spi-ti-qspi.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
  5. * Author: Sourav Poddar <sourav.poddar@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GPLv2.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/omap-dma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/err.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/of.h>
  31. #include <linux/of_device.h>
  32. #include <linux/pinctrl/consumer.h>
  33. #include <linux/mfd/syscon.h>
  34. #include <linux/regmap.h>
  35. #include <linux/spi/spi.h>
  36. struct ti_qspi_regs {
  37. u32 clkctrl;
  38. };
  39. struct ti_qspi {
  40. struct completion transfer_complete;
  41. /* list synchronization */
  42. struct mutex list_lock;
  43. struct spi_master *master;
  44. void __iomem *base;
  45. void __iomem *mmap_base;
  46. struct regmap *ctrl_base;
  47. unsigned int ctrl_reg;
  48. struct clk *fclk;
  49. struct device *dev;
  50. struct ti_qspi_regs ctx_reg;
  51. dma_addr_t mmap_phys_base;
  52. dma_addr_t rx_bb_dma_addr;
  53. void *rx_bb_addr;
  54. struct dma_chan *rx_chan;
  55. u32 spi_max_frequency;
  56. u32 cmd;
  57. u32 dc;
  58. bool mmap_enabled;
  59. };
  60. #define QSPI_PID (0x0)
  61. #define QSPI_SYSCONFIG (0x10)
  62. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  63. #define QSPI_SPI_DC_REG (0x44)
  64. #define QSPI_SPI_CMD_REG (0x48)
  65. #define QSPI_SPI_STATUS_REG (0x4c)
  66. #define QSPI_SPI_DATA_REG (0x50)
  67. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  68. #define QSPI_SPI_SWITCH_REG (0x64)
  69. #define QSPI_SPI_DATA_REG_1 (0x68)
  70. #define QSPI_SPI_DATA_REG_2 (0x6c)
  71. #define QSPI_SPI_DATA_REG_3 (0x70)
  72. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  73. #define QSPI_FCLK 192000000
  74. /* Clock Control */
  75. #define QSPI_CLK_EN (1 << 31)
  76. #define QSPI_CLK_DIV_MAX 0xffff
  77. /* Command */
  78. #define QSPI_EN_CS(n) (n << 28)
  79. #define QSPI_WLEN(n) ((n - 1) << 19)
  80. #define QSPI_3_PIN (1 << 18)
  81. #define QSPI_RD_SNGL (1 << 16)
  82. #define QSPI_WR_SNGL (2 << 16)
  83. #define QSPI_RD_DUAL (3 << 16)
  84. #define QSPI_RD_QUAD (7 << 16)
  85. #define QSPI_INVAL (4 << 16)
  86. #define QSPI_FLEN(n) ((n - 1) << 0)
  87. #define QSPI_WLEN_MAX_BITS 128
  88. #define QSPI_WLEN_MAX_BYTES 16
  89. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  90. /* STATUS REGISTER */
  91. #define BUSY 0x01
  92. #define WC 0x02
  93. /* Device Control */
  94. #define QSPI_DD(m, n) (m << (3 + n * 8))
  95. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  96. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  97. #define QSPI_CKPOL(n) (1 << (n * 8))
  98. #define QSPI_FRAME 4096
  99. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  100. #define MEM_CS_EN(n) ((n + 1) << 8)
  101. #define MEM_CS_MASK (7 << 8)
  102. #define MM_SWITCH 0x1
  103. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  104. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  105. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  106. #define QSPI_SETUP_ADDR_SHIFT 8
  107. #define QSPI_SETUP_DUMMY_SHIFT 10
  108. #define QSPI_DMA_BUFFER_SIZE 65536U
  109. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  110. unsigned long reg)
  111. {
  112. return readl(qspi->base + reg);
  113. }
  114. static inline void ti_qspi_write(struct ti_qspi *qspi,
  115. unsigned long val, unsigned long reg)
  116. {
  117. writel(val, qspi->base + reg);
  118. }
  119. static int ti_qspi_setup(struct spi_device *spi)
  120. {
  121. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  122. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  123. int clk_div = 0, ret;
  124. u32 clk_ctrl_reg, clk_rate, clk_mask;
  125. if (spi->master->busy) {
  126. dev_dbg(qspi->dev, "master busy doing other transfers\n");
  127. return -EBUSY;
  128. }
  129. if (!qspi->spi_max_frequency) {
  130. dev_err(qspi->dev, "spi max frequency not defined\n");
  131. return -EINVAL;
  132. }
  133. clk_rate = clk_get_rate(qspi->fclk);
  134. clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
  135. if (clk_div < 0) {
  136. dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
  137. return -EINVAL;
  138. }
  139. if (clk_div > QSPI_CLK_DIV_MAX) {
  140. dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
  141. QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
  142. return -EINVAL;
  143. }
  144. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
  145. qspi->spi_max_frequency, clk_div);
  146. ret = pm_runtime_get_sync(qspi->dev);
  147. if (ret < 0) {
  148. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  149. return ret;
  150. }
  151. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  152. clk_ctrl_reg &= ~QSPI_CLK_EN;
  153. /* disable SCLK */
  154. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  155. /* enable SCLK */
  156. clk_mask = QSPI_CLK_EN | clk_div;
  157. ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
  158. ctx_reg->clkctrl = clk_mask;
  159. pm_runtime_mark_last_busy(qspi->dev);
  160. ret = pm_runtime_put_autosuspend(qspi->dev);
  161. if (ret < 0) {
  162. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  163. return ret;
  164. }
  165. return 0;
  166. }
  167. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  168. {
  169. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  170. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  171. }
  172. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  173. {
  174. u32 stat;
  175. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  176. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  177. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  178. cpu_relax();
  179. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  180. }
  181. WARN(stat & BUSY, "qspi busy\n");
  182. return stat & BUSY;
  183. }
  184. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  185. {
  186. u32 stat;
  187. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  188. do {
  189. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  190. if (stat & WC)
  191. return 0;
  192. cpu_relax();
  193. } while (time_after(timeout, jiffies));
  194. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  195. if (stat & WC)
  196. return 0;
  197. return -ETIMEDOUT;
  198. }
  199. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  200. int count)
  201. {
  202. int wlen, xfer_len;
  203. unsigned int cmd;
  204. const u8 *txbuf;
  205. u32 data;
  206. txbuf = t->tx_buf;
  207. cmd = qspi->cmd | QSPI_WR_SNGL;
  208. wlen = t->bits_per_word >> 3; /* in bytes */
  209. xfer_len = wlen;
  210. while (count) {
  211. if (qspi_is_busy(qspi))
  212. return -EBUSY;
  213. switch (wlen) {
  214. case 1:
  215. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  216. cmd, qspi->dc, *txbuf);
  217. if (count >= QSPI_WLEN_MAX_BYTES) {
  218. u32 *txp = (u32 *)txbuf;
  219. data = cpu_to_be32(*txp++);
  220. writel(data, qspi->base +
  221. QSPI_SPI_DATA_REG_3);
  222. data = cpu_to_be32(*txp++);
  223. writel(data, qspi->base +
  224. QSPI_SPI_DATA_REG_2);
  225. data = cpu_to_be32(*txp++);
  226. writel(data, qspi->base +
  227. QSPI_SPI_DATA_REG_1);
  228. data = cpu_to_be32(*txp++);
  229. writel(data, qspi->base +
  230. QSPI_SPI_DATA_REG);
  231. xfer_len = QSPI_WLEN_MAX_BYTES;
  232. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  233. } else {
  234. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  235. cmd = qspi->cmd | QSPI_WR_SNGL;
  236. xfer_len = wlen;
  237. cmd |= QSPI_WLEN(wlen);
  238. }
  239. break;
  240. case 2:
  241. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  242. cmd, qspi->dc, *txbuf);
  243. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  244. break;
  245. case 4:
  246. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  247. cmd, qspi->dc, *txbuf);
  248. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  249. break;
  250. }
  251. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  252. if (ti_qspi_poll_wc(qspi)) {
  253. dev_err(qspi->dev, "write timed out\n");
  254. return -ETIMEDOUT;
  255. }
  256. txbuf += xfer_len;
  257. count -= xfer_len;
  258. }
  259. return 0;
  260. }
  261. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  262. int count)
  263. {
  264. int wlen;
  265. unsigned int cmd;
  266. u8 *rxbuf;
  267. rxbuf = t->rx_buf;
  268. cmd = qspi->cmd;
  269. switch (t->rx_nbits) {
  270. case SPI_NBITS_DUAL:
  271. cmd |= QSPI_RD_DUAL;
  272. break;
  273. case SPI_NBITS_QUAD:
  274. cmd |= QSPI_RD_QUAD;
  275. break;
  276. default:
  277. cmd |= QSPI_RD_SNGL;
  278. break;
  279. }
  280. wlen = t->bits_per_word >> 3; /* in bytes */
  281. while (count) {
  282. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  283. if (qspi_is_busy(qspi))
  284. return -EBUSY;
  285. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  286. if (ti_qspi_poll_wc(qspi)) {
  287. dev_err(qspi->dev, "read timed out\n");
  288. return -ETIMEDOUT;
  289. }
  290. switch (wlen) {
  291. case 1:
  292. *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
  293. break;
  294. case 2:
  295. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  296. break;
  297. case 4:
  298. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  299. break;
  300. }
  301. rxbuf += wlen;
  302. count -= wlen;
  303. }
  304. return 0;
  305. }
  306. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  307. int count)
  308. {
  309. int ret;
  310. if (t->tx_buf) {
  311. ret = qspi_write_msg(qspi, t, count);
  312. if (ret) {
  313. dev_dbg(qspi->dev, "Error while writing\n");
  314. return ret;
  315. }
  316. }
  317. if (t->rx_buf) {
  318. ret = qspi_read_msg(qspi, t, count);
  319. if (ret) {
  320. dev_dbg(qspi->dev, "Error while reading\n");
  321. return ret;
  322. }
  323. }
  324. return 0;
  325. }
  326. static void ti_qspi_dma_callback(void *param)
  327. {
  328. struct ti_qspi *qspi = param;
  329. complete(&qspi->transfer_complete);
  330. }
  331. static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
  332. dma_addr_t dma_src, size_t len)
  333. {
  334. struct dma_chan *chan = qspi->rx_chan;
  335. struct dma_device *dma_dev = chan->device;
  336. dma_cookie_t cookie;
  337. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  338. struct dma_async_tx_descriptor *tx;
  339. int ret;
  340. tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
  341. len, flags);
  342. if (!tx) {
  343. dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
  344. return -EIO;
  345. }
  346. tx->callback = ti_qspi_dma_callback;
  347. tx->callback_param = qspi;
  348. cookie = tx->tx_submit(tx);
  349. ret = dma_submit_error(cookie);
  350. if (ret) {
  351. dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
  352. return -EIO;
  353. }
  354. dma_async_issue_pending(chan);
  355. ret = wait_for_completion_timeout(&qspi->transfer_complete,
  356. msecs_to_jiffies(len));
  357. if (ret <= 0) {
  358. dmaengine_terminate_sync(chan);
  359. dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
  360. return -ETIMEDOUT;
  361. }
  362. return 0;
  363. }
  364. static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi,
  365. struct spi_flash_read_message *msg)
  366. {
  367. size_t readsize = msg->len;
  368. unsigned int to = (unsigned int)msg->buf;
  369. dma_addr_t dma_src = qspi->mmap_phys_base + msg->from;
  370. int ret = 0;
  371. /*
  372. * Use bounce buffer as FS like jffs2, ubifs may pass
  373. * buffers that does not belong to kernel lowmem region.
  374. */
  375. while (readsize != 0) {
  376. size_t xfer_len = min(QSPI_DMA_BUFFER_SIZE, readsize);
  377. ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
  378. dma_src, xfer_len);
  379. if (ret != 0)
  380. return ret;
  381. memcpy((void *)to, qspi->rx_bb_addr, xfer_len);
  382. readsize -= xfer_len;
  383. dma_src += xfer_len;
  384. to += xfer_len;
  385. }
  386. return ret;
  387. }
  388. static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
  389. loff_t from)
  390. {
  391. struct scatterlist *sg;
  392. dma_addr_t dma_src = qspi->mmap_phys_base + from;
  393. dma_addr_t dma_dst;
  394. int i, len, ret;
  395. for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
  396. dma_dst = sg_dma_address(sg);
  397. len = sg_dma_len(sg);
  398. ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
  399. if (ret)
  400. return ret;
  401. dma_src += len;
  402. }
  403. return 0;
  404. }
  405. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  406. {
  407. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  408. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  409. if (qspi->ctrl_base) {
  410. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  411. MEM_CS_EN(spi->chip_select),
  412. MEM_CS_MASK);
  413. }
  414. qspi->mmap_enabled = true;
  415. }
  416. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  417. {
  418. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  419. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  420. if (qspi->ctrl_base)
  421. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  422. 0, MEM_CS_MASK);
  423. qspi->mmap_enabled = false;
  424. }
  425. static void ti_qspi_setup_mmap_read(struct spi_device *spi,
  426. struct spi_flash_read_message *msg)
  427. {
  428. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  429. u32 memval = msg->read_opcode;
  430. switch (msg->data_nbits) {
  431. case SPI_NBITS_QUAD:
  432. memval |= QSPI_SETUP_RD_QUAD;
  433. break;
  434. case SPI_NBITS_DUAL:
  435. memval |= QSPI_SETUP_RD_DUAL;
  436. break;
  437. default:
  438. memval |= QSPI_SETUP_RD_NORMAL;
  439. break;
  440. }
  441. memval |= ((msg->addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  442. msg->dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  443. ti_qspi_write(qspi, memval,
  444. QSPI_SPI_SETUP_REG(spi->chip_select));
  445. }
  446. static int ti_qspi_spi_flash_read(struct spi_device *spi,
  447. struct spi_flash_read_message *msg)
  448. {
  449. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  450. int ret = 0;
  451. mutex_lock(&qspi->list_lock);
  452. if (!qspi->mmap_enabled)
  453. ti_qspi_enable_memory_map(spi);
  454. ti_qspi_setup_mmap_read(spi, msg);
  455. if (qspi->rx_chan) {
  456. if (msg->cur_msg_mapped)
  457. ret = ti_qspi_dma_xfer_sg(qspi, msg->rx_sg, msg->from);
  458. else
  459. ret = ti_qspi_dma_bounce_buffer(qspi, msg);
  460. if (ret)
  461. goto err_unlock;
  462. } else {
  463. memcpy_fromio(msg->buf, qspi->mmap_base + msg->from, msg->len);
  464. }
  465. msg->retlen = msg->len;
  466. err_unlock:
  467. mutex_unlock(&qspi->list_lock);
  468. return ret;
  469. }
  470. static int ti_qspi_start_transfer_one(struct spi_master *master,
  471. struct spi_message *m)
  472. {
  473. struct ti_qspi *qspi = spi_master_get_devdata(master);
  474. struct spi_device *spi = m->spi;
  475. struct spi_transfer *t;
  476. int status = 0, ret;
  477. unsigned int frame_len_words, transfer_len_words;
  478. int wlen;
  479. /* setup device control reg */
  480. qspi->dc = 0;
  481. if (spi->mode & SPI_CPHA)
  482. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  483. if (spi->mode & SPI_CPOL)
  484. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  485. if (spi->mode & SPI_CS_HIGH)
  486. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  487. frame_len_words = 0;
  488. list_for_each_entry(t, &m->transfers, transfer_list)
  489. frame_len_words += t->len / (t->bits_per_word >> 3);
  490. frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
  491. /* setup command reg */
  492. qspi->cmd = 0;
  493. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  494. qspi->cmd |= QSPI_FLEN(frame_len_words);
  495. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  496. mutex_lock(&qspi->list_lock);
  497. if (qspi->mmap_enabled)
  498. ti_qspi_disable_memory_map(spi);
  499. list_for_each_entry(t, &m->transfers, transfer_list) {
  500. qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
  501. QSPI_WLEN(t->bits_per_word));
  502. wlen = t->bits_per_word >> 3;
  503. transfer_len_words = min(t->len / wlen, frame_len_words);
  504. ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
  505. if (ret) {
  506. dev_dbg(qspi->dev, "transfer message failed\n");
  507. mutex_unlock(&qspi->list_lock);
  508. return -EINVAL;
  509. }
  510. m->actual_length += transfer_len_words * wlen;
  511. frame_len_words -= transfer_len_words;
  512. if (frame_len_words == 0)
  513. break;
  514. }
  515. mutex_unlock(&qspi->list_lock);
  516. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  517. m->status = status;
  518. spi_finalize_current_message(master);
  519. return status;
  520. }
  521. static int ti_qspi_runtime_resume(struct device *dev)
  522. {
  523. struct ti_qspi *qspi;
  524. qspi = dev_get_drvdata(dev);
  525. ti_qspi_restore_ctx(qspi);
  526. return 0;
  527. }
  528. static const struct of_device_id ti_qspi_match[] = {
  529. {.compatible = "ti,dra7xxx-qspi" },
  530. {.compatible = "ti,am4372-qspi" },
  531. {},
  532. };
  533. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  534. static int ti_qspi_probe(struct platform_device *pdev)
  535. {
  536. struct ti_qspi *qspi;
  537. struct spi_master *master;
  538. struct resource *r, *res_mmap;
  539. struct device_node *np = pdev->dev.of_node;
  540. u32 max_freq;
  541. int ret = 0, num_cs, irq;
  542. dma_cap_mask_t mask;
  543. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  544. if (!master)
  545. return -ENOMEM;
  546. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  547. master->flags = SPI_MASTER_HALF_DUPLEX;
  548. master->setup = ti_qspi_setup;
  549. master->auto_runtime_pm = true;
  550. master->transfer_one_message = ti_qspi_start_transfer_one;
  551. master->dev.of_node = pdev->dev.of_node;
  552. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  553. SPI_BPW_MASK(8);
  554. master->spi_flash_read = ti_qspi_spi_flash_read;
  555. if (!of_property_read_u32(np, "num-cs", &num_cs))
  556. master->num_chipselect = num_cs;
  557. qspi = spi_master_get_devdata(master);
  558. qspi->master = master;
  559. qspi->dev = &pdev->dev;
  560. platform_set_drvdata(pdev, qspi);
  561. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  562. if (r == NULL) {
  563. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  564. if (r == NULL) {
  565. dev_err(&pdev->dev, "missing platform data\n");
  566. return -ENODEV;
  567. }
  568. }
  569. res_mmap = platform_get_resource_byname(pdev,
  570. IORESOURCE_MEM, "qspi_mmap");
  571. if (res_mmap == NULL) {
  572. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  573. if (res_mmap == NULL) {
  574. dev_err(&pdev->dev,
  575. "memory mapped resource not required\n");
  576. }
  577. }
  578. irq = platform_get_irq(pdev, 0);
  579. if (irq < 0) {
  580. dev_err(&pdev->dev, "no irq resource?\n");
  581. return irq;
  582. }
  583. mutex_init(&qspi->list_lock);
  584. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  585. if (IS_ERR(qspi->base)) {
  586. ret = PTR_ERR(qspi->base);
  587. goto free_master;
  588. }
  589. if (of_property_read_bool(np, "syscon-chipselects")) {
  590. qspi->ctrl_base =
  591. syscon_regmap_lookup_by_phandle(np,
  592. "syscon-chipselects");
  593. if (IS_ERR(qspi->ctrl_base))
  594. return PTR_ERR(qspi->ctrl_base);
  595. ret = of_property_read_u32_index(np,
  596. "syscon-chipselects",
  597. 1, &qspi->ctrl_reg);
  598. if (ret) {
  599. dev_err(&pdev->dev,
  600. "couldn't get ctrl_mod reg index\n");
  601. return ret;
  602. }
  603. }
  604. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  605. if (IS_ERR(qspi->fclk)) {
  606. ret = PTR_ERR(qspi->fclk);
  607. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  608. }
  609. pm_runtime_use_autosuspend(&pdev->dev);
  610. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  611. pm_runtime_enable(&pdev->dev);
  612. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  613. qspi->spi_max_frequency = max_freq;
  614. dma_cap_zero(mask);
  615. dma_cap_set(DMA_MEMCPY, mask);
  616. qspi->rx_chan = dma_request_chan_by_mask(&mask);
  617. if (!qspi->rx_chan) {
  618. dev_err(qspi->dev,
  619. "No Rx DMA available, trying mmap mode\n");
  620. ret = 0;
  621. goto no_dma;
  622. }
  623. qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
  624. QSPI_DMA_BUFFER_SIZE,
  625. &qspi->rx_bb_dma_addr,
  626. GFP_KERNEL | GFP_DMA);
  627. if (!qspi->rx_bb_addr) {
  628. dev_err(qspi->dev,
  629. "dma_alloc_coherent failed, using PIO mode\n");
  630. dma_release_channel(qspi->rx_chan);
  631. }
  632. master->dma_rx = qspi->rx_chan;
  633. init_completion(&qspi->transfer_complete);
  634. if (res_mmap)
  635. qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
  636. no_dma:
  637. if (!qspi->rx_chan && res_mmap) {
  638. qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
  639. if (IS_ERR(qspi->mmap_base)) {
  640. dev_info(&pdev->dev,
  641. "mmap failed with error %ld using PIO mode\n",
  642. PTR_ERR(qspi->mmap_base));
  643. qspi->mmap_base = NULL;
  644. master->spi_flash_read = NULL;
  645. }
  646. }
  647. qspi->mmap_enabled = false;
  648. ret = devm_spi_register_master(&pdev->dev, master);
  649. if (!ret)
  650. return 0;
  651. free_master:
  652. spi_master_put(master);
  653. return ret;
  654. }
  655. static int ti_qspi_remove(struct platform_device *pdev)
  656. {
  657. struct ti_qspi *qspi = platform_get_drvdata(pdev);
  658. int rc;
  659. rc = spi_master_suspend(qspi->master);
  660. if (rc)
  661. return rc;
  662. pm_runtime_put_sync(&pdev->dev);
  663. pm_runtime_disable(&pdev->dev);
  664. if (qspi->rx_bb_addr)
  665. dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
  666. qspi->rx_bb_addr,
  667. qspi->rx_bb_dma_addr);
  668. if (qspi->rx_chan)
  669. dma_release_channel(qspi->rx_chan);
  670. return 0;
  671. }
  672. static const struct dev_pm_ops ti_qspi_pm_ops = {
  673. .runtime_resume = ti_qspi_runtime_resume,
  674. };
  675. static struct platform_driver ti_qspi_driver = {
  676. .probe = ti_qspi_probe,
  677. .remove = ti_qspi_remove,
  678. .driver = {
  679. .name = "ti-qspi",
  680. .pm = &ti_qspi_pm_ops,
  681. .of_match_table = ti_qspi_match,
  682. }
  683. };
  684. module_platform_driver(ti_qspi_driver);
  685. MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
  686. MODULE_LICENSE("GPL v2");
  687. MODULE_DESCRIPTION("TI QSPI controller driver");
  688. MODULE_ALIAS("platform:ti-qspi");