af9033.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. /* Max transfer size done by I2C transfer functions */
  23. #define MAX_XFER_SIZE 64
  24. struct af9033_dev {
  25. struct i2c_client *client;
  26. struct dvb_frontend fe;
  27. struct af9033_config cfg;
  28. bool is_af9035;
  29. bool is_it9135;
  30. u32 bandwidth_hz;
  31. bool ts_mode_parallel;
  32. bool ts_mode_serial;
  33. enum fe_status fe_status;
  34. u64 post_bit_error_prev; /* for old read_ber we return (curr - prev) */
  35. u64 post_bit_error;
  36. u64 post_bit_count;
  37. u64 error_block_count;
  38. u64 total_block_count;
  39. };
  40. /* write multiple registers */
  41. static int af9033_wr_regs(struct af9033_dev *dev, u32 reg, const u8 *val,
  42. int len)
  43. {
  44. int ret;
  45. u8 buf[MAX_XFER_SIZE];
  46. struct i2c_msg msg[1] = {
  47. {
  48. .addr = dev->client->addr,
  49. .flags = 0,
  50. .len = 3 + len,
  51. .buf = buf,
  52. }
  53. };
  54. if (3 + len > sizeof(buf)) {
  55. dev_warn(&dev->client->dev,
  56. "i2c wr reg=%04x: len=%d is too big!\n",
  57. reg, len);
  58. return -EINVAL;
  59. }
  60. buf[0] = (reg >> 16) & 0xff;
  61. buf[1] = (reg >> 8) & 0xff;
  62. buf[2] = (reg >> 0) & 0xff;
  63. memcpy(&buf[3], val, len);
  64. ret = i2c_transfer(dev->client->adapter, msg, 1);
  65. if (ret == 1) {
  66. ret = 0;
  67. } else {
  68. dev_warn(&dev->client->dev, "i2c wr failed=%d reg=%06x len=%d\n",
  69. ret, reg, len);
  70. ret = -EREMOTEIO;
  71. }
  72. return ret;
  73. }
  74. /* read multiple registers */
  75. static int af9033_rd_regs(struct af9033_dev *dev, u32 reg, u8 *val, int len)
  76. {
  77. int ret;
  78. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  79. (reg >> 0) & 0xff };
  80. struct i2c_msg msg[2] = {
  81. {
  82. .addr = dev->client->addr,
  83. .flags = 0,
  84. .len = sizeof(buf),
  85. .buf = buf
  86. }, {
  87. .addr = dev->client->addr,
  88. .flags = I2C_M_RD,
  89. .len = len,
  90. .buf = val
  91. }
  92. };
  93. ret = i2c_transfer(dev->client->adapter, msg, 2);
  94. if (ret == 2) {
  95. ret = 0;
  96. } else {
  97. dev_warn(&dev->client->dev, "i2c rd failed=%d reg=%06x len=%d\n",
  98. ret, reg, len);
  99. ret = -EREMOTEIO;
  100. }
  101. return ret;
  102. }
  103. /* write single register */
  104. static int af9033_wr_reg(struct af9033_dev *dev, u32 reg, u8 val)
  105. {
  106. return af9033_wr_regs(dev, reg, &val, 1);
  107. }
  108. /* read single register */
  109. static int af9033_rd_reg(struct af9033_dev *dev, u32 reg, u8 *val)
  110. {
  111. return af9033_rd_regs(dev, reg, val, 1);
  112. }
  113. /* write single register with mask */
  114. static int af9033_wr_reg_mask(struct af9033_dev *dev, u32 reg, u8 val,
  115. u8 mask)
  116. {
  117. int ret;
  118. u8 tmp;
  119. /* no need for read if whole reg is written */
  120. if (mask != 0xff) {
  121. ret = af9033_rd_regs(dev, reg, &tmp, 1);
  122. if (ret)
  123. return ret;
  124. val &= mask;
  125. tmp &= ~mask;
  126. val |= tmp;
  127. }
  128. return af9033_wr_regs(dev, reg, &val, 1);
  129. }
  130. /* read single register with mask */
  131. static int af9033_rd_reg_mask(struct af9033_dev *dev, u32 reg, u8 *val,
  132. u8 mask)
  133. {
  134. int ret, i;
  135. u8 tmp;
  136. ret = af9033_rd_regs(dev, reg, &tmp, 1);
  137. if (ret)
  138. return ret;
  139. tmp &= mask;
  140. /* find position of the first bit */
  141. for (i = 0; i < 8; i++) {
  142. if ((mask >> i) & 0x01)
  143. break;
  144. }
  145. *val = tmp >> i;
  146. return 0;
  147. }
  148. /* write reg val table using reg addr auto increment */
  149. static int af9033_wr_reg_val_tab(struct af9033_dev *dev,
  150. const struct reg_val *tab, int tab_len)
  151. {
  152. #define MAX_TAB_LEN 212
  153. int ret, i, j;
  154. u8 buf[1 + MAX_TAB_LEN];
  155. dev_dbg(&dev->client->dev, "tab_len=%d\n", tab_len);
  156. if (tab_len > sizeof(buf)) {
  157. dev_warn(&dev->client->dev, "tab len %d is too big\n", tab_len);
  158. return -EINVAL;
  159. }
  160. for (i = 0, j = 0; i < tab_len; i++) {
  161. buf[j] = tab[i].val;
  162. if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
  163. ret = af9033_wr_regs(dev, tab[i].reg - j, buf, j + 1);
  164. if (ret < 0)
  165. goto err;
  166. j = 0;
  167. } else {
  168. j++;
  169. }
  170. }
  171. return 0;
  172. err:
  173. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  174. return ret;
  175. }
  176. static u32 af9033_div(struct af9033_dev *dev, u32 a, u32 b, u32 x)
  177. {
  178. u32 r = 0, c = 0, i;
  179. dev_dbg(&dev->client->dev, "a=%d b=%d x=%d\n", a, b, x);
  180. if (a > b) {
  181. c = a / b;
  182. a = a - c * b;
  183. }
  184. for (i = 0; i < x; i++) {
  185. if (a >= b) {
  186. r += 1;
  187. a -= b;
  188. }
  189. a <<= 1;
  190. r <<= 1;
  191. }
  192. r = (c << (u32)x) + r;
  193. dev_dbg(&dev->client->dev, "a=%d b=%d x=%d r=%d r=%x\n", a, b, x, r, r);
  194. return r;
  195. }
  196. static int af9033_init(struct dvb_frontend *fe)
  197. {
  198. struct af9033_dev *dev = fe->demodulator_priv;
  199. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  200. int ret, i, len;
  201. const struct reg_val *init;
  202. u8 buf[4];
  203. u32 adc_cw, clock_cw;
  204. struct reg_val_mask tab[] = {
  205. { 0x80fb24, 0x00, 0x08 },
  206. { 0x80004c, 0x00, 0xff },
  207. { 0x00f641, dev->cfg.tuner, 0xff },
  208. { 0x80f5ca, 0x01, 0x01 },
  209. { 0x80f715, 0x01, 0x01 },
  210. { 0x00f41f, 0x04, 0x04 },
  211. { 0x00f41a, 0x01, 0x01 },
  212. { 0x80f731, 0x00, 0x01 },
  213. { 0x00d91e, 0x00, 0x01 },
  214. { 0x00d919, 0x00, 0x01 },
  215. { 0x80f732, 0x00, 0x01 },
  216. { 0x00d91f, 0x00, 0x01 },
  217. { 0x00d91a, 0x00, 0x01 },
  218. { 0x80f730, 0x00, 0x01 },
  219. { 0x80f778, 0x00, 0xff },
  220. { 0x80f73c, 0x01, 0x01 },
  221. { 0x80f776, 0x00, 0x01 },
  222. { 0x00d8fd, 0x01, 0xff },
  223. { 0x00d830, 0x01, 0xff },
  224. { 0x00d831, 0x00, 0xff },
  225. { 0x00d832, 0x00, 0xff },
  226. { 0x80f985, dev->ts_mode_serial, 0x01 },
  227. { 0x80f986, dev->ts_mode_parallel, 0x01 },
  228. { 0x00d827, 0x00, 0xff },
  229. { 0x00d829, 0x00, 0xff },
  230. { 0x800045, dev->cfg.adc_multiplier, 0xff },
  231. };
  232. /* program clock control */
  233. clock_cw = af9033_div(dev, dev->cfg.clock, 1000000ul, 19ul);
  234. buf[0] = (clock_cw >> 0) & 0xff;
  235. buf[1] = (clock_cw >> 8) & 0xff;
  236. buf[2] = (clock_cw >> 16) & 0xff;
  237. buf[3] = (clock_cw >> 24) & 0xff;
  238. dev_dbg(&dev->client->dev, "clock=%d clock_cw=%08x\n",
  239. dev->cfg.clock, clock_cw);
  240. ret = af9033_wr_regs(dev, 0x800025, buf, 4);
  241. if (ret < 0)
  242. goto err;
  243. /* program ADC control */
  244. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  245. if (clock_adc_lut[i].clock == dev->cfg.clock)
  246. break;
  247. }
  248. if (i == ARRAY_SIZE(clock_adc_lut)) {
  249. dev_err(&dev->client->dev,
  250. "Couldn't find ADC config for clock=%d\n",
  251. dev->cfg.clock);
  252. goto err;
  253. }
  254. adc_cw = af9033_div(dev, clock_adc_lut[i].adc, 1000000ul, 19ul);
  255. buf[0] = (adc_cw >> 0) & 0xff;
  256. buf[1] = (adc_cw >> 8) & 0xff;
  257. buf[2] = (adc_cw >> 16) & 0xff;
  258. dev_dbg(&dev->client->dev, "adc=%d adc_cw=%06x\n",
  259. clock_adc_lut[i].adc, adc_cw);
  260. ret = af9033_wr_regs(dev, 0x80f1cd, buf, 3);
  261. if (ret < 0)
  262. goto err;
  263. /* program register table */
  264. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  265. ret = af9033_wr_reg_mask(dev, tab[i].reg, tab[i].val,
  266. tab[i].mask);
  267. if (ret < 0)
  268. goto err;
  269. }
  270. /* clock output */
  271. if (dev->cfg.dyn0_clk) {
  272. ret = af9033_wr_reg(dev, 0x80fba8, 0x00);
  273. if (ret < 0)
  274. goto err;
  275. }
  276. /* settings for TS interface */
  277. if (dev->cfg.ts_mode == AF9033_TS_MODE_USB) {
  278. ret = af9033_wr_reg_mask(dev, 0x80f9a5, 0x00, 0x01);
  279. if (ret < 0)
  280. goto err;
  281. ret = af9033_wr_reg_mask(dev, 0x80f9b5, 0x01, 0x01);
  282. if (ret < 0)
  283. goto err;
  284. } else {
  285. ret = af9033_wr_reg_mask(dev, 0x80f990, 0x00, 0x01);
  286. if (ret < 0)
  287. goto err;
  288. ret = af9033_wr_reg_mask(dev, 0x80f9b5, 0x00, 0x01);
  289. if (ret < 0)
  290. goto err;
  291. }
  292. /* load OFSM settings */
  293. dev_dbg(&dev->client->dev, "load ofsm settings\n");
  294. switch (dev->cfg.tuner) {
  295. case AF9033_TUNER_IT9135_38:
  296. case AF9033_TUNER_IT9135_51:
  297. case AF9033_TUNER_IT9135_52:
  298. len = ARRAY_SIZE(ofsm_init_it9135_v1);
  299. init = ofsm_init_it9135_v1;
  300. break;
  301. case AF9033_TUNER_IT9135_60:
  302. case AF9033_TUNER_IT9135_61:
  303. case AF9033_TUNER_IT9135_62:
  304. len = ARRAY_SIZE(ofsm_init_it9135_v2);
  305. init = ofsm_init_it9135_v2;
  306. break;
  307. default:
  308. len = ARRAY_SIZE(ofsm_init);
  309. init = ofsm_init;
  310. break;
  311. }
  312. ret = af9033_wr_reg_val_tab(dev, init, len);
  313. if (ret < 0)
  314. goto err;
  315. /* load tuner specific settings */
  316. dev_dbg(&dev->client->dev, "load tuner specific settings\n");
  317. switch (dev->cfg.tuner) {
  318. case AF9033_TUNER_TUA9001:
  319. len = ARRAY_SIZE(tuner_init_tua9001);
  320. init = tuner_init_tua9001;
  321. break;
  322. case AF9033_TUNER_FC0011:
  323. len = ARRAY_SIZE(tuner_init_fc0011);
  324. init = tuner_init_fc0011;
  325. break;
  326. case AF9033_TUNER_MXL5007T:
  327. len = ARRAY_SIZE(tuner_init_mxl5007t);
  328. init = tuner_init_mxl5007t;
  329. break;
  330. case AF9033_TUNER_TDA18218:
  331. len = ARRAY_SIZE(tuner_init_tda18218);
  332. init = tuner_init_tda18218;
  333. break;
  334. case AF9033_TUNER_FC2580:
  335. len = ARRAY_SIZE(tuner_init_fc2580);
  336. init = tuner_init_fc2580;
  337. break;
  338. case AF9033_TUNER_FC0012:
  339. len = ARRAY_SIZE(tuner_init_fc0012);
  340. init = tuner_init_fc0012;
  341. break;
  342. case AF9033_TUNER_IT9135_38:
  343. len = ARRAY_SIZE(tuner_init_it9135_38);
  344. init = tuner_init_it9135_38;
  345. break;
  346. case AF9033_TUNER_IT9135_51:
  347. len = ARRAY_SIZE(tuner_init_it9135_51);
  348. init = tuner_init_it9135_51;
  349. break;
  350. case AF9033_TUNER_IT9135_52:
  351. len = ARRAY_SIZE(tuner_init_it9135_52);
  352. init = tuner_init_it9135_52;
  353. break;
  354. case AF9033_TUNER_IT9135_60:
  355. len = ARRAY_SIZE(tuner_init_it9135_60);
  356. init = tuner_init_it9135_60;
  357. break;
  358. case AF9033_TUNER_IT9135_61:
  359. len = ARRAY_SIZE(tuner_init_it9135_61);
  360. init = tuner_init_it9135_61;
  361. break;
  362. case AF9033_TUNER_IT9135_62:
  363. len = ARRAY_SIZE(tuner_init_it9135_62);
  364. init = tuner_init_it9135_62;
  365. break;
  366. default:
  367. dev_dbg(&dev->client->dev, "unsupported tuner ID=%d\n",
  368. dev->cfg.tuner);
  369. ret = -ENODEV;
  370. goto err;
  371. }
  372. ret = af9033_wr_reg_val_tab(dev, init, len);
  373. if (ret < 0)
  374. goto err;
  375. if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  376. ret = af9033_wr_reg_mask(dev, 0x00d91c, 0x01, 0x01);
  377. if (ret < 0)
  378. goto err;
  379. ret = af9033_wr_reg_mask(dev, 0x00d917, 0x00, 0x01);
  380. if (ret < 0)
  381. goto err;
  382. ret = af9033_wr_reg_mask(dev, 0x00d916, 0x00, 0x01);
  383. if (ret < 0)
  384. goto err;
  385. }
  386. switch (dev->cfg.tuner) {
  387. case AF9033_TUNER_IT9135_60:
  388. case AF9033_TUNER_IT9135_61:
  389. case AF9033_TUNER_IT9135_62:
  390. ret = af9033_wr_reg(dev, 0x800000, 0x01);
  391. if (ret < 0)
  392. goto err;
  393. }
  394. dev->bandwidth_hz = 0; /* force to program all parameters */
  395. /* init stats here in order signal app which stats are supported */
  396. c->strength.len = 1;
  397. c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  398. c->cnr.len = 1;
  399. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  400. c->block_count.len = 1;
  401. c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  402. c->block_error.len = 1;
  403. c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  404. c->post_bit_count.len = 1;
  405. c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  406. c->post_bit_error.len = 1;
  407. c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  408. return 0;
  409. err:
  410. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  411. return ret;
  412. }
  413. static int af9033_sleep(struct dvb_frontend *fe)
  414. {
  415. struct af9033_dev *dev = fe->demodulator_priv;
  416. int ret, i;
  417. u8 tmp;
  418. ret = af9033_wr_reg(dev, 0x80004c, 1);
  419. if (ret < 0)
  420. goto err;
  421. ret = af9033_wr_reg(dev, 0x800000, 0);
  422. if (ret < 0)
  423. goto err;
  424. for (i = 100, tmp = 1; i && tmp; i--) {
  425. ret = af9033_rd_reg(dev, 0x80004c, &tmp);
  426. if (ret < 0)
  427. goto err;
  428. usleep_range(200, 10000);
  429. }
  430. dev_dbg(&dev->client->dev, "loop=%d\n", i);
  431. if (i == 0) {
  432. ret = -ETIMEDOUT;
  433. goto err;
  434. }
  435. ret = af9033_wr_reg_mask(dev, 0x80fb24, 0x08, 0x08);
  436. if (ret < 0)
  437. goto err;
  438. /* prevent current leak (?) */
  439. if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  440. /* enable parallel TS */
  441. ret = af9033_wr_reg_mask(dev, 0x00d917, 0x00, 0x01);
  442. if (ret < 0)
  443. goto err;
  444. ret = af9033_wr_reg_mask(dev, 0x00d916, 0x01, 0x01);
  445. if (ret < 0)
  446. goto err;
  447. }
  448. return 0;
  449. err:
  450. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  451. return ret;
  452. }
  453. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  454. struct dvb_frontend_tune_settings *fesettings)
  455. {
  456. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  457. fesettings->min_delay_ms = 2000;
  458. fesettings->step_size = 0;
  459. fesettings->max_drift = 0;
  460. return 0;
  461. }
  462. static int af9033_set_frontend(struct dvb_frontend *fe)
  463. {
  464. struct af9033_dev *dev = fe->demodulator_priv;
  465. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  466. int ret, i, spec_inv, sampling_freq;
  467. u8 tmp, buf[3], bandwidth_reg_val;
  468. u32 if_frequency, freq_cw, adc_freq;
  469. dev_dbg(&dev->client->dev, "frequency=%d bandwidth_hz=%d\n",
  470. c->frequency, c->bandwidth_hz);
  471. /* check bandwidth */
  472. switch (c->bandwidth_hz) {
  473. case 6000000:
  474. bandwidth_reg_val = 0x00;
  475. break;
  476. case 7000000:
  477. bandwidth_reg_val = 0x01;
  478. break;
  479. case 8000000:
  480. bandwidth_reg_val = 0x02;
  481. break;
  482. default:
  483. dev_dbg(&dev->client->dev, "invalid bandwidth_hz\n");
  484. ret = -EINVAL;
  485. goto err;
  486. }
  487. /* program tuner */
  488. if (fe->ops.tuner_ops.set_params)
  489. fe->ops.tuner_ops.set_params(fe);
  490. /* program CFOE coefficients */
  491. if (c->bandwidth_hz != dev->bandwidth_hz) {
  492. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  493. if (coeff_lut[i].clock == dev->cfg.clock &&
  494. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  495. break;
  496. }
  497. }
  498. if (i == ARRAY_SIZE(coeff_lut)) {
  499. dev_err(&dev->client->dev,
  500. "Couldn't find LUT config for clock=%d\n",
  501. dev->cfg.clock);
  502. ret = -EINVAL;
  503. goto err;
  504. }
  505. ret = af9033_wr_regs(dev, 0x800001,
  506. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  507. }
  508. /* program frequency control */
  509. if (c->bandwidth_hz != dev->bandwidth_hz) {
  510. spec_inv = dev->cfg.spec_inv ? -1 : 1;
  511. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  512. if (clock_adc_lut[i].clock == dev->cfg.clock)
  513. break;
  514. }
  515. if (i == ARRAY_SIZE(clock_adc_lut)) {
  516. dev_err(&dev->client->dev,
  517. "Couldn't find ADC clock for clock=%d\n",
  518. dev->cfg.clock);
  519. ret = -EINVAL;
  520. goto err;
  521. }
  522. adc_freq = clock_adc_lut[i].adc;
  523. /* get used IF frequency */
  524. if (fe->ops.tuner_ops.get_if_frequency)
  525. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  526. else
  527. if_frequency = 0;
  528. sampling_freq = if_frequency;
  529. while (sampling_freq > (adc_freq / 2))
  530. sampling_freq -= adc_freq;
  531. if (sampling_freq >= 0)
  532. spec_inv *= -1;
  533. else
  534. sampling_freq *= -1;
  535. freq_cw = af9033_div(dev, sampling_freq, adc_freq, 23ul);
  536. if (spec_inv == -1)
  537. freq_cw = 0x800000 - freq_cw;
  538. if (dev->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  539. freq_cw /= 2;
  540. buf[0] = (freq_cw >> 0) & 0xff;
  541. buf[1] = (freq_cw >> 8) & 0xff;
  542. buf[2] = (freq_cw >> 16) & 0x7f;
  543. /* FIXME: there seems to be calculation error here... */
  544. if (if_frequency == 0)
  545. buf[2] = 0;
  546. ret = af9033_wr_regs(dev, 0x800029, buf, 3);
  547. if (ret < 0)
  548. goto err;
  549. dev->bandwidth_hz = c->bandwidth_hz;
  550. }
  551. ret = af9033_wr_reg_mask(dev, 0x80f904, bandwidth_reg_val, 0x03);
  552. if (ret < 0)
  553. goto err;
  554. ret = af9033_wr_reg(dev, 0x800040, 0x00);
  555. if (ret < 0)
  556. goto err;
  557. ret = af9033_wr_reg(dev, 0x800047, 0x00);
  558. if (ret < 0)
  559. goto err;
  560. ret = af9033_wr_reg_mask(dev, 0x80f999, 0x00, 0x01);
  561. if (ret < 0)
  562. goto err;
  563. if (c->frequency <= 230000000)
  564. tmp = 0x00; /* VHF */
  565. else
  566. tmp = 0x01; /* UHF */
  567. ret = af9033_wr_reg(dev, 0x80004b, tmp);
  568. if (ret < 0)
  569. goto err;
  570. ret = af9033_wr_reg(dev, 0x800000, 0x00);
  571. if (ret < 0)
  572. goto err;
  573. return 0;
  574. err:
  575. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  576. return ret;
  577. }
  578. static int af9033_get_frontend(struct dvb_frontend *fe,
  579. struct dtv_frontend_properties *c)
  580. {
  581. struct af9033_dev *dev = fe->demodulator_priv;
  582. int ret;
  583. u8 buf[8];
  584. dev_dbg(&dev->client->dev, "\n");
  585. /* read all needed registers */
  586. ret = af9033_rd_regs(dev, 0x80f900, buf, sizeof(buf));
  587. if (ret < 0)
  588. goto err;
  589. switch ((buf[0] >> 0) & 3) {
  590. case 0:
  591. c->transmission_mode = TRANSMISSION_MODE_2K;
  592. break;
  593. case 1:
  594. c->transmission_mode = TRANSMISSION_MODE_8K;
  595. break;
  596. }
  597. switch ((buf[1] >> 0) & 3) {
  598. case 0:
  599. c->guard_interval = GUARD_INTERVAL_1_32;
  600. break;
  601. case 1:
  602. c->guard_interval = GUARD_INTERVAL_1_16;
  603. break;
  604. case 2:
  605. c->guard_interval = GUARD_INTERVAL_1_8;
  606. break;
  607. case 3:
  608. c->guard_interval = GUARD_INTERVAL_1_4;
  609. break;
  610. }
  611. switch ((buf[2] >> 0) & 7) {
  612. case 0:
  613. c->hierarchy = HIERARCHY_NONE;
  614. break;
  615. case 1:
  616. c->hierarchy = HIERARCHY_1;
  617. break;
  618. case 2:
  619. c->hierarchy = HIERARCHY_2;
  620. break;
  621. case 3:
  622. c->hierarchy = HIERARCHY_4;
  623. break;
  624. }
  625. switch ((buf[3] >> 0) & 3) {
  626. case 0:
  627. c->modulation = QPSK;
  628. break;
  629. case 1:
  630. c->modulation = QAM_16;
  631. break;
  632. case 2:
  633. c->modulation = QAM_64;
  634. break;
  635. }
  636. switch ((buf[4] >> 0) & 3) {
  637. case 0:
  638. c->bandwidth_hz = 6000000;
  639. break;
  640. case 1:
  641. c->bandwidth_hz = 7000000;
  642. break;
  643. case 2:
  644. c->bandwidth_hz = 8000000;
  645. break;
  646. }
  647. switch ((buf[6] >> 0) & 7) {
  648. case 0:
  649. c->code_rate_HP = FEC_1_2;
  650. break;
  651. case 1:
  652. c->code_rate_HP = FEC_2_3;
  653. break;
  654. case 2:
  655. c->code_rate_HP = FEC_3_4;
  656. break;
  657. case 3:
  658. c->code_rate_HP = FEC_5_6;
  659. break;
  660. case 4:
  661. c->code_rate_HP = FEC_7_8;
  662. break;
  663. case 5:
  664. c->code_rate_HP = FEC_NONE;
  665. break;
  666. }
  667. switch ((buf[7] >> 0) & 7) {
  668. case 0:
  669. c->code_rate_LP = FEC_1_2;
  670. break;
  671. case 1:
  672. c->code_rate_LP = FEC_2_3;
  673. break;
  674. case 2:
  675. c->code_rate_LP = FEC_3_4;
  676. break;
  677. case 3:
  678. c->code_rate_LP = FEC_5_6;
  679. break;
  680. case 4:
  681. c->code_rate_LP = FEC_7_8;
  682. break;
  683. case 5:
  684. c->code_rate_LP = FEC_NONE;
  685. break;
  686. }
  687. return 0;
  688. err:
  689. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  690. return ret;
  691. }
  692. static int af9033_read_status(struct dvb_frontend *fe, enum fe_status *status)
  693. {
  694. struct af9033_dev *dev = fe->demodulator_priv;
  695. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  696. int ret, i, tmp = 0;
  697. u8 u8tmp, buf[7];
  698. dev_dbg(&dev->client->dev, "\n");
  699. *status = 0;
  700. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  701. ret = af9033_rd_reg(dev, 0x800047, &u8tmp);
  702. if (ret < 0)
  703. goto err;
  704. /* has signal */
  705. if (u8tmp == 0x01)
  706. *status |= FE_HAS_SIGNAL;
  707. if (u8tmp != 0x02) {
  708. /* TPS lock */
  709. ret = af9033_rd_reg_mask(dev, 0x80f5a9, &u8tmp, 0x01);
  710. if (ret < 0)
  711. goto err;
  712. if (u8tmp)
  713. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  714. FE_HAS_VITERBI;
  715. /* full lock */
  716. ret = af9033_rd_reg_mask(dev, 0x80f999, &u8tmp, 0x01);
  717. if (ret < 0)
  718. goto err;
  719. if (u8tmp)
  720. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  721. FE_HAS_VITERBI | FE_HAS_SYNC |
  722. FE_HAS_LOCK;
  723. }
  724. dev->fe_status = *status;
  725. /* signal strength */
  726. if (dev->fe_status & FE_HAS_SIGNAL) {
  727. if (dev->is_af9035) {
  728. ret = af9033_rd_reg(dev, 0x80004a, &u8tmp);
  729. if (ret)
  730. goto err;
  731. tmp = -u8tmp * 1000;
  732. } else {
  733. ret = af9033_rd_reg(dev, 0x8000f7, &u8tmp);
  734. if (ret)
  735. goto err;
  736. tmp = (u8tmp - 100) * 1000;
  737. }
  738. c->strength.len = 1;
  739. c->strength.stat[0].scale = FE_SCALE_DECIBEL;
  740. c->strength.stat[0].svalue = tmp;
  741. } else {
  742. c->strength.len = 1;
  743. c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  744. }
  745. /* CNR */
  746. if (dev->fe_status & FE_HAS_VITERBI) {
  747. u32 snr_val, snr_lut_size;
  748. const struct val_snr *snr_lut = NULL;
  749. /* read value */
  750. ret = af9033_rd_regs(dev, 0x80002c, buf, 3);
  751. if (ret)
  752. goto err;
  753. snr_val = (buf[2] << 16) | (buf[1] << 8) | (buf[0] << 0);
  754. /* read superframe number */
  755. ret = af9033_rd_reg(dev, 0x80f78b, &u8tmp);
  756. if (ret)
  757. goto err;
  758. if (u8tmp)
  759. snr_val /= u8tmp;
  760. /* read current transmission mode */
  761. ret = af9033_rd_reg(dev, 0x80f900, &u8tmp);
  762. if (ret)
  763. goto err;
  764. switch ((u8tmp >> 0) & 3) {
  765. case 0:
  766. snr_val *= 4;
  767. break;
  768. case 1:
  769. snr_val *= 1;
  770. break;
  771. case 2:
  772. snr_val *= 2;
  773. break;
  774. default:
  775. snr_val *= 0;
  776. break;
  777. }
  778. /* read current modulation */
  779. ret = af9033_rd_reg(dev, 0x80f903, &u8tmp);
  780. if (ret)
  781. goto err;
  782. switch ((u8tmp >> 0) & 3) {
  783. case 0:
  784. snr_lut_size = ARRAY_SIZE(qpsk_snr_lut);
  785. snr_lut = qpsk_snr_lut;
  786. break;
  787. case 1:
  788. snr_lut_size = ARRAY_SIZE(qam16_snr_lut);
  789. snr_lut = qam16_snr_lut;
  790. break;
  791. case 2:
  792. snr_lut_size = ARRAY_SIZE(qam64_snr_lut);
  793. snr_lut = qam64_snr_lut;
  794. break;
  795. default:
  796. snr_lut_size = 0;
  797. tmp = 0;
  798. break;
  799. }
  800. for (i = 0; i < snr_lut_size; i++) {
  801. tmp = snr_lut[i].snr * 1000;
  802. if (snr_val < snr_lut[i].val)
  803. break;
  804. }
  805. c->cnr.len = 1;
  806. c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
  807. c->cnr.stat[0].svalue = tmp;
  808. } else {
  809. c->cnr.len = 1;
  810. c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
  811. }
  812. /* UCB/PER/BER */
  813. if (dev->fe_status & FE_HAS_LOCK) {
  814. /* outer FEC, 204 byte packets */
  815. u16 abort_packet_count, rsd_packet_count;
  816. /* inner FEC, bits */
  817. u32 rsd_bit_err_count;
  818. /*
  819. * Packet count used for measurement is 10000
  820. * (rsd_packet_count). Maybe it should be increased?
  821. */
  822. ret = af9033_rd_regs(dev, 0x800032, buf, 7);
  823. if (ret)
  824. goto err;
  825. abort_packet_count = (buf[1] << 8) | (buf[0] << 0);
  826. rsd_bit_err_count = (buf[4] << 16) | (buf[3] << 8) | buf[2];
  827. rsd_packet_count = (buf[6] << 8) | (buf[5] << 0);
  828. dev->error_block_count += abort_packet_count;
  829. dev->total_block_count += rsd_packet_count;
  830. dev->post_bit_error += rsd_bit_err_count;
  831. dev->post_bit_count += rsd_packet_count * 204 * 8;
  832. c->block_count.len = 1;
  833. c->block_count.stat[0].scale = FE_SCALE_COUNTER;
  834. c->block_count.stat[0].uvalue = dev->total_block_count;
  835. c->block_error.len = 1;
  836. c->block_error.stat[0].scale = FE_SCALE_COUNTER;
  837. c->block_error.stat[0].uvalue = dev->error_block_count;
  838. c->post_bit_count.len = 1;
  839. c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
  840. c->post_bit_count.stat[0].uvalue = dev->post_bit_count;
  841. c->post_bit_error.len = 1;
  842. c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
  843. c->post_bit_error.stat[0].uvalue = dev->post_bit_error;
  844. }
  845. return 0;
  846. err:
  847. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  848. return ret;
  849. }
  850. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  851. {
  852. struct af9033_dev *dev = fe->demodulator_priv;
  853. struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
  854. int ret;
  855. u8 u8tmp;
  856. /* use DVBv5 CNR */
  857. if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL) {
  858. /* Return 0.1 dB for AF9030 and 0-0xffff for IT9130. */
  859. if (dev->is_af9035) {
  860. /* 1000x => 10x (0.1 dB) */
  861. *snr = div_s64(c->cnr.stat[0].svalue, 100);
  862. } else {
  863. /* 1000x => 1x (1 dB) */
  864. *snr = div_s64(c->cnr.stat[0].svalue, 1000);
  865. /* read current modulation */
  866. ret = af9033_rd_reg(dev, 0x80f903, &u8tmp);
  867. if (ret)
  868. goto err;
  869. /* scale value to 0x0000-0xffff */
  870. switch ((u8tmp >> 0) & 3) {
  871. case 0:
  872. *snr = *snr * 0xffff / 23;
  873. break;
  874. case 1:
  875. *snr = *snr * 0xffff / 26;
  876. break;
  877. case 2:
  878. *snr = *snr * 0xffff / 32;
  879. break;
  880. default:
  881. goto err;
  882. }
  883. }
  884. } else {
  885. *snr = 0;
  886. }
  887. return 0;
  888. err:
  889. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  890. return ret;
  891. }
  892. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  893. {
  894. struct af9033_dev *dev = fe->demodulator_priv;
  895. struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache;
  896. int ret, tmp, power_real;
  897. u8 u8tmp, gain_offset, buf[7];
  898. if (dev->is_af9035) {
  899. /* read signal strength of 0-100 scale */
  900. ret = af9033_rd_reg(dev, 0x800048, &u8tmp);
  901. if (ret < 0)
  902. goto err;
  903. /* scale value to 0x0000-0xffff */
  904. *strength = u8tmp * 0xffff / 100;
  905. } else {
  906. ret = af9033_rd_reg(dev, 0x8000f7, &u8tmp);
  907. if (ret < 0)
  908. goto err;
  909. ret = af9033_rd_regs(dev, 0x80f900, buf, 7);
  910. if (ret < 0)
  911. goto err;
  912. if (c->frequency <= 300000000)
  913. gain_offset = 7; /* VHF */
  914. else
  915. gain_offset = 4; /* UHF */
  916. power_real = (u8tmp - 100 - gain_offset) -
  917. power_reference[((buf[3] >> 0) & 3)][((buf[6] >> 0) & 7)];
  918. if (power_real < -15)
  919. tmp = 0;
  920. else if ((power_real >= -15) && (power_real < 0))
  921. tmp = (2 * (power_real + 15)) / 3;
  922. else if ((power_real >= 0) && (power_real < 20))
  923. tmp = 4 * power_real + 10;
  924. else if ((power_real >= 20) && (power_real < 35))
  925. tmp = (2 * (power_real - 20)) / 3 + 90;
  926. else
  927. tmp = 100;
  928. /* scale value to 0x0000-0xffff */
  929. *strength = tmp * 0xffff / 100;
  930. }
  931. return 0;
  932. err:
  933. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  934. return ret;
  935. }
  936. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  937. {
  938. struct af9033_dev *dev = fe->demodulator_priv;
  939. *ber = (dev->post_bit_error - dev->post_bit_error_prev);
  940. dev->post_bit_error_prev = dev->post_bit_error;
  941. return 0;
  942. }
  943. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  944. {
  945. struct af9033_dev *dev = fe->demodulator_priv;
  946. *ucblocks = dev->error_block_count;
  947. return 0;
  948. }
  949. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  950. {
  951. struct af9033_dev *dev = fe->demodulator_priv;
  952. int ret;
  953. dev_dbg(&dev->client->dev, "enable=%d\n", enable);
  954. ret = af9033_wr_reg_mask(dev, 0x00fa04, enable, 0x01);
  955. if (ret < 0)
  956. goto err;
  957. return 0;
  958. err:
  959. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  960. return ret;
  961. }
  962. static int af9033_pid_filter_ctrl(struct dvb_frontend *fe, int onoff)
  963. {
  964. struct af9033_dev *dev = fe->demodulator_priv;
  965. int ret;
  966. dev_dbg(&dev->client->dev, "onoff=%d\n", onoff);
  967. ret = af9033_wr_reg_mask(dev, 0x80f993, onoff, 0x01);
  968. if (ret < 0)
  969. goto err;
  970. return 0;
  971. err:
  972. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  973. return ret;
  974. }
  975. static int af9033_pid_filter(struct dvb_frontend *fe, int index, u16 pid,
  976. int onoff)
  977. {
  978. struct af9033_dev *dev = fe->demodulator_priv;
  979. int ret;
  980. u8 wbuf[2] = {(pid >> 0) & 0xff, (pid >> 8) & 0xff};
  981. dev_dbg(&dev->client->dev, "index=%d pid=%04x onoff=%d\n",
  982. index, pid, onoff);
  983. if (pid > 0x1fff)
  984. return 0;
  985. ret = af9033_wr_regs(dev, 0x80f996, wbuf, 2);
  986. if (ret < 0)
  987. goto err;
  988. ret = af9033_wr_reg(dev, 0x80f994, onoff);
  989. if (ret < 0)
  990. goto err;
  991. ret = af9033_wr_reg(dev, 0x80f995, index);
  992. if (ret < 0)
  993. goto err;
  994. return 0;
  995. err:
  996. dev_dbg(&dev->client->dev, "failed=%d\n", ret);
  997. return ret;
  998. }
  999. static struct dvb_frontend_ops af9033_ops = {
  1000. .delsys = { SYS_DVBT },
  1001. .info = {
  1002. .name = "Afatech AF9033 (DVB-T)",
  1003. .frequency_min = 174000000,
  1004. .frequency_max = 862000000,
  1005. .frequency_stepsize = 250000,
  1006. .frequency_tolerance = 0,
  1007. .caps = FE_CAN_FEC_1_2 |
  1008. FE_CAN_FEC_2_3 |
  1009. FE_CAN_FEC_3_4 |
  1010. FE_CAN_FEC_5_6 |
  1011. FE_CAN_FEC_7_8 |
  1012. FE_CAN_FEC_AUTO |
  1013. FE_CAN_QPSK |
  1014. FE_CAN_QAM_16 |
  1015. FE_CAN_QAM_64 |
  1016. FE_CAN_QAM_AUTO |
  1017. FE_CAN_TRANSMISSION_MODE_AUTO |
  1018. FE_CAN_GUARD_INTERVAL_AUTO |
  1019. FE_CAN_HIERARCHY_AUTO |
  1020. FE_CAN_RECOVER |
  1021. FE_CAN_MUTE_TS
  1022. },
  1023. .init = af9033_init,
  1024. .sleep = af9033_sleep,
  1025. .get_tune_settings = af9033_get_tune_settings,
  1026. .set_frontend = af9033_set_frontend,
  1027. .get_frontend = af9033_get_frontend,
  1028. .read_status = af9033_read_status,
  1029. .read_snr = af9033_read_snr,
  1030. .read_signal_strength = af9033_read_signal_strength,
  1031. .read_ber = af9033_read_ber,
  1032. .read_ucblocks = af9033_read_ucblocks,
  1033. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  1034. };
  1035. static int af9033_probe(struct i2c_client *client,
  1036. const struct i2c_device_id *id)
  1037. {
  1038. struct af9033_config *cfg = client->dev.platform_data;
  1039. struct af9033_dev *dev;
  1040. int ret;
  1041. u8 buf[8];
  1042. u32 reg;
  1043. /* allocate memory for the internal state */
  1044. dev = kzalloc(sizeof(struct af9033_dev), GFP_KERNEL);
  1045. if (dev == NULL) {
  1046. ret = -ENOMEM;
  1047. dev_err(&client->dev, "Could not allocate memory for state\n");
  1048. goto err;
  1049. }
  1050. /* setup the state */
  1051. dev->client = client;
  1052. memcpy(&dev->cfg, cfg, sizeof(struct af9033_config));
  1053. if (dev->cfg.clock != 12000000) {
  1054. ret = -ENODEV;
  1055. dev_err(&dev->client->dev,
  1056. "unsupported clock %d Hz, only 12000000 Hz is supported currently\n",
  1057. dev->cfg.clock);
  1058. goto err_kfree;
  1059. }
  1060. /* firmware version */
  1061. switch (dev->cfg.tuner) {
  1062. case AF9033_TUNER_IT9135_38:
  1063. case AF9033_TUNER_IT9135_51:
  1064. case AF9033_TUNER_IT9135_52:
  1065. case AF9033_TUNER_IT9135_60:
  1066. case AF9033_TUNER_IT9135_61:
  1067. case AF9033_TUNER_IT9135_62:
  1068. dev->is_it9135 = true;
  1069. reg = 0x004bfc;
  1070. break;
  1071. default:
  1072. dev->is_af9035 = true;
  1073. reg = 0x0083e9;
  1074. break;
  1075. }
  1076. ret = af9033_rd_regs(dev, reg, &buf[0], 4);
  1077. if (ret < 0)
  1078. goto err_kfree;
  1079. ret = af9033_rd_regs(dev, 0x804191, &buf[4], 4);
  1080. if (ret < 0)
  1081. goto err_kfree;
  1082. dev_info(&dev->client->dev,
  1083. "firmware version: LINK %d.%d.%d.%d - OFDM %d.%d.%d.%d\n",
  1084. buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
  1085. buf[7]);
  1086. /* sleep */
  1087. switch (dev->cfg.tuner) {
  1088. case AF9033_TUNER_IT9135_38:
  1089. case AF9033_TUNER_IT9135_51:
  1090. case AF9033_TUNER_IT9135_52:
  1091. case AF9033_TUNER_IT9135_60:
  1092. case AF9033_TUNER_IT9135_61:
  1093. case AF9033_TUNER_IT9135_62:
  1094. /* IT9135 did not like to sleep at that early */
  1095. break;
  1096. default:
  1097. ret = af9033_wr_reg(dev, 0x80004c, 1);
  1098. if (ret < 0)
  1099. goto err_kfree;
  1100. ret = af9033_wr_reg(dev, 0x800000, 0);
  1101. if (ret < 0)
  1102. goto err_kfree;
  1103. }
  1104. /* configure internal TS mode */
  1105. switch (dev->cfg.ts_mode) {
  1106. case AF9033_TS_MODE_PARALLEL:
  1107. dev->ts_mode_parallel = true;
  1108. break;
  1109. case AF9033_TS_MODE_SERIAL:
  1110. dev->ts_mode_serial = true;
  1111. break;
  1112. case AF9033_TS_MODE_USB:
  1113. /* usb mode for AF9035 */
  1114. default:
  1115. break;
  1116. }
  1117. /* create dvb_frontend */
  1118. memcpy(&dev->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  1119. dev->fe.demodulator_priv = dev;
  1120. *cfg->fe = &dev->fe;
  1121. if (cfg->ops) {
  1122. cfg->ops->pid_filter = af9033_pid_filter;
  1123. cfg->ops->pid_filter_ctrl = af9033_pid_filter_ctrl;
  1124. }
  1125. i2c_set_clientdata(client, dev);
  1126. dev_info(&dev->client->dev, "Afatech AF9033 successfully attached\n");
  1127. return 0;
  1128. err_kfree:
  1129. kfree(dev);
  1130. err:
  1131. dev_dbg(&client->dev, "failed=%d\n", ret);
  1132. return ret;
  1133. }
  1134. static int af9033_remove(struct i2c_client *client)
  1135. {
  1136. struct af9033_dev *dev = i2c_get_clientdata(client);
  1137. dev_dbg(&dev->client->dev, "\n");
  1138. dev->fe.ops.release = NULL;
  1139. dev->fe.demodulator_priv = NULL;
  1140. kfree(dev);
  1141. return 0;
  1142. }
  1143. static const struct i2c_device_id af9033_id_table[] = {
  1144. {"af9033", 0},
  1145. {}
  1146. };
  1147. MODULE_DEVICE_TABLE(i2c, af9033_id_table);
  1148. static struct i2c_driver af9033_driver = {
  1149. .driver = {
  1150. .name = "af9033",
  1151. .suppress_bind_attrs = true,
  1152. },
  1153. .probe = af9033_probe,
  1154. .remove = af9033_remove,
  1155. .id_table = af9033_id_table,
  1156. };
  1157. module_i2c_driver(af9033_driver);
  1158. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1159. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  1160. MODULE_LICENSE("GPL");