ptp_clock.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. /*
  2. * PTP 1588 clock support
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/idr.h>
  21. #include <linux/device.h>
  22. #include <linux/err.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/posix-clock.h>
  27. #include <linux/pps_kernel.h>
  28. #include <linux/slab.h>
  29. #include <linux/syscalls.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/sched/rt.h>
  32. #include "ptp_private.h"
  33. #define PTP_MAX_ALARMS 4
  34. #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
  35. #define PTP_PPS_EVENT PPS_CAPTUREASSERT
  36. #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
  37. /* private globals */
  38. static dev_t ptp_devt;
  39. static struct class *ptp_class;
  40. static DEFINE_IDA(ptp_clocks_map);
  41. /* time stamp event queue operations */
  42. static inline int queue_free(struct timestamp_event_queue *q)
  43. {
  44. return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
  45. }
  46. static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
  47. struct ptp_clock_event *src)
  48. {
  49. struct ptp_extts_event *dst;
  50. unsigned long flags;
  51. s64 seconds;
  52. u32 remainder;
  53. seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
  54. spin_lock_irqsave(&queue->lock, flags);
  55. dst = &queue->buf[queue->tail];
  56. dst->index = src->index;
  57. dst->t.sec = seconds;
  58. dst->t.nsec = remainder;
  59. if (!queue_free(queue))
  60. queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
  61. queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
  62. spin_unlock_irqrestore(&queue->lock, flags);
  63. }
  64. static s32 scaled_ppm_to_ppb(long ppm)
  65. {
  66. /*
  67. * The 'freq' field in the 'struct timex' is in parts per
  68. * million, but with a 16 bit binary fractional field.
  69. *
  70. * We want to calculate
  71. *
  72. * ppb = scaled_ppm * 1000 / 2^16
  73. *
  74. * which simplifies to
  75. *
  76. * ppb = scaled_ppm * 125 / 2^13
  77. */
  78. s64 ppb = 1 + ppm;
  79. ppb *= 125;
  80. ppb >>= 13;
  81. return (s32) ppb;
  82. }
  83. /* posix clock implementation */
  84. static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
  85. {
  86. tp->tv_sec = 0;
  87. tp->tv_nsec = 1;
  88. return 0;
  89. }
  90. static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
  91. {
  92. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  93. struct timespec64 ts = timespec_to_timespec64(*tp);
  94. return ptp->info->settime64(ptp->info, &ts);
  95. }
  96. static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
  97. {
  98. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  99. struct timespec64 ts;
  100. int err;
  101. err = ptp->info->gettime64(ptp->info, &ts);
  102. if (!err)
  103. *tp = timespec64_to_timespec(ts);
  104. return err;
  105. }
  106. static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
  107. {
  108. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  109. struct ptp_clock_info *ops;
  110. int err = -EOPNOTSUPP;
  111. ops = ptp->info;
  112. if (tx->modes & ADJ_SETOFFSET) {
  113. struct timespec ts;
  114. ktime_t kt;
  115. s64 delta;
  116. ts.tv_sec = tx->time.tv_sec;
  117. ts.tv_nsec = tx->time.tv_usec;
  118. if (!(tx->modes & ADJ_NANO))
  119. ts.tv_nsec *= 1000;
  120. if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
  121. return -EINVAL;
  122. kt = timespec_to_ktime(ts);
  123. delta = ktime_to_ns(kt);
  124. err = ops->adjtime(ops, delta);
  125. } else if (tx->modes & ADJ_FREQUENCY) {
  126. s32 ppb = scaled_ppm_to_ppb(tx->freq);
  127. if (ppb > ops->max_adj || ppb < -ops->max_adj)
  128. return -ERANGE;
  129. err = ops->adjfreq(ops, ppb);
  130. ptp->dialed_frequency = tx->freq;
  131. } else if (tx->modes == 0) {
  132. tx->freq = ptp->dialed_frequency;
  133. err = 0;
  134. }
  135. return err;
  136. }
  137. static struct posix_clock_operations ptp_clock_ops = {
  138. .owner = THIS_MODULE,
  139. .clock_adjtime = ptp_clock_adjtime,
  140. .clock_gettime = ptp_clock_gettime,
  141. .clock_getres = ptp_clock_getres,
  142. .clock_settime = ptp_clock_settime,
  143. .ioctl = ptp_ioctl,
  144. .open = ptp_open,
  145. .poll = ptp_poll,
  146. .read = ptp_read,
  147. };
  148. static void delete_ptp_clock(struct posix_clock *pc)
  149. {
  150. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  151. mutex_destroy(&ptp->tsevq_mux);
  152. mutex_destroy(&ptp->pincfg_mux);
  153. ida_simple_remove(&ptp_clocks_map, ptp->index);
  154. kfree(ptp);
  155. }
  156. static void ptp_aux_kworker(struct kthread_work *work)
  157. {
  158. struct ptp_clock *ptp = container_of(work, struct ptp_clock,
  159. aux_work.work);
  160. struct ptp_clock_info *info = ptp->info;
  161. long delay;
  162. delay = info->do_aux_work(info);
  163. if (delay >= 0)
  164. kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
  165. }
  166. /* public interface */
  167. struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
  168. struct device *parent)
  169. {
  170. struct ptp_clock *ptp;
  171. int err = 0, index, major = MAJOR(ptp_devt);
  172. if (info->n_alarm > PTP_MAX_ALARMS)
  173. return ERR_PTR(-EINVAL);
  174. /* Initialize a clock structure. */
  175. err = -ENOMEM;
  176. ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
  177. if (ptp == NULL)
  178. goto no_memory;
  179. index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
  180. if (index < 0) {
  181. err = index;
  182. goto no_slot;
  183. }
  184. ptp->clock.ops = ptp_clock_ops;
  185. ptp->clock.release = delete_ptp_clock;
  186. ptp->info = info;
  187. ptp->devid = MKDEV(major, index);
  188. ptp->index = index;
  189. spin_lock_init(&ptp->tsevq.lock);
  190. mutex_init(&ptp->tsevq_mux);
  191. mutex_init(&ptp->pincfg_mux);
  192. init_waitqueue_head(&ptp->tsev_wq);
  193. if (ptp->info->do_aux_work) {
  194. char *worker_name = kasprintf(GFP_KERNEL, "ptp%d", ptp->index);
  195. kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
  196. ptp->kworker = kthread_create_worker(0, worker_name ?
  197. worker_name : info->name);
  198. kfree(worker_name);
  199. if (IS_ERR(ptp->kworker)) {
  200. err = PTR_ERR(ptp->kworker);
  201. pr_err("failed to create ptp aux_worker %d\n", err);
  202. goto kworker_err;
  203. }
  204. }
  205. /* Create a new device in our class. */
  206. ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
  207. "ptp%d", ptp->index);
  208. if (IS_ERR(ptp->dev))
  209. goto no_device;
  210. dev_set_drvdata(ptp->dev, ptp);
  211. err = ptp_populate_sysfs(ptp);
  212. if (err)
  213. goto no_sysfs;
  214. /* Register a new PPS source. */
  215. if (info->pps) {
  216. struct pps_source_info pps;
  217. memset(&pps, 0, sizeof(pps));
  218. snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
  219. pps.mode = PTP_PPS_MODE;
  220. pps.owner = info->owner;
  221. ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
  222. if (!ptp->pps_source) {
  223. pr_err("failed to register pps source\n");
  224. goto no_pps;
  225. }
  226. }
  227. /* Create a posix clock. */
  228. err = posix_clock_register(&ptp->clock, ptp->devid);
  229. if (err) {
  230. pr_err("failed to create posix clock\n");
  231. goto no_clock;
  232. }
  233. return ptp;
  234. no_clock:
  235. if (ptp->pps_source)
  236. pps_unregister_source(ptp->pps_source);
  237. no_pps:
  238. ptp_cleanup_sysfs(ptp);
  239. no_sysfs:
  240. device_destroy(ptp_class, ptp->devid);
  241. no_device:
  242. if (ptp->kworker)
  243. kthread_destroy_worker(ptp->kworker);
  244. kworker_err:
  245. mutex_destroy(&ptp->tsevq_mux);
  246. mutex_destroy(&ptp->pincfg_mux);
  247. ida_simple_remove(&ptp_clocks_map, index);
  248. no_slot:
  249. kfree(ptp);
  250. no_memory:
  251. return ERR_PTR(err);
  252. }
  253. EXPORT_SYMBOL(ptp_clock_register);
  254. int ptp_clock_unregister(struct ptp_clock *ptp)
  255. {
  256. ptp->defunct = 1;
  257. wake_up_interruptible(&ptp->tsev_wq);
  258. if (ptp->kworker) {
  259. kthread_cancel_delayed_work_sync(&ptp->aux_work);
  260. kthread_destroy_worker(ptp->kworker);
  261. }
  262. /* Release the clock's resources. */
  263. if (ptp->pps_source)
  264. pps_unregister_source(ptp->pps_source);
  265. ptp_cleanup_sysfs(ptp);
  266. device_destroy(ptp_class, ptp->devid);
  267. posix_clock_unregister(&ptp->clock);
  268. return 0;
  269. }
  270. EXPORT_SYMBOL(ptp_clock_unregister);
  271. void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
  272. {
  273. struct pps_event_time evt;
  274. switch (event->type) {
  275. case PTP_CLOCK_ALARM:
  276. break;
  277. case PTP_CLOCK_EXTTS:
  278. enqueue_external_timestamp(&ptp->tsevq, event);
  279. wake_up_interruptible(&ptp->tsev_wq);
  280. break;
  281. case PTP_CLOCK_PPS:
  282. pps_get_ts(&evt);
  283. pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
  284. break;
  285. case PTP_CLOCK_PPSUSR:
  286. pps_event(ptp->pps_source, &event->pps_times,
  287. PTP_PPS_EVENT, NULL);
  288. break;
  289. }
  290. }
  291. EXPORT_SYMBOL(ptp_clock_event);
  292. int ptp_clock_index(struct ptp_clock *ptp)
  293. {
  294. return ptp->index;
  295. }
  296. EXPORT_SYMBOL(ptp_clock_index);
  297. int ptp_find_pin(struct ptp_clock *ptp,
  298. enum ptp_pin_function func, unsigned int chan)
  299. {
  300. struct ptp_pin_desc *pin = NULL;
  301. int i;
  302. mutex_lock(&ptp->pincfg_mux);
  303. for (i = 0; i < ptp->info->n_pins; i++) {
  304. if (ptp->info->pin_config[i].func == func &&
  305. ptp->info->pin_config[i].chan == chan) {
  306. pin = &ptp->info->pin_config[i];
  307. break;
  308. }
  309. }
  310. mutex_unlock(&ptp->pincfg_mux);
  311. return pin ? i : -1;
  312. }
  313. EXPORT_SYMBOL(ptp_find_pin);
  314. int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
  315. {
  316. return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
  317. }
  318. EXPORT_SYMBOL(ptp_schedule_worker);
  319. /* module operations */
  320. static void __exit ptp_exit(void)
  321. {
  322. class_destroy(ptp_class);
  323. unregister_chrdev_region(ptp_devt, MINORMASK + 1);
  324. ida_destroy(&ptp_clocks_map);
  325. }
  326. static int __init ptp_init(void)
  327. {
  328. int err;
  329. ptp_class = class_create(THIS_MODULE, "ptp");
  330. if (IS_ERR(ptp_class)) {
  331. pr_err("ptp: failed to allocate class\n");
  332. return PTR_ERR(ptp_class);
  333. }
  334. err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
  335. if (err < 0) {
  336. pr_err("ptp: failed to allocate device region\n");
  337. goto no_region;
  338. }
  339. ptp_class->dev_groups = ptp_groups;
  340. pr_info("PTP clock support registered\n");
  341. return 0;
  342. no_region:
  343. class_destroy(ptp_class);
  344. return err;
  345. }
  346. subsys_initcall(ptp_init);
  347. module_exit(ptp_exit);
  348. MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
  349. MODULE_DESCRIPTION("PTP clocks support");
  350. MODULE_LICENSE("GPL");