adf7242.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285
  1. /*
  2. * Analog Devices ADF7242 Low-Power IEEE 802.15.4 Transceiver
  3. *
  4. * Copyright 2009-2015 Analog Devices Inc.
  5. *
  6. * Licensed under the GPL-2 or later.
  7. *
  8. * http://www.analog.com/ADF7242
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/delay.h>
  14. #include <linux/mutex.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/firmware.h>
  18. #include <linux/spi/spi.h>
  19. #include <linux/skbuff.h>
  20. #include <linux/of.h>
  21. #include <linux/irq.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/bitops.h>
  24. #include <linux/ieee802154.h>
  25. #include <net/mac802154.h>
  26. #include <net/cfg802154.h>
  27. #define FIRMWARE "adf7242_firmware.bin"
  28. #define MAX_POLL_LOOPS 200
  29. /* All Registers */
  30. #define REG_EXT_CTRL 0x100 /* RW External LNA/PA and internal PA control */
  31. #define REG_TX_FSK_TEST 0x101 /* RW TX FSK test mode configuration */
  32. #define REG_CCA1 0x105 /* RW RSSI threshold for CCA */
  33. #define REG_CCA2 0x106 /* RW CCA mode configuration */
  34. #define REG_BUFFERCFG 0x107 /* RW RX_BUFFER overwrite control */
  35. #define REG_PKT_CFG 0x108 /* RW FCS evaluation configuration */
  36. #define REG_DELAYCFG0 0x109 /* RW RC_RX command to SFD or sync word delay */
  37. #define REG_DELAYCFG1 0x10A /* RW RC_TX command to TX state */
  38. #define REG_DELAYCFG2 0x10B /* RW Mac delay extension */
  39. #define REG_SYNC_WORD0 0x10C /* RW sync word bits [7:0] of [23:0] */
  40. #define REG_SYNC_WORD1 0x10D /* RW sync word bits [15:8] of [23:0] */
  41. #define REG_SYNC_WORD2 0x10E /* RW sync word bits [23:16] of [23:0] */
  42. #define REG_SYNC_CONFIG 0x10F /* RW sync word configuration */
  43. #define REG_RC_CFG 0x13E /* RW RX / TX packet configuration */
  44. #define REG_RC_VAR44 0x13F /* RW RESERVED */
  45. #define REG_CH_FREQ0 0x300 /* RW Channel Frequency Settings - Low */
  46. #define REG_CH_FREQ1 0x301 /* RW Channel Frequency Settings - Middle */
  47. #define REG_CH_FREQ2 0x302 /* RW Channel Frequency Settings - High */
  48. #define REG_TX_FD 0x304 /* RW TX Frequency Deviation Register */
  49. #define REG_DM_CFG0 0x305 /* RW RX Discriminator BW Register */
  50. #define REG_TX_M 0x306 /* RW TX Mode Register */
  51. #define REG_RX_M 0x307 /* RW RX Mode Register */
  52. #define REG_RRB 0x30C /* R RSSI Readback Register */
  53. #define REG_LRB 0x30D /* R Link Quality Readback Register */
  54. #define REG_DR0 0x30E /* RW bits [15:8] of [15:0] data rate setting */
  55. #define REG_DR1 0x30F /* RW bits [7:0] of [15:0] data rate setting */
  56. #define REG_PRAMPG 0x313 /* RW RESERVED */
  57. #define REG_TXPB 0x314 /* RW TX Packet Storage Base Address */
  58. #define REG_RXPB 0x315 /* RW RX Packet Storage Base Address */
  59. #define REG_TMR_CFG0 0x316 /* RW Wake up Timer Conf Register - High */
  60. #define REG_TMR_CFG1 0x317 /* RW Wake up Timer Conf Register - Low */
  61. #define REG_TMR_RLD0 0x318 /* RW Wake up Timer Value Register - High */
  62. #define REG_TMR_RLD1 0x319 /* RW Wake up Timer Value Register - Low */
  63. #define REG_TMR_CTRL 0x31A /* RW Wake up Timer Timeout flag */
  64. #define REG_PD_AUX 0x31E /* RW Battmon enable */
  65. #define REG_GP_CFG 0x32C /* RW GPIO Configuration */
  66. #define REG_GP_OUT 0x32D /* RW GPIO Configuration */
  67. #define REG_GP_IN 0x32E /* R GPIO Configuration */
  68. #define REG_SYNT 0x335 /* RW bandwidth calibration timers */
  69. #define REG_CAL_CFG 0x33D /* RW Calibration Settings */
  70. #define REG_PA_BIAS 0x36E /* RW PA BIAS */
  71. #define REG_SYNT_CAL 0x371 /* RW Oscillator and Doubler Configuration */
  72. #define REG_IIRF_CFG 0x389 /* RW BB Filter Decimation Rate */
  73. #define REG_CDR_CFG 0x38A /* RW CDR kVCO */
  74. #define REG_DM_CFG1 0x38B /* RW Postdemodulator Filter */
  75. #define REG_AGCSTAT 0x38E /* R RXBB Ref Osc Calibration Engine Readback */
  76. #define REG_RXCAL0 0x395 /* RW RX BB filter tuning, LSB */
  77. #define REG_RXCAL1 0x396 /* RW RX BB filter tuning, MSB */
  78. #define REG_RXFE_CFG 0x39B /* RW RXBB Ref Osc & RXFE Calibration */
  79. #define REG_PA_RR 0x3A7 /* RW Set PA ramp rate */
  80. #define REG_PA_CFG 0x3A8 /* RW PA enable */
  81. #define REG_EXTPA_CFG 0x3A9 /* RW External PA BIAS DAC */
  82. #define REG_EXTPA_MSC 0x3AA /* RW PA Bias Mode */
  83. #define REG_ADC_RBK 0x3AE /* R Readback temp */
  84. #define REG_AGC_CFG1 0x3B2 /* RW GC Parameters */
  85. #define REG_AGC_MAX 0x3B4 /* RW Slew rate */
  86. #define REG_AGC_CFG2 0x3B6 /* RW RSSI Parameters */
  87. #define REG_AGC_CFG3 0x3B7 /* RW RSSI Parameters */
  88. #define REG_AGC_CFG4 0x3B8 /* RW RSSI Parameters */
  89. #define REG_AGC_CFG5 0x3B9 /* RW RSSI & NDEC Parameters */
  90. #define REG_AGC_CFG6 0x3BA /* RW NDEC Parameters */
  91. #define REG_OCL_CFG1 0x3C4 /* RW OCL System Parameters */
  92. #define REG_IRQ1_EN0 0x3C7 /* RW Interrupt Mask set bits for IRQ1 */
  93. #define REG_IRQ1_EN1 0x3C8 /* RW Interrupt Mask set bits for IRQ1 */
  94. #define REG_IRQ2_EN0 0x3C9 /* RW Interrupt Mask set bits for IRQ2 */
  95. #define REG_IRQ2_EN1 0x3CA /* RW Interrupt Mask set bits for IRQ2 */
  96. #define REG_IRQ1_SRC0 0x3CB /* RW Interrupt Source bits for IRQ */
  97. #define REG_IRQ1_SRC1 0x3CC /* RW Interrupt Source bits for IRQ */
  98. #define REG_OCL_BW0 0x3D2 /* RW OCL System Parameters */
  99. #define REG_OCL_BW1 0x3D3 /* RW OCL System Parameters */
  100. #define REG_OCL_BW2 0x3D4 /* RW OCL System Parameters */
  101. #define REG_OCL_BW3 0x3D5 /* RW OCL System Parameters */
  102. #define REG_OCL_BW4 0x3D6 /* RW OCL System Parameters */
  103. #define REG_OCL_BWS 0x3D7 /* RW OCL System Parameters */
  104. #define REG_OCL_CFG13 0x3E0 /* RW OCL System Parameters */
  105. #define REG_GP_DRV 0x3E3 /* RW I/O pads Configuration and bg trim */
  106. #define REG_BM_CFG 0x3E6 /* RW Batt. Monitor Threshold Voltage setting */
  107. #define REG_SFD_15_4 0x3F4 /* RW Option to set non standard SFD */
  108. #define REG_AFC_CFG 0x3F7 /* RW AFC mode and polarity */
  109. #define REG_AFC_KI_KP 0x3F8 /* RW AFC ki and kp */
  110. #define REG_AFC_RANGE 0x3F9 /* RW AFC range */
  111. #define REG_AFC_READ 0x3FA /* RW Readback frequency error */
  112. /* REG_EXTPA_MSC */
  113. #define PA_PWR(x) (((x) & 0xF) << 4)
  114. #define EXTPA_BIAS_SRC BIT(3)
  115. #define EXTPA_BIAS_MODE(x) (((x) & 0x7) << 0)
  116. /* REG_PA_CFG */
  117. #define PA_BRIDGE_DBIAS(x) (((x) & 0x1F) << 0)
  118. #define PA_DBIAS_HIGH_POWER 21
  119. #define PA_DBIAS_LOW_POWER 13
  120. /* REG_PA_BIAS */
  121. #define PA_BIAS_CTRL(x) (((x) & 0x1F) << 1)
  122. #define REG_PA_BIAS_DFL BIT(0)
  123. #define PA_BIAS_HIGH_POWER 63
  124. #define PA_BIAS_LOW_POWER 55
  125. #define REG_PAN_ID0 0x112
  126. #define REG_PAN_ID1 0x113
  127. #define REG_SHORT_ADDR_0 0x114
  128. #define REG_SHORT_ADDR_1 0x115
  129. #define REG_IEEE_ADDR_0 0x116
  130. #define REG_IEEE_ADDR_1 0x117
  131. #define REG_IEEE_ADDR_2 0x118
  132. #define REG_IEEE_ADDR_3 0x119
  133. #define REG_IEEE_ADDR_4 0x11A
  134. #define REG_IEEE_ADDR_5 0x11B
  135. #define REG_IEEE_ADDR_6 0x11C
  136. #define REG_IEEE_ADDR_7 0x11D
  137. #define REG_FFILT_CFG 0x11E
  138. #define REG_AUTO_CFG 0x11F
  139. #define REG_AUTO_TX1 0x120
  140. #define REG_AUTO_TX2 0x121
  141. #define REG_AUTO_STATUS 0x122
  142. /* REG_FFILT_CFG */
  143. #define ACCEPT_BEACON_FRAMES BIT(0)
  144. #define ACCEPT_DATA_FRAMES BIT(1)
  145. #define ACCEPT_ACK_FRAMES BIT(2)
  146. #define ACCEPT_MACCMD_FRAMES BIT(3)
  147. #define ACCEPT_RESERVED_FRAMES BIT(4)
  148. #define ACCEPT_ALL_ADDRESS BIT(5)
  149. /* REG_AUTO_CFG */
  150. #define AUTO_ACK_FRAMEPEND BIT(0)
  151. #define IS_PANCOORD BIT(1)
  152. #define RX_AUTO_ACK_EN BIT(3)
  153. #define CSMA_CA_RX_TURNAROUND BIT(4)
  154. /* REG_AUTO_TX1 */
  155. #define MAX_FRAME_RETRIES(x) ((x) & 0xF)
  156. #define MAX_CCA_RETRIES(x) (((x) & 0x7) << 4)
  157. /* REG_AUTO_TX2 */
  158. #define CSMA_MAX_BE(x) ((x) & 0xF)
  159. #define CSMA_MIN_BE(x) (((x) & 0xF) << 4)
  160. #define CMD_SPI_NOP 0xFF /* No operation. Use for dummy writes */
  161. #define CMD_SPI_PKT_WR 0x10 /* Write telegram to the Packet RAM
  162. * starting from the TX packet base address
  163. * pointer tx_packet_base
  164. */
  165. #define CMD_SPI_PKT_RD 0x30 /* Read telegram from the Packet RAM
  166. * starting from RX packet base address
  167. * pointer rxpb.rx_packet_base
  168. */
  169. #define CMD_SPI_MEM_WR(x) (0x18 + (x >> 8)) /* Write data to MCR or
  170. * Packet RAM sequentially
  171. */
  172. #define CMD_SPI_MEM_RD(x) (0x38 + (x >> 8)) /* Read data from MCR or
  173. * Packet RAM sequentially
  174. */
  175. #define CMD_SPI_MEMR_WR(x) (0x08 + (x >> 8)) /* Write data to MCR or Packet
  176. * RAM as random block
  177. */
  178. #define CMD_SPI_MEMR_RD(x) (0x28 + (x >> 8)) /* Read data from MCR or
  179. * Packet RAM random block
  180. */
  181. #define CMD_SPI_PRAM_WR 0x1E /* Write data sequentially to current
  182. * PRAM page selected
  183. */
  184. #define CMD_SPI_PRAM_RD 0x3E /* Read data sequentially from current
  185. * PRAM page selected
  186. */
  187. #define CMD_RC_SLEEP 0xB1 /* Invoke transition of radio controller
  188. * into SLEEP state
  189. */
  190. #define CMD_RC_IDLE 0xB2 /* Invoke transition of radio controller
  191. * into IDLE state
  192. */
  193. #define CMD_RC_PHY_RDY 0xB3 /* Invoke transition of radio controller
  194. * into PHY_RDY state
  195. */
  196. #define CMD_RC_RX 0xB4 /* Invoke transition of radio controller
  197. * into RX state
  198. */
  199. #define CMD_RC_TX 0xB5 /* Invoke transition of radio controller
  200. * into TX state
  201. */
  202. #define CMD_RC_MEAS 0xB6 /* Invoke transition of radio controller
  203. * into MEAS state
  204. */
  205. #define CMD_RC_CCA 0xB7 /* Invoke Clear channel assessment */
  206. #define CMD_RC_CSMACA 0xC1 /* initiates CSMA-CA channel access
  207. * sequence and frame transmission
  208. */
  209. #define CMD_RC_PC_RESET 0xC7 /* Program counter reset */
  210. #define CMD_RC_RESET 0xC8 /* Resets the ADF7242 and puts it in
  211. * the sleep state
  212. */
  213. #define CMD_RC_PC_RESET_NO_WAIT (CMD_RC_PC_RESET | BIT(31))
  214. /* STATUS */
  215. #define STAT_SPI_READY BIT(7)
  216. #define STAT_IRQ_STATUS BIT(6)
  217. #define STAT_RC_READY BIT(5)
  218. #define STAT_CCA_RESULT BIT(4)
  219. #define RC_STATUS_IDLE 1
  220. #define RC_STATUS_MEAS 2
  221. #define RC_STATUS_PHY_RDY 3
  222. #define RC_STATUS_RX 4
  223. #define RC_STATUS_TX 5
  224. #define RC_STATUS_MASK 0xF
  225. /* AUTO_STATUS */
  226. #define SUCCESS 0
  227. #define SUCCESS_DATPEND 1
  228. #define FAILURE_CSMACA 2
  229. #define FAILURE_NOACK 3
  230. #define AUTO_STATUS_MASK 0x3
  231. #define PRAM_PAGESIZE 256
  232. /* IRQ1 */
  233. #define IRQ_CCA_COMPLETE BIT(0)
  234. #define IRQ_SFD_RX BIT(1)
  235. #define IRQ_SFD_TX BIT(2)
  236. #define IRQ_RX_PKT_RCVD BIT(3)
  237. #define IRQ_TX_PKT_SENT BIT(4)
  238. #define IRQ_FRAME_VALID BIT(5)
  239. #define IRQ_ADDRESS_VALID BIT(6)
  240. #define IRQ_CSMA_CA BIT(7)
  241. #define AUTO_TX_TURNAROUND BIT(3)
  242. #define ADDON_EN BIT(4)
  243. #define FLAG_XMIT 0
  244. #define FLAG_START 1
  245. #define ADF7242_REPORT_CSMA_CA_STAT 0 /* framework doesn't handle yet */
  246. struct adf7242_local {
  247. struct spi_device *spi;
  248. struct completion tx_complete;
  249. struct ieee802154_hw *hw;
  250. struct mutex bmux; /* protect SPI messages */
  251. struct spi_message stat_msg;
  252. struct spi_transfer stat_xfer;
  253. struct dentry *debugfs_root;
  254. unsigned long flags;
  255. int tx_stat;
  256. bool promiscuous;
  257. s8 rssi;
  258. u8 max_frame_retries;
  259. u8 max_cca_retries;
  260. u8 max_be;
  261. u8 min_be;
  262. /* DMA (thus cache coherency maintenance) requires the
  263. * transfer buffers to live in their own cache lines.
  264. */
  265. u8 buf[3] ____cacheline_aligned;
  266. u8 buf_reg_tx[3];
  267. u8 buf_read_tx[4];
  268. u8 buf_read_rx[4];
  269. u8 buf_stat_rx;
  270. u8 buf_stat_tx;
  271. u8 buf_cmd;
  272. };
  273. static int adf7242_soft_reset(struct adf7242_local *lp, int line);
  274. static int adf7242_status(struct adf7242_local *lp, u8 *stat)
  275. {
  276. int status;
  277. mutex_lock(&lp->bmux);
  278. status = spi_sync(lp->spi, &lp->stat_msg);
  279. *stat = lp->buf_stat_rx;
  280. mutex_unlock(&lp->bmux);
  281. return status;
  282. }
  283. static int adf7242_wait_status(struct adf7242_local *lp, unsigned status,
  284. unsigned mask, int line)
  285. {
  286. int cnt = 0, ret = 0;
  287. u8 stat;
  288. do {
  289. adf7242_status(lp, &stat);
  290. cnt++;
  291. } while (((stat & mask) != status) && (cnt < MAX_POLL_LOOPS));
  292. if (cnt >= MAX_POLL_LOOPS) {
  293. ret = -ETIMEDOUT;
  294. if (!(stat & STAT_RC_READY)) {
  295. adf7242_soft_reset(lp, line);
  296. adf7242_status(lp, &stat);
  297. if ((stat & mask) == status)
  298. ret = 0;
  299. }
  300. if (ret < 0)
  301. dev_warn(&lp->spi->dev,
  302. "%s:line %d Timeout status 0x%x (%d)\n",
  303. __func__, line, stat, cnt);
  304. }
  305. dev_vdbg(&lp->spi->dev, "%s : loops=%d line %d\n", __func__, cnt, line);
  306. return ret;
  307. }
  308. static int adf7242_wait_ready(struct adf7242_local *lp, int line)
  309. {
  310. return adf7242_wait_status(lp, STAT_RC_READY | STAT_SPI_READY,
  311. STAT_RC_READY | STAT_SPI_READY, line);
  312. }
  313. static int adf7242_write_fbuf(struct adf7242_local *lp, u8 *data, u8 len)
  314. {
  315. u8 *buf = lp->buf;
  316. int status;
  317. struct spi_message msg;
  318. struct spi_transfer xfer_head = {
  319. .len = 2,
  320. .tx_buf = buf,
  321. };
  322. struct spi_transfer xfer_buf = {
  323. .len = len,
  324. .tx_buf = data,
  325. };
  326. spi_message_init(&msg);
  327. spi_message_add_tail(&xfer_head, &msg);
  328. spi_message_add_tail(&xfer_buf, &msg);
  329. adf7242_wait_ready(lp, __LINE__);
  330. mutex_lock(&lp->bmux);
  331. buf[0] = CMD_SPI_PKT_WR;
  332. buf[1] = len + 2;
  333. status = spi_sync(lp->spi, &msg);
  334. mutex_unlock(&lp->bmux);
  335. return status;
  336. }
  337. static int adf7242_read_fbuf(struct adf7242_local *lp,
  338. u8 *data, size_t len, bool packet_read)
  339. {
  340. u8 *buf = lp->buf;
  341. int status;
  342. struct spi_message msg;
  343. struct spi_transfer xfer_head = {
  344. .len = 3,
  345. .tx_buf = buf,
  346. .rx_buf = buf,
  347. };
  348. struct spi_transfer xfer_buf = {
  349. .len = len,
  350. .rx_buf = data,
  351. };
  352. spi_message_init(&msg);
  353. spi_message_add_tail(&xfer_head, &msg);
  354. spi_message_add_tail(&xfer_buf, &msg);
  355. adf7242_wait_ready(lp, __LINE__);
  356. mutex_lock(&lp->bmux);
  357. if (packet_read) {
  358. buf[0] = CMD_SPI_PKT_RD;
  359. buf[1] = CMD_SPI_NOP;
  360. buf[2] = 0; /* PHR */
  361. } else {
  362. buf[0] = CMD_SPI_PRAM_RD;
  363. buf[1] = 0;
  364. buf[2] = CMD_SPI_NOP;
  365. }
  366. status = spi_sync(lp->spi, &msg);
  367. mutex_unlock(&lp->bmux);
  368. return status;
  369. }
  370. static int adf7242_read_reg(struct adf7242_local *lp, u16 addr, u8 *data)
  371. {
  372. int status;
  373. struct spi_message msg;
  374. struct spi_transfer xfer = {
  375. .len = 4,
  376. .tx_buf = lp->buf_read_tx,
  377. .rx_buf = lp->buf_read_rx,
  378. };
  379. adf7242_wait_ready(lp, __LINE__);
  380. mutex_lock(&lp->bmux);
  381. lp->buf_read_tx[0] = CMD_SPI_MEM_RD(addr);
  382. lp->buf_read_tx[1] = addr;
  383. lp->buf_read_tx[2] = CMD_SPI_NOP;
  384. lp->buf_read_tx[3] = CMD_SPI_NOP;
  385. spi_message_init(&msg);
  386. spi_message_add_tail(&xfer, &msg);
  387. status = spi_sync(lp->spi, &msg);
  388. if (msg.status)
  389. status = msg.status;
  390. if (!status)
  391. *data = lp->buf_read_rx[3];
  392. mutex_unlock(&lp->bmux);
  393. dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n", __func__,
  394. addr, *data);
  395. return status;
  396. }
  397. static int adf7242_write_reg(struct adf7242_local *lp, u16 addr, u8 data)
  398. {
  399. int status;
  400. adf7242_wait_ready(lp, __LINE__);
  401. mutex_lock(&lp->bmux);
  402. lp->buf_reg_tx[0] = CMD_SPI_MEM_WR(addr);
  403. lp->buf_reg_tx[1] = addr;
  404. lp->buf_reg_tx[2] = data;
  405. status = spi_write(lp->spi, lp->buf_reg_tx, 3);
  406. mutex_unlock(&lp->bmux);
  407. dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n",
  408. __func__, addr, data);
  409. return status;
  410. }
  411. static int adf7242_cmd(struct adf7242_local *lp, unsigned cmd)
  412. {
  413. int status;
  414. dev_vdbg(&lp->spi->dev, "%s : CMD=0x%X\n", __func__, cmd);
  415. if (cmd != CMD_RC_PC_RESET_NO_WAIT)
  416. adf7242_wait_ready(lp, __LINE__);
  417. mutex_lock(&lp->bmux);
  418. lp->buf_cmd = cmd;
  419. status = spi_write(lp->spi, &lp->buf_cmd, 1);
  420. mutex_unlock(&lp->bmux);
  421. return status;
  422. }
  423. static int adf7242_upload_firmware(struct adf7242_local *lp, u8 *data, u16 len)
  424. {
  425. struct spi_message msg;
  426. struct spi_transfer xfer_buf = { };
  427. int status, i, page = 0;
  428. u8 *buf = lp->buf;
  429. struct spi_transfer xfer_head = {
  430. .len = 2,
  431. .tx_buf = buf,
  432. };
  433. buf[0] = CMD_SPI_PRAM_WR;
  434. buf[1] = 0;
  435. spi_message_init(&msg);
  436. spi_message_add_tail(&xfer_head, &msg);
  437. spi_message_add_tail(&xfer_buf, &msg);
  438. for (i = len; i >= 0; i -= PRAM_PAGESIZE) {
  439. adf7242_write_reg(lp, REG_PRAMPG, page);
  440. xfer_buf.len = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i;
  441. xfer_buf.tx_buf = &data[page * PRAM_PAGESIZE];
  442. mutex_lock(&lp->bmux);
  443. status = spi_sync(lp->spi, &msg);
  444. mutex_unlock(&lp->bmux);
  445. page++;
  446. }
  447. return status;
  448. }
  449. static int adf7242_verify_firmware(struct adf7242_local *lp,
  450. const u8 *data, size_t len)
  451. {
  452. #ifdef DEBUG
  453. int i, j;
  454. unsigned int page;
  455. u8 *buf = kmalloc(PRAM_PAGESIZE, GFP_KERNEL);
  456. if (!buf)
  457. return -ENOMEM;
  458. for (page = 0, i = len; i >= 0; i -= PRAM_PAGESIZE, page++) {
  459. size_t nb = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i;
  460. adf7242_write_reg(lp, REG_PRAMPG, page);
  461. adf7242_read_fbuf(lp, buf, nb, false);
  462. for (j = 0; j < nb; j++) {
  463. if (buf[j] != data[page * PRAM_PAGESIZE + j]) {
  464. kfree(buf);
  465. return -EIO;
  466. }
  467. }
  468. }
  469. kfree(buf);
  470. #endif
  471. return 0;
  472. }
  473. static int adf7242_set_txpower(struct ieee802154_hw *hw, int mbm)
  474. {
  475. struct adf7242_local *lp = hw->priv;
  476. u8 pwr, bias_ctrl, dbias, tmp;
  477. int db = mbm / 100;
  478. dev_vdbg(&lp->spi->dev, "%s : Power %d dB\n", __func__, db);
  479. if (db > 5 || db < -26)
  480. return -EINVAL;
  481. db = DIV_ROUND_CLOSEST(db + 29, 2);
  482. if (db > 15) {
  483. dbias = PA_DBIAS_HIGH_POWER;
  484. bias_ctrl = PA_BIAS_HIGH_POWER;
  485. } else {
  486. dbias = PA_DBIAS_LOW_POWER;
  487. bias_ctrl = PA_BIAS_LOW_POWER;
  488. }
  489. pwr = clamp_t(u8, db, 3, 15);
  490. adf7242_read_reg(lp, REG_PA_CFG, &tmp);
  491. tmp &= ~PA_BRIDGE_DBIAS(~0);
  492. tmp |= PA_BRIDGE_DBIAS(dbias);
  493. adf7242_write_reg(lp, REG_PA_CFG, tmp);
  494. adf7242_read_reg(lp, REG_PA_BIAS, &tmp);
  495. tmp &= ~PA_BIAS_CTRL(~0);
  496. tmp |= PA_BIAS_CTRL(bias_ctrl);
  497. adf7242_write_reg(lp, REG_PA_BIAS, tmp);
  498. adf7242_read_reg(lp, REG_EXTPA_MSC, &tmp);
  499. tmp &= ~PA_PWR(~0);
  500. tmp |= PA_PWR(pwr);
  501. return adf7242_write_reg(lp, REG_EXTPA_MSC, tmp);
  502. }
  503. static int adf7242_set_csma_params(struct ieee802154_hw *hw, u8 min_be,
  504. u8 max_be, u8 retries)
  505. {
  506. struct adf7242_local *lp = hw->priv;
  507. int ret;
  508. dev_vdbg(&lp->spi->dev, "%s : min_be=%d max_be=%d retries=%d\n",
  509. __func__, min_be, max_be, retries);
  510. if (min_be > max_be || max_be > 8 || retries > 5)
  511. return -EINVAL;
  512. ret = adf7242_write_reg(lp, REG_AUTO_TX1,
  513. MAX_FRAME_RETRIES(lp->max_frame_retries) |
  514. MAX_CCA_RETRIES(retries));
  515. if (ret)
  516. return ret;
  517. lp->max_cca_retries = retries;
  518. lp->max_be = max_be;
  519. lp->min_be = min_be;
  520. return adf7242_write_reg(lp, REG_AUTO_TX2, CSMA_MAX_BE(max_be) |
  521. CSMA_MIN_BE(min_be));
  522. }
  523. static int adf7242_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
  524. {
  525. struct adf7242_local *lp = hw->priv;
  526. int ret = 0;
  527. dev_vdbg(&lp->spi->dev, "%s : Retries = %d\n", __func__, retries);
  528. if (retries < -1 || retries > 15)
  529. return -EINVAL;
  530. if (retries >= 0)
  531. ret = adf7242_write_reg(lp, REG_AUTO_TX1,
  532. MAX_FRAME_RETRIES(retries) |
  533. MAX_CCA_RETRIES(lp->max_cca_retries));
  534. lp->max_frame_retries = retries;
  535. return ret;
  536. }
  537. static int adf7242_ed(struct ieee802154_hw *hw, u8 *level)
  538. {
  539. struct adf7242_local *lp = hw->priv;
  540. *level = lp->rssi;
  541. dev_vdbg(&lp->spi->dev, "%s :Exit level=%d\n",
  542. __func__, *level);
  543. return 0;
  544. }
  545. static int adf7242_start(struct ieee802154_hw *hw)
  546. {
  547. struct adf7242_local *lp = hw->priv;
  548. adf7242_cmd(lp, CMD_RC_PHY_RDY);
  549. adf7242_write_reg(lp, REG_IRQ1_SRC1, 0xFF);
  550. enable_irq(lp->spi->irq);
  551. set_bit(FLAG_START, &lp->flags);
  552. return adf7242_cmd(lp, CMD_RC_RX);
  553. }
  554. static void adf7242_stop(struct ieee802154_hw *hw)
  555. {
  556. struct adf7242_local *lp = hw->priv;
  557. adf7242_cmd(lp, CMD_RC_IDLE);
  558. clear_bit(FLAG_START, &lp->flags);
  559. disable_irq(lp->spi->irq);
  560. adf7242_write_reg(lp, REG_IRQ1_SRC1, 0xFF);
  561. }
  562. static int adf7242_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  563. {
  564. struct adf7242_local *lp = hw->priv;
  565. unsigned long freq;
  566. dev_dbg(&lp->spi->dev, "%s :Channel=%d\n", __func__, channel);
  567. might_sleep();
  568. WARN_ON(page != 0);
  569. WARN_ON(channel < 11);
  570. WARN_ON(channel > 26);
  571. freq = (2405 + 5 * (channel - 11)) * 100;
  572. adf7242_cmd(lp, CMD_RC_PHY_RDY);
  573. adf7242_write_reg(lp, REG_CH_FREQ0, freq);
  574. adf7242_write_reg(lp, REG_CH_FREQ1, freq >> 8);
  575. adf7242_write_reg(lp, REG_CH_FREQ2, freq >> 16);
  576. return adf7242_cmd(lp, CMD_RC_RX);
  577. }
  578. static int adf7242_set_hw_addr_filt(struct ieee802154_hw *hw,
  579. struct ieee802154_hw_addr_filt *filt,
  580. unsigned long changed)
  581. {
  582. struct adf7242_local *lp = hw->priv;
  583. u8 reg;
  584. dev_dbg(&lp->spi->dev, "%s :Changed=0x%lX\n", __func__, changed);
  585. might_sleep();
  586. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  587. u8 addr[8], i;
  588. memcpy(addr, &filt->ieee_addr, 8);
  589. for (i = 0; i < 8; i++)
  590. adf7242_write_reg(lp, REG_IEEE_ADDR_0 + i, addr[i]);
  591. }
  592. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  593. u16 saddr = le16_to_cpu(filt->short_addr);
  594. adf7242_write_reg(lp, REG_SHORT_ADDR_0, saddr);
  595. adf7242_write_reg(lp, REG_SHORT_ADDR_1, saddr >> 8);
  596. }
  597. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  598. u16 pan_id = le16_to_cpu(filt->pan_id);
  599. adf7242_write_reg(lp, REG_PAN_ID0, pan_id);
  600. adf7242_write_reg(lp, REG_PAN_ID1, pan_id >> 8);
  601. }
  602. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  603. adf7242_read_reg(lp, REG_AUTO_CFG, &reg);
  604. if (filt->pan_coord)
  605. reg |= IS_PANCOORD;
  606. else
  607. reg &= ~IS_PANCOORD;
  608. adf7242_write_reg(lp, REG_AUTO_CFG, reg);
  609. }
  610. return 0;
  611. }
  612. static int adf7242_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
  613. {
  614. struct adf7242_local *lp = hw->priv;
  615. dev_dbg(&lp->spi->dev, "%s : mode %d\n", __func__, on);
  616. lp->promiscuous = on;
  617. if (on) {
  618. adf7242_write_reg(lp, REG_AUTO_CFG, 0);
  619. return adf7242_write_reg(lp, REG_FFILT_CFG,
  620. ACCEPT_BEACON_FRAMES |
  621. ACCEPT_DATA_FRAMES |
  622. ACCEPT_MACCMD_FRAMES |
  623. ACCEPT_ALL_ADDRESS |
  624. ACCEPT_ACK_FRAMES |
  625. ACCEPT_RESERVED_FRAMES);
  626. } else {
  627. adf7242_write_reg(lp, REG_FFILT_CFG,
  628. ACCEPT_BEACON_FRAMES |
  629. ACCEPT_DATA_FRAMES |
  630. ACCEPT_MACCMD_FRAMES |
  631. ACCEPT_RESERVED_FRAMES);
  632. return adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN);
  633. }
  634. }
  635. static int adf7242_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  636. {
  637. struct adf7242_local *lp = hw->priv;
  638. s8 level = clamp_t(s8, mbm / 100, S8_MIN, S8_MAX);
  639. dev_dbg(&lp->spi->dev, "%s : level %d\n", __func__, level);
  640. return adf7242_write_reg(lp, REG_CCA1, level);
  641. }
  642. static int adf7242_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
  643. {
  644. struct adf7242_local *lp = hw->priv;
  645. int ret;
  646. set_bit(FLAG_XMIT, &lp->flags);
  647. reinit_completion(&lp->tx_complete);
  648. adf7242_cmd(lp, CMD_RC_PHY_RDY);
  649. ret = adf7242_write_fbuf(lp, skb->data, skb->len);
  650. if (ret)
  651. goto err;
  652. ret = adf7242_cmd(lp, CMD_RC_CSMACA);
  653. if (ret)
  654. goto err;
  655. ret = wait_for_completion_interruptible_timeout(&lp->tx_complete,
  656. HZ / 10);
  657. if (ret < 0)
  658. goto err;
  659. if (ret == 0) {
  660. dev_dbg(&lp->spi->dev, "Timeout waiting for TX interrupt\n");
  661. ret = -ETIMEDOUT;
  662. goto err;
  663. }
  664. if (lp->tx_stat != SUCCESS) {
  665. dev_dbg(&lp->spi->dev,
  666. "Error xmit: Retry count exceeded Status=0x%x\n",
  667. lp->tx_stat);
  668. ret = -ECOMM;
  669. } else {
  670. ret = 0;
  671. }
  672. err:
  673. clear_bit(FLAG_XMIT, &lp->flags);
  674. adf7242_cmd(lp, CMD_RC_RX);
  675. return ret;
  676. }
  677. static int adf7242_rx(struct adf7242_local *lp)
  678. {
  679. struct sk_buff *skb;
  680. size_t len;
  681. int ret;
  682. u8 lqi, len_u8, *data;
  683. adf7242_read_reg(lp, 0, &len_u8);
  684. len = len_u8;
  685. if (!ieee802154_is_valid_psdu_len(len)) {
  686. dev_dbg(&lp->spi->dev,
  687. "corrupted frame received len %d\n", (int)len);
  688. len = IEEE802154_MTU;
  689. }
  690. skb = dev_alloc_skb(len);
  691. if (!skb) {
  692. adf7242_cmd(lp, CMD_RC_RX);
  693. return -ENOMEM;
  694. }
  695. data = skb_put(skb, len);
  696. ret = adf7242_read_fbuf(lp, data, len, true);
  697. if (ret < 0) {
  698. kfree_skb(skb);
  699. adf7242_cmd(lp, CMD_RC_RX);
  700. return ret;
  701. }
  702. lqi = data[len - 2];
  703. lp->rssi = data[len - 1];
  704. adf7242_cmd(lp, CMD_RC_RX);
  705. skb_trim(skb, len - 2); /* Don't put RSSI/LQI or CRC into the frame */
  706. ieee802154_rx_irqsafe(lp->hw, skb, lqi);
  707. dev_dbg(&lp->spi->dev, "%s: ret=%d len=%d lqi=%d rssi=%d\n",
  708. __func__, ret, (int)len, (int)lqi, lp->rssi);
  709. return 0;
  710. }
  711. static struct ieee802154_ops adf7242_ops = {
  712. .owner = THIS_MODULE,
  713. .xmit_sync = adf7242_xmit,
  714. .ed = adf7242_ed,
  715. .set_channel = adf7242_channel,
  716. .set_hw_addr_filt = adf7242_set_hw_addr_filt,
  717. .start = adf7242_start,
  718. .stop = adf7242_stop,
  719. .set_csma_params = adf7242_set_csma_params,
  720. .set_frame_retries = adf7242_set_frame_retries,
  721. .set_txpower = adf7242_set_txpower,
  722. .set_promiscuous_mode = adf7242_set_promiscuous_mode,
  723. .set_cca_ed_level = adf7242_set_cca_ed_level,
  724. };
  725. static void adf7242_debug(u8 irq1)
  726. {
  727. #ifdef DEBUG
  728. u8 stat;
  729. adf7242_status(lp, &stat);
  730. dev_dbg(&lp->spi->dev, "%s IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n",
  731. __func__, irq1,
  732. irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "",
  733. irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "",
  734. irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "",
  735. irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "",
  736. irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "",
  737. irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "",
  738. irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "",
  739. irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : "");
  740. dev_dbg(&lp->spi->dev, "%s STATUS = %X:\n%s\n%s%s%s%s%s\n",
  741. __func__, stat,
  742. stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY",
  743. (stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "",
  744. (stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "",
  745. (stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "",
  746. (stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "",
  747. (stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : "");
  748. #endif
  749. }
  750. static irqreturn_t adf7242_isr(int irq, void *data)
  751. {
  752. struct adf7242_local *lp = data;
  753. unsigned xmit;
  754. u8 irq1;
  755. adf7242_wait_status(lp, RC_STATUS_PHY_RDY, RC_STATUS_MASK, __LINE__);
  756. adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1);
  757. adf7242_write_reg(lp, REG_IRQ1_SRC1, irq1);
  758. if (!(irq1 & (IRQ_RX_PKT_RCVD | IRQ_CSMA_CA)))
  759. dev_err(&lp->spi->dev, "%s :ERROR IRQ1 = 0x%X\n",
  760. __func__, irq1);
  761. adf7242_debug(irq1);
  762. xmit = test_bit(FLAG_XMIT, &lp->flags);
  763. if (xmit && (irq1 & IRQ_CSMA_CA)) {
  764. if (ADF7242_REPORT_CSMA_CA_STAT) {
  765. u8 astat;
  766. adf7242_read_reg(lp, REG_AUTO_STATUS, &astat);
  767. astat &= AUTO_STATUS_MASK;
  768. dev_dbg(&lp->spi->dev, "AUTO_STATUS = %X:\n%s%s%s%s\n",
  769. astat,
  770. astat == SUCCESS ? "SUCCESS" : "",
  771. astat ==
  772. SUCCESS_DATPEND ? "SUCCESS_DATPEND" : "",
  773. astat == FAILURE_CSMACA ? "FAILURE_CSMACA" : "",
  774. astat == FAILURE_NOACK ? "FAILURE_NOACK" : "");
  775. /* save CSMA-CA completion status */
  776. lp->tx_stat = astat;
  777. } else {
  778. lp->tx_stat = SUCCESS;
  779. }
  780. complete(&lp->tx_complete);
  781. } else if (!xmit && (irq1 & IRQ_RX_PKT_RCVD) &&
  782. (irq1 & IRQ_FRAME_VALID)) {
  783. adf7242_rx(lp);
  784. } else if (!xmit && test_bit(FLAG_START, &lp->flags)) {
  785. /* Invalid packet received - drop it and restart */
  786. dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X\n",
  787. __func__, __LINE__, irq1);
  788. adf7242_cmd(lp, CMD_RC_PHY_RDY);
  789. adf7242_write_reg(lp, REG_IRQ1_SRC1, 0xFF);
  790. adf7242_cmd(lp, CMD_RC_RX);
  791. } else {
  792. /* This can only be xmit without IRQ, likely a RX packet.
  793. * we get an TX IRQ shortly - do nothing or let the xmit
  794. * timeout handle this
  795. */
  796. dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X, xmit %d\n",
  797. __func__, __LINE__, irq1, xmit);
  798. complete(&lp->tx_complete);
  799. }
  800. return IRQ_HANDLED;
  801. }
  802. static int adf7242_soft_reset(struct adf7242_local *lp, int line)
  803. {
  804. dev_warn(&lp->spi->dev, "%s (line %d)\n", __func__, line);
  805. if (test_bit(FLAG_START, &lp->flags))
  806. disable_irq_nosync(lp->spi->irq);
  807. adf7242_cmd(lp, CMD_RC_PC_RESET_NO_WAIT);
  808. usleep_range(200, 250);
  809. adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2));
  810. adf7242_cmd(lp, CMD_RC_PHY_RDY);
  811. adf7242_set_promiscuous_mode(lp->hw, lp->promiscuous);
  812. adf7242_set_csma_params(lp->hw, lp->min_be, lp->max_be,
  813. lp->max_cca_retries);
  814. adf7242_write_reg(lp, REG_IRQ1_SRC1, 0xFF);
  815. if (test_bit(FLAG_START, &lp->flags)) {
  816. enable_irq(lp->spi->irq);
  817. return adf7242_cmd(lp, CMD_RC_RX);
  818. }
  819. return 0;
  820. }
  821. static int adf7242_hw_init(struct adf7242_local *lp)
  822. {
  823. int ret;
  824. const struct firmware *fw;
  825. adf7242_cmd(lp, CMD_RC_RESET);
  826. adf7242_cmd(lp, CMD_RC_IDLE);
  827. /* get ADF7242 addon firmware
  828. * build this driver as module
  829. * and place under /lib/firmware/adf7242_firmware.bin
  830. * or compile firmware into the kernel.
  831. */
  832. ret = request_firmware(&fw, FIRMWARE, &lp->spi->dev);
  833. if (ret) {
  834. dev_err(&lp->spi->dev,
  835. "request_firmware() failed with %d\n", ret);
  836. return ret;
  837. }
  838. ret = adf7242_upload_firmware(lp, (u8 *)fw->data, fw->size);
  839. if (ret) {
  840. dev_err(&lp->spi->dev,
  841. "upload firmware failed with %d\n", ret);
  842. release_firmware(fw);
  843. return ret;
  844. }
  845. ret = adf7242_verify_firmware(lp, (u8 *)fw->data, fw->size);
  846. if (ret) {
  847. dev_err(&lp->spi->dev,
  848. "verify firmware failed with %d\n", ret);
  849. release_firmware(fw);
  850. return ret;
  851. }
  852. adf7242_cmd(lp, CMD_RC_PC_RESET);
  853. release_firmware(fw);
  854. adf7242_write_reg(lp, REG_FFILT_CFG,
  855. ACCEPT_BEACON_FRAMES |
  856. ACCEPT_DATA_FRAMES |
  857. ACCEPT_MACCMD_FRAMES |
  858. ACCEPT_RESERVED_FRAMES);
  859. adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN);
  860. adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2));
  861. adf7242_write_reg(lp, REG_EXTPA_MSC, 0xF1);
  862. adf7242_write_reg(lp, REG_RXFE_CFG, 0x1D);
  863. adf7242_write_reg(lp, REG_IRQ1_EN0, 0);
  864. adf7242_write_reg(lp, REG_IRQ1_EN1, IRQ_RX_PKT_RCVD | IRQ_CSMA_CA);
  865. adf7242_write_reg(lp, REG_IRQ1_SRC1, 0xFF);
  866. adf7242_write_reg(lp, REG_IRQ1_SRC0, 0xFF);
  867. adf7242_cmd(lp, CMD_RC_IDLE);
  868. return 0;
  869. }
  870. static int adf7242_stats_show(struct seq_file *file, void *offset)
  871. {
  872. struct adf7242_local *lp = spi_get_drvdata(file->private);
  873. u8 stat, irq1;
  874. adf7242_status(lp, &stat);
  875. adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1);
  876. seq_printf(file, "IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n", irq1,
  877. irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "",
  878. irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "",
  879. irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "",
  880. irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "",
  881. irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "",
  882. irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "",
  883. irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "",
  884. irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : "");
  885. seq_printf(file, "STATUS = %X:\n%s\n%s%s%s%s%s\n", stat,
  886. stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY",
  887. (stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "",
  888. (stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "",
  889. (stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "",
  890. (stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "",
  891. (stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : "");
  892. seq_printf(file, "RSSI = %d\n", lp->rssi);
  893. return 0;
  894. }
  895. static int adf7242_debugfs_init(struct adf7242_local *lp)
  896. {
  897. char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "adf7242-";
  898. struct dentry *stats;
  899. strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN);
  900. lp->debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL);
  901. if (IS_ERR_OR_NULL(lp->debugfs_root))
  902. return PTR_ERR_OR_ZERO(lp->debugfs_root);
  903. stats = debugfs_create_devm_seqfile(&lp->spi->dev, "status",
  904. lp->debugfs_root,
  905. adf7242_stats_show);
  906. return PTR_ERR_OR_ZERO(stats);
  907. return 0;
  908. }
  909. static const s32 adf7242_powers[] = {
  910. 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700,
  911. -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700,
  912. -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600,
  913. };
  914. static const s32 adf7242_ed_levels[] = {
  915. -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
  916. -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
  917. -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
  918. -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
  919. -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
  920. -4000, -3900, -3800, -3700, -3600, -3500, -3400, -3200, -3100, -3000
  921. };
  922. static int adf7242_probe(struct spi_device *spi)
  923. {
  924. struct ieee802154_hw *hw;
  925. struct adf7242_local *lp;
  926. int ret, irq_type;
  927. if (!spi->irq) {
  928. dev_err(&spi->dev, "no IRQ specified\n");
  929. return -EINVAL;
  930. }
  931. hw = ieee802154_alloc_hw(sizeof(*lp), &adf7242_ops);
  932. if (!hw)
  933. return -ENOMEM;
  934. lp = hw->priv;
  935. lp->hw = hw;
  936. lp->spi = spi;
  937. hw->priv = lp;
  938. hw->parent = &spi->dev;
  939. hw->extra_tx_headroom = 0;
  940. /* We support only 2.4 Ghz */
  941. hw->phy->supported.channels[0] = 0x7FFF800;
  942. hw->flags = IEEE802154_HW_OMIT_CKSUM |
  943. IEEE802154_HW_CSMA_PARAMS |
  944. IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT |
  945. IEEE802154_HW_PROMISCUOUS;
  946. hw->phy->flags = WPAN_PHY_FLAG_TXPOWER |
  947. WPAN_PHY_FLAG_CCA_ED_LEVEL |
  948. WPAN_PHY_FLAG_CCA_MODE;
  949. hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY);
  950. hw->phy->supported.cca_ed_levels = adf7242_ed_levels;
  951. hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(adf7242_ed_levels);
  952. hw->phy->cca.mode = NL802154_CCA_ENERGY;
  953. hw->phy->supported.tx_powers = adf7242_powers;
  954. hw->phy->supported.tx_powers_size = ARRAY_SIZE(adf7242_powers);
  955. hw->phy->supported.min_minbe = 0;
  956. hw->phy->supported.max_minbe = 8;
  957. hw->phy->supported.min_maxbe = 3;
  958. hw->phy->supported.max_maxbe = 8;
  959. hw->phy->supported.min_frame_retries = 0;
  960. hw->phy->supported.max_frame_retries = 15;
  961. hw->phy->supported.min_csma_backoffs = 0;
  962. hw->phy->supported.max_csma_backoffs = 5;
  963. ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
  964. mutex_init(&lp->bmux);
  965. init_completion(&lp->tx_complete);
  966. /* Setup Status Message */
  967. lp->stat_xfer.len = 1;
  968. lp->stat_xfer.tx_buf = &lp->buf_stat_tx;
  969. lp->stat_xfer.rx_buf = &lp->buf_stat_rx;
  970. lp->buf_stat_tx = CMD_SPI_NOP;
  971. spi_message_init(&lp->stat_msg);
  972. spi_message_add_tail(&lp->stat_xfer, &lp->stat_msg);
  973. spi_set_drvdata(spi, lp);
  974. ret = adf7242_hw_init(lp);
  975. if (ret)
  976. goto err_hw_init;
  977. irq_type = irq_get_trigger_type(spi->irq);
  978. if (!irq_type)
  979. irq_type = IRQF_TRIGGER_HIGH;
  980. ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, adf7242_isr,
  981. irq_type | IRQF_ONESHOT,
  982. dev_name(&spi->dev), lp);
  983. if (ret)
  984. goto err_hw_init;
  985. disable_irq(spi->irq);
  986. ret = ieee802154_register_hw(lp->hw);
  987. if (ret)
  988. goto err_hw_init;
  989. dev_set_drvdata(&spi->dev, lp);
  990. adf7242_debugfs_init(lp);
  991. dev_info(&spi->dev, "mac802154 IRQ-%d registered\n", spi->irq);
  992. return ret;
  993. err_hw_init:
  994. mutex_destroy(&lp->bmux);
  995. ieee802154_free_hw(lp->hw);
  996. return ret;
  997. }
  998. static int adf7242_remove(struct spi_device *spi)
  999. {
  1000. struct adf7242_local *lp = spi_get_drvdata(spi);
  1001. if (!IS_ERR_OR_NULL(lp->debugfs_root))
  1002. debugfs_remove_recursive(lp->debugfs_root);
  1003. ieee802154_unregister_hw(lp->hw);
  1004. mutex_destroy(&lp->bmux);
  1005. ieee802154_free_hw(lp->hw);
  1006. return 0;
  1007. }
  1008. static const struct of_device_id adf7242_of_match[] = {
  1009. { .compatible = "adi,adf7242", },
  1010. { },
  1011. };
  1012. MODULE_DEVICE_TABLE(of, adf7242_of_match);
  1013. static const struct spi_device_id adf7242_device_id[] = {
  1014. { .name = "adf7242", },
  1015. { },
  1016. };
  1017. MODULE_DEVICE_TABLE(spi, adf7242_device_id);
  1018. static struct spi_driver adf7242_driver = {
  1019. .id_table = adf7242_device_id,
  1020. .driver = {
  1021. .of_match_table = of_match_ptr(adf7242_of_match),
  1022. .name = "adf7242",
  1023. .owner = THIS_MODULE,
  1024. },
  1025. .probe = adf7242_probe,
  1026. .remove = adf7242_remove,
  1027. };
  1028. module_spi_driver(adf7242_driver);
  1029. MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
  1030. MODULE_DESCRIPTION("ADF7242 IEEE802.15.4 Transceiver Driver");
  1031. MODULE_LICENSE("GPL");