. case F2FS_GOING_DOWN_METASYNC:
  1392. /* do checkpoint only */
  1393. f2fs_sync_fs(sb, 1);
  1394. f2fs_stop_checkpoint(sbi, false);
  1395. break;
  1396. case F2FS_GOING_DOWN_NOSYNC:
  1397. f2fs_stop_checkpoint(sbi, false);
  1398. break;
  1399. case F2FS_GOING_DOWN_METAFLUSH:
  1400. sync_meta_pages(sbi, META, LONG_MAX);
  1401. f2fs_stop_checkpoint(sbi, false);
  1402. break;
  1403. default:
  1404. ret = -EINVAL;
  1405. goto out;
  1406. }
  1407. f2fs_update_time(sbi, REQ_TIME);
  1408. out:
  1409. mnt_drop_write_file(filp);
  1410. return ret;
  1411. }
  1412. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1413. {
  1414. struct inode *inode = file_inode(filp);
  1415. struct super_block *sb = inode->i_sb;
  1416. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1417. struct fstrim_range range;
  1418. int ret;
  1419. if (!capable(CAP_SYS_ADMIN))
  1420. return -EPERM;
  1421. if (!blk_queue_discard(q))
  1422. return -EOPNOTSUPP;
  1423. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1424. sizeof(range)))
  1425. return -EFAULT;
  1426. ret = mnt_want_write_file(filp);
  1427. if (ret)
  1428. return ret;
  1429. range.minlen = max((unsigned int)range.minlen,
  1430. q->limits.discard_granularity);
  1431. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1432. mnt_drop_write_file(filp);
  1433. if (ret < 0)
  1434. return ret;
  1435. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1436. sizeof(range)))
  1437. return -EFAULT;
  1438. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1439. return 0;
  1440. }
  1441. static bool uuid_is_nonzero(__u8 u[16])
  1442. {
  1443. int i;
  1444. for (i = 0; i < 16; i++)
  1445. if (u[i])
  1446. return true;
  1447. return false;
  1448. }
  1449. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1450. {
  1451. struct fscrypt_policy policy;
  1452. struct inode *inode = file_inode(filp);
  1453. if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
  1454. sizeof(policy)))
  1455. return -EFAULT;
  1456. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1457. return fscrypt_process_policy(filp, &policy);
  1458. }
  1459. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1460. {
  1461. struct fscrypt_policy policy;
  1462. struct inode *inode = file_inode(filp);
  1463. int err;
  1464. err = fscrypt_get_policy(inode, &policy);
  1465. if (err)
  1466. return err;
  1467. if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
  1468. return -EFAULT;
  1469. return 0;
  1470. }
  1471. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1472. {
  1473. struct inode *inode = file_inode(filp);
  1474. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1475. int err;
  1476. if (!f2fs_sb_has_crypto(inode->i_sb))
  1477. return -EOPNOTSUPP;
  1478. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1479. goto got_it;
  1480. err = mnt_want_write_file(filp);
  1481. if (err)
  1482. return err;
  1483. /* update superblock with uuid */
  1484. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1485. err = f2fs_commit_super(sbi, false);
  1486. if (err) {
  1487. /* undo new data */
  1488. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1489. mnt_drop_write_file(filp);
  1490. return err;
  1491. }
  1492. mnt_drop_write_file(filp);
  1493. got_it:
  1494. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1495. 16))
  1496. return -EFAULT;
  1497. return 0;
  1498. }
  1499. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1500. {
  1501. struct inode *inode = file_inode(filp);
  1502. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1503. __u32 sync;
  1504. int ret;
  1505. if (!capable(CAP_SYS_ADMIN))
  1506. return -EPERM;
  1507. if (get_user(sync, (__u32 __user *)arg))
  1508. return -EFAULT;
  1509. if (f2fs_readonly(sbi->sb))
  1510. return -EROFS;
  1511. ret = mnt_want_write_file(filp);
  1512. if (ret)
  1513. return ret;
  1514. if (!sync) {
  1515. if (!mutex_trylock(&sbi->gc_mutex)) {
  1516. ret = -EBUSY;
  1517. goto out;
  1518. }
  1519. } else {
  1520. mutex_lock(&sbi->gc_mutex);
  1521. }
  1522. ret = f2fs_gc(sbi, sync);
  1523. out:
  1524. mnt_drop_write_file(filp);
  1525. return ret;
  1526. }
  1527. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1528. {
  1529. struct inode *inode = file_inode(filp);
  1530. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1531. int ret;
  1532. if (!capable(CAP_SYS_ADMIN))
  1533. return -EPERM;
  1534. if (f2fs_readonly(sbi->sb))
  1535. return -EROFS;
  1536. ret = mnt_want_write_file(filp);
  1537. if (ret)
  1538. return ret;
  1539. ret = f2fs_sync_fs(sbi->sb, 1);
  1540. mnt_drop_write_file(filp);
  1541. return ret;
  1542. }
  1543. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1544. struct file *filp,
  1545. struct f2fs_defragment *range)
  1546. {
  1547. struct inode *inode = file_inode(filp);
  1548. struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
  1549. struct extent_info ei;
  1550. pgoff_t pg_start, pg_end;
  1551. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1552. unsigned int total = 0, sec_num;
  1553. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1554. block_t blk_end = 0;
  1555. bool fragmented = false;
  1556. int err;
  1557. /* if in-place-update policy is enabled, don't waste time here */
  1558. if (need_inplace_update(inode))
  1559. return -EINVAL;
  1560. pg_start = range->start >> PAGE_SHIFT;
  1561. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1562. f2fs_balance_fs(sbi, true);
  1563. inode_lock(inode);
  1564. /* writeback all dirty pages in the range */
  1565. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1566. range->start + range->len - 1);
  1567. if (err)
  1568. goto out;
  1569. /*
  1570. * lookup mapping info in extent cache, skip defragmenting if physical
  1571. * block addresses are continuous.
  1572. */
  1573. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1574. if (ei.fofs + ei.len >= pg_end)
  1575. goto out;
  1576. }
  1577. map.m_lblk = pg_start;
  1578. /*
  1579. * lookup mapping info in dnode page cache, skip defragmenting if all
  1580. * physical block addresses are continuous even if there are hole(s)
  1581. * in logical blocks.
  1582. */
  1583. while (map.m_lblk < pg_end) {
  1584. map.m_len = pg_end - map.m_lblk;
  1585. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1586. if (err)
  1587. goto out;
  1588. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1589. map.m_lblk++;
  1590. continue;
  1591. }
  1592. if (blk_end && blk_end != map.m_pblk) {
  1593. fragmented = true;
  1594. break;
  1595. }
  1596. blk_end = map.m_pblk + map.m_len;
  1597. map.m_lblk += map.m_len;
  1598. }
  1599. if (!fragmented)
  1600. goto out;
  1601. map.m_lblk = pg_start;
  1602. map.m_len = pg_end - pg_start;
  1603. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1604. /*
  1605. * make sure there are enough free section for LFS allocation, this can
  1606. * avoid defragment running in SSR mode when free section are allocated
  1607. * intensively
  1608. */
  1609. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1610. err = -EAGAIN;
  1611. goto out;
  1612. }
  1613. while (map.m_lblk < pg_end) {
  1614. pgoff_t idx;
  1615. int cnt = 0;
  1616. do_map:
  1617. map.m_len = pg_end - map.m_lblk;
  1618. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1619. if (err)
  1620. goto clear_out;
  1621. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1622. map.m_lblk++;
  1623. continue;
  1624. }
  1625. set_inode_flag(inode, FI_DO_DEFRAG);
  1626. idx = map.m_lblk;
  1627. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1628. struct page *page;
  1629. page = get_lock_data_page(inode, idx, true);
  1630. if (IS_ERR(page)) {
  1631. err = PTR_ERR(page);
  1632. goto clear_out;
  1633. }
  1634. set_page_dirty(page);
  1635. f2fs_put_page(page, 1);
  1636. idx++;
  1637. cnt++;
  1638. total++;
  1639. }
  1640. map.m_lblk = idx;
  1641. if (idx < pg_end && cnt < blk_per_seg)
  1642. goto do_map;
  1643. clear_inode_flag(inode, FI_DO_DEFRAG);
  1644. err = filemap_fdatawrite(inode->i_mapping);
  1645. if (err)
  1646. goto out;
  1647. }
  1648. clear_out:
  1649. clear_inode_flag(inode, FI_DO_DEFRAG);
  1650. out:
  1651. inode_unlock(inode);
  1652. if (!err)
  1653. range->len = (u64)total << PAGE_SHIFT;
  1654. return err;
  1655. }
  1656. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1657. {
  1658. struct inode *inode = file_inode(filp);
  1659. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1660. struct f2fs_defragment range;
  1661. int err;
  1662. if (!capable(CAP_SYS_ADMIN))
  1663. return -EPERM;
  1664. if (!S_ISREG(inode->i_mode))
  1665. return -EINVAL;
  1666. err = mnt_want_write_file(filp);
  1667. if (err)
  1668. return err;
  1669. if (f2fs_readonly(sbi->sb)) {
  1670. err = -EROFS;
  1671. goto out;
  1672. }
  1673. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1674. sizeof(range))) {
  1675. err = -EFAULT;
  1676. goto out;
  1677. }
  1678. /* verify alignment of offset & size */
  1679. if (range.start & (F2FS_BLKSIZE - 1) ||
  1680. range.len & (F2FS_BLKSIZE - 1)) {
  1681. err = -EINVAL;
  1682. goto out;
  1683. }
  1684. err = f2fs_defragment_range(sbi, filp, &range);
  1685. f2fs_update_time(sbi, REQ_TIME);
  1686. if (err < 0)
  1687. goto out;
  1688. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1689. sizeof(range)))
  1690. err = -EFAULT;
  1691. out:
  1692. mnt_drop_write_file(filp);
  1693. return err;
  1694. }
  1695. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1696. struct file *file_out, loff_t pos_out, size_t len)
  1697. {
  1698. struct inode *src = file_inode(file_in);
  1699. struct inode *dst = file_inode(file_out);
  1700. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1701. size_t olen = len, dst_max_i_size = 0;
  1702. size_t dst_osize;
  1703. int ret;
  1704. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1705. src->i_sb != dst->i_sb)
  1706. return -EXDEV;
  1707. if (unlikely(f2fs_readonly(src->i_sb)))
  1708. return -EROFS;
  1709. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1710. return -EINVAL;
  1711. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1712. return -EOPNOTSUPP;
  1713. if (src == dst) {
  1714. if (pos_in == pos_out)
  1715. return 0;
  1716. if (pos_out > pos_in && pos_out < pos_in + len)
  1717. return -EINVAL;
  1718. }
  1719. inode_lock(src);
  1720. if (src != dst) {
  1721. if (!inode_trylock(dst)) {
  1722. ret = -EBUSY;
  1723. goto out;
  1724. }
  1725. }
  1726. ret = -EINVAL;
  1727. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1728. goto out_unlock;
  1729. if (len == 0)
  1730. olen = len = src->i_size - pos_in;
  1731. if (pos_in + len == src->i_size)
  1732. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1733. if (len == 0) {
  1734. ret = 0;
  1735. goto out_unlock;
  1736. }
  1737. dst_osize = dst->i_size;
  1738. if (pos_out + olen > dst->i_size)
  1739. dst_max_i_size = pos_out + olen;
  1740. /* verify the end result is block aligned */
  1741. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1742. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1743. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1744. goto out_unlock;
  1745. ret = f2fs_convert_inline_inode(src);
  1746. if (ret)
  1747. goto out_unlock;
  1748. ret = f2fs_convert_inline_inode(dst);
  1749. if (ret)
  1750. goto out_unlock;
  1751. /* write out all dirty pages from offset */
  1752. ret = filemap_write_and_wait_range(src->i_mapping,
  1753. pos_in, pos_in + len);
  1754. if (ret)
  1755. goto out_unlock;
  1756. ret = filemap_write_and_wait_range(dst->i_mapping,
  1757. pos_out, pos_out + len);
  1758. if (ret)
  1759. goto out_unlock;
  1760. f2fs_balance_fs(sbi, true);
  1761. f2fs_lock_op(sbi);
  1762. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1763. pos_out >> F2FS_BLKSIZE_BITS,
  1764. len >> F2FS_BLKSIZE_BITS, false);
  1765. if (!ret) {
  1766. if (dst_max_i_size)
  1767. f2fs_i_size_write(dst, dst_max_i_size);
  1768. else if (dst_osize != dst->i_size)
  1769. f2fs_i_size_write(dst, dst_osize);
  1770. }
  1771. f2fs_unlock_op(sbi);
  1772. out_unlock:
  1773. if (src != dst)
  1774. inode_unlock(dst);
  1775. out:
  1776. inode_unlock(src);
  1777. return ret;
  1778. }
  1779. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1780. {
  1781. struct f2fs_move_range range;
  1782. struct fd dst;
  1783. int err;
  1784. if (!(filp->f_mode & FMODE_READ) ||
  1785. !(filp->f_mode & FMODE_WRITE))
  1786. return -EBADF;
  1787. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1788. sizeof(range)))
  1789. return -EFAULT;
  1790. dst = fdget(range.dst_fd);
  1791. if (!dst.file)
  1792. return -EBADF;
  1793. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1794. err = -EBADF;
  1795. goto err_out;
  1796. }
  1797. err = mnt_want_write_file(filp);
  1798. if (err)
  1799. goto err_out;
  1800. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1801. range.pos_out, range.len);
  1802. mnt_drop_write_file(filp);
  1803. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1804. &range, sizeof(range)))
  1805. err = -EFAULT;
  1806. err_out:
  1807. fdput(dst);
  1808. return err;
  1809. }
  1810. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1811. {
  1812. switch (cmd) {
  1813. case F2FS_IOC_GETFLAGS:
  1814. return f2fs_ioc_getflags(filp, arg);
  1815. case F2FS_IOC_SETFLAGS:
  1816. return f2fs_ioc_setflags(filp, arg);
  1817. case F2FS_IOC_GETVERSION:
  1818. return f2fs_ioc_getversion(filp, arg);
  1819. case F2FS_IOC_START_ATOMIC_WRITE:
  1820. return f2fs_ioc_start_atomic_write(filp);
  1821. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1822. return f2fs_ioc_commit_atomic_write(filp);
  1823. case F2FS_IOC_START_VOLATILE_WRITE:
  1824. return f2fs_ioc_start_volatile_write(filp);
  1825. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1826. return f2fs_ioc_release_volatile_write(filp);
  1827. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1828. return f2fs_ioc_abort_volatile_write(filp);
  1829. case F2FS_IOC_SHUTDOWN:
  1830. return f2fs_ioc_shutdown(filp, arg);
  1831. case FITRIM:
  1832. return f2fs_ioc_fitrim(filp, arg);
  1833. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1834. return f2fs_ioc_set_encryption_policy(filp, arg);
  1835. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1836. return f2fs_ioc_get_encryption_policy(filp, arg);
  1837. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1838. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1839. case F2FS_IOC_GARBAGE_COLLECT:
  1840. return f2fs_ioc_gc(filp, arg);
  1841. case F2FS_IOC_WRITE_CHECKPOINT:
  1842. return f2fs_ioc_write_checkpoint(filp, arg);
  1843. case F2FS_IOC_DEFRAGMENT:
  1844. return f2fs_ioc_defragment(filp, arg);
  1845. case F2FS_IOC_MOVE_RANGE:
  1846. return f2fs_ioc_move_range(filp, arg);
  1847. default:
  1848. return -ENOTTY;
  1849. }
  1850. }
  1851. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1852. {
  1853. struct file *file = iocb->ki_filp;
  1854. struct inode *inode = file_inode(file);
  1855. struct blk_plug plug;
  1856. ssize_t ret;
  1857. if (f2fs_encrypted_inode(inode) &&
  1858. !fscrypt_has_encryption_key(inode) &&
  1859. fscrypt_get_encryption_info(inode))
  1860. return -EACCES;
  1861. inode_lock(inode);
  1862. ret = generic_write_checks(iocb, from);
  1863. if (ret > 0) {
  1864. ret = f2fs_preallocate_blocks(iocb, from);
  1865. if (!ret) {
  1866. blk_start_plug(&plug);
  1867. ret = __generic_file_write_iter(iocb, from);
  1868. blk_finish_plug(&plug);
  1869. }
  1870. }
  1871. inode_unlock(inode);
  1872. if (ret > 0)
  1873. ret = generic_write_sync(iocb, ret);
  1874. return ret;
  1875. }
  1876. #ifdef CONFIG_COMPAT
  1877. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1878. {
  1879. switch (cmd) {
  1880. case F2FS_IOC32_GETFLAGS:
  1881. cmd = F2FS_IOC_GETFLAGS;
  1882. break;
  1883. case F2FS_IOC32_SETFLAGS:
  1884. cmd = F2FS_IOC_SETFLAGS;
  1885. break;
  1886. case F2FS_IOC32_GETVERSION:
  1887. cmd = F2FS_IOC_GETVERSION;
  1888. break;
  1889. case F2FS_IOC_START_ATOMIC_WRITE:
  1890. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1891. case F2FS_IOC_START_VOLATILE_WRITE:
  1892. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1893. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1894. case F2FS_IOC_SHUTDOWN:
  1895. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1896. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1897. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1898. case F2FS_IOC_GARBAGE_COLLECT:
  1899. case F2FS_IOC_WRITE_CHECKPOINT:
  1900. case F2FS_IOC_DEFRAGMENT:
  1901. break;
  1902. case F2FS_IOC_MOVE_RANGE:
  1903. break;
  1904. default:
  1905. return -ENOIOCTLCMD;
  1906. }
  1907. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1908. }
  1909. #endif
  1910. const struct file_operations f2fs_file_operations = {
  1911. .llseek = f2fs_llseek,
  1912. .read_iter = generic_file_read_iter,
  1913. .write_iter = f2fs_file_write_iter,
  1914. .open = f2fs_file_open,
  1915. .release = f2fs_release_file,
  1916. .mmap = f2fs_file_mmap,
  1917. .fsync = f2fs_sync_file,
  1918. .fallocate = f2fs_fallocate,
  1919. .unlocked_ioctl = f2fs_ioctl,
  1920. #ifdef CONFIG_COMPAT
  1921. .compat_ioctl = f2fs_compat_ioctl,
  1922. #endif
  1923. .splice_read = generic_file_splice_read,
  1924. .splice_write = iter_file_splice_write,
  1925. };