omap-dma.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. * OMAP DMAengine support
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/delay.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/dmapool.h>
  12. #include <linux/err.h>
  13. #include <linux/init.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/list.h>
  16. #include <linux/module.h>
  17. #include <linux/omap-dma.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/slab.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/of_dma.h>
  22. #include <linux/of_device.h>
  23. #include "virt-dma.h"
  24. #define OMAP_SDMA_REQUESTS 127
  25. #define OMAP_SDMA_CHANNELS 32
  26. struct omap_dmadev {
  27. struct dma_device ddev;
  28. spinlock_t lock;
  29. void __iomem *base;
  30. const struct omap_dma_reg *reg_map;
  31. struct omap_system_dma_plat_info *plat;
  32. bool legacy;
  33. bool ll123_supported;
  34. struct dma_pool *desc_pool;
  35. unsigned dma_requests;
  36. spinlock_t irq_lock;
  37. uint32_t irq_enable_mask;
  38. struct omap_chan **lch_map;
  39. };
  40. struct omap_chan {
  41. struct virt_dma_chan vc;
  42. void __iomem *channel_base;
  43. const struct omap_dma_reg *reg_map;
  44. uint32_t ccr;
  45. struct dma_slave_config cfg;
  46. unsigned dma_sig;
  47. bool cyclic;
  48. bool paused;
  49. bool running;
  50. int dma_ch;
  51. struct omap_desc *desc;
  52. unsigned sgidx;
  53. };
  54. #define DESC_NXT_SV_REFRESH (0x1 << 24)
  55. #define DESC_NXT_SV_REUSE (0x2 << 24)
  56. #define DESC_NXT_DV_REFRESH (0x1 << 26)
  57. #define DESC_NXT_DV_REUSE (0x2 << 26)
  58. #define DESC_NTYPE_TYPE2 (0x2 << 29)
  59. /* Type 2 descriptor with Source or Destination address update */
  60. struct omap_type2_desc {
  61. uint32_t next_desc;
  62. uint32_t en;
  63. uint32_t addr; /* src or dst */
  64. uint16_t fn;
  65. uint16_t cicr;
  66. int16_t cdei;
  67. int16_t csei;
  68. int32_t cdfi;
  69. int32_t csfi;
  70. } __packed;
  71. struct omap_sg {
  72. dma_addr_t addr;
  73. uint32_t en; /* number of elements (24-bit) */
  74. uint32_t fn; /* number of frames (16-bit) */
  75. int32_t fi; /* for double indexing */
  76. int16_t ei; /* for double indexing */
  77. /* Linked list */
  78. struct omap_type2_desc *t2_desc;
  79. dma_addr_t t2_desc_paddr;
  80. };
  81. struct omap_desc {
  82. struct virt_dma_desc vd;
  83. bool using_ll;
  84. enum dma_transfer_direction dir;
  85. dma_addr_t dev_addr;
  86. int32_t fi; /* for OMAP_DMA_SYNC_PACKET / double indexing */
  87. int16_t ei; /* for double indexing */
  88. uint8_t es; /* CSDP_DATA_TYPE_xxx */
  89. uint32_t ccr; /* CCR value */
  90. uint16_t clnk_ctrl; /* CLNK_CTRL value */
  91. uint16_t cicr; /* CICR value */
  92. uint32_t csdp; /* CSDP value */
  93. unsigned sglen;
  94. struct omap_sg sg[0];
  95. };
  96. enum {
  97. CAPS_0_SUPPORT_LL123 = BIT(20), /* Linked List type1/2/3 */
  98. CAPS_0_SUPPORT_LL4 = BIT(21), /* Linked List type4 */
  99. CCR_FS = BIT(5),
  100. CCR_READ_PRIORITY = BIT(6),
  101. CCR_ENABLE = BIT(7),
  102. CCR_AUTO_INIT = BIT(8), /* OMAP1 only */
  103. CCR_REPEAT = BIT(9), /* OMAP1 only */
  104. CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */
  105. CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */
  106. CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */
  107. CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */
  108. CCR_SRC_AMODE_CONSTANT = 0 << 12,
  109. CCR_SRC_AMODE_POSTINC = 1 << 12,
  110. CCR_SRC_AMODE_SGLIDX = 2 << 12,
  111. CCR_SRC_AMODE_DBLIDX = 3 << 12,
  112. CCR_DST_AMODE_CONSTANT = 0 << 14,
  113. CCR_DST_AMODE_POSTINC = 1 << 14,
  114. CCR_DST_AMODE_SGLIDX = 2 << 14,
  115. CCR_DST_AMODE_DBLIDX = 3 << 14,
  116. CCR_CONSTANT_FILL = BIT(16),
  117. CCR_TRANSPARENT_COPY = BIT(17),
  118. CCR_BS = BIT(18),
  119. CCR_SUPERVISOR = BIT(22),
  120. CCR_PREFETCH = BIT(23),
  121. CCR_TRIGGER_SRC = BIT(24),
  122. CCR_BUFFERING_DISABLE = BIT(25),
  123. CCR_WRITE_PRIORITY = BIT(26),
  124. CCR_SYNC_ELEMENT = 0,
  125. CCR_SYNC_FRAME = CCR_FS,
  126. CCR_SYNC_BLOCK = CCR_BS,
  127. CCR_SYNC_PACKET = CCR_BS | CCR_FS,
  128. CSDP_DATA_TYPE_8 = 0,
  129. CSDP_DATA_TYPE_16 = 1,
  130. CSDP_DATA_TYPE_32 = 2,
  131. CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */
  132. CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */
  133. CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */
  134. CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */
  135. CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */
  136. CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */
  137. CSDP_SRC_PACKED = BIT(6),
  138. CSDP_SRC_BURST_1 = 0 << 7,
  139. CSDP_SRC_BURST_16 = 1 << 7,
  140. CSDP_SRC_BURST_32 = 2 << 7,
  141. CSDP_SRC_BURST_64 = 3 << 7,
  142. CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */
  143. CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */
  144. CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */
  145. CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */
  146. CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */
  147. CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */
  148. CSDP_DST_PACKED = BIT(13),
  149. CSDP_DST_BURST_1 = 0 << 14,
  150. CSDP_DST_BURST_16 = 1 << 14,
  151. CSDP_DST_BURST_32 = 2 << 14,
  152. CSDP_DST_BURST_64 = 3 << 14,
  153. CICR_TOUT_IE = BIT(0), /* OMAP1 only */
  154. CICR_DROP_IE = BIT(1),
  155. CICR_HALF_IE = BIT(2),
  156. CICR_FRAME_IE = BIT(3),
  157. CICR_LAST_IE = BIT(4),
  158. CICR_BLOCK_IE = BIT(5),
  159. CICR_PKT_IE = BIT(7), /* OMAP2+ only */
  160. CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */
  161. CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */
  162. CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */
  163. CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */
  164. CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */
  165. CLNK_CTRL_ENABLE_LNK = BIT(15),
  166. CDP_DST_VALID_INC = 0 << 0,
  167. CDP_DST_VALID_RELOAD = 1 << 0,
  168. CDP_DST_VALID_REUSE = 2 << 0,
  169. CDP_SRC_VALID_INC = 0 << 2,
  170. CDP_SRC_VALID_RELOAD = 1 << 2,
  171. CDP_SRC_VALID_REUSE = 2 << 2,
  172. CDP_NTYPE_TYPE1 = 1 << 4,
  173. CDP_NTYPE_TYPE2 = 2 << 4,
  174. CDP_NTYPE_TYPE3 = 3 << 4,
  175. CDP_TMODE_NORMAL = 0 << 8,
  176. CDP_TMODE_LLIST = 1 << 8,
  177. CDP_FAST = BIT(10),
  178. };
  179. static const unsigned es_bytes[] = {
  180. [CSDP_DATA_TYPE_8] = 1,
  181. [CSDP_DATA_TYPE_16] = 2,
  182. [CSDP_DATA_TYPE_32] = 4,
  183. };
  184. static struct of_dma_filter_info omap_dma_info = {
  185. .filter_fn = omap_dma_filter_fn,
  186. };
  187. static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
  188. {
  189. return container_of(d, struct omap_dmadev, ddev);
  190. }
  191. static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
  192. {
  193. return container_of(c, struct omap_chan, vc.chan);
  194. }
  195. static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
  196. {
  197. return container_of(t, struct omap_desc, vd.tx);
  198. }
  199. static void omap_dma_desc_free(struct virt_dma_desc *vd)
  200. {
  201. struct omap_desc *d = to_omap_dma_desc(&vd->tx);
  202. if (d->using_ll) {
  203. struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
  204. int i;
  205. for (i = 0; i < d->sglen; i++) {
  206. if (d->sg[i].t2_desc)
  207. dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
  208. d->sg[i].t2_desc_paddr);
  209. }
  210. }
  211. kfree(d);
  212. }
  213. static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
  214. enum dma_transfer_direction dir, bool last)
  215. {
  216. struct omap_sg *sg = &d->sg[idx];
  217. struct omap_type2_desc *t2_desc = sg->t2_desc;
  218. if (idx)
  219. d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
  220. if (last)
  221. t2_desc->next_desc = 0xfffffffc;
  222. t2_desc->en = sg->en;
  223. t2_desc->addr = sg->addr;
  224. t2_desc->fn = sg->fn & 0xffff;
  225. t2_desc->cicr = d->cicr;
  226. if (!last)
  227. t2_desc->cicr &= ~CICR_BLOCK_IE;
  228. switch (dir) {
  229. case DMA_DEV_TO_MEM:
  230. t2_desc->cdei = sg->ei;
  231. t2_desc->csei = d->ei;
  232. t2_desc->cdfi = sg->fi;
  233. t2_desc->csfi = d->fi;
  234. t2_desc->en |= DESC_NXT_DV_REFRESH;
  235. t2_desc->en |= DESC_NXT_SV_REUSE;
  236. break;
  237. case DMA_MEM_TO_DEV:
  238. t2_desc->cdei = d->ei;
  239. t2_desc->csei = sg->ei;
  240. t2_desc->cdfi = d->fi;
  241. t2_desc->csfi = sg->fi;
  242. t2_desc->en |= DESC_NXT_SV_REFRESH;
  243. t2_desc->en |= DESC_NXT_DV_REUSE;
  244. break;
  245. default:
  246. return;
  247. }
  248. t2_desc->en |= DESC_NTYPE_TYPE2;
  249. }
  250. static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
  251. {
  252. switch (type) {
  253. case OMAP_DMA_REG_16BIT:
  254. writew_relaxed(val, addr);
  255. break;
  256. case OMAP_DMA_REG_2X16BIT:
  257. writew_relaxed(val, addr);
  258. writew_relaxed(val >> 16, addr + 2);
  259. break;
  260. case OMAP_DMA_REG_32BIT:
  261. writel_relaxed(val, addr);
  262. break;
  263. default:
  264. WARN_ON(1);
  265. }
  266. }
  267. static unsigned omap_dma_read(unsigned type, void __iomem *addr)
  268. {
  269. unsigned val;
  270. switch (type) {
  271. case OMAP_DMA_REG_16BIT:
  272. val = readw_relaxed(addr);
  273. break;
  274. case OMAP_DMA_REG_2X16BIT:
  275. val = readw_relaxed(addr);
  276. val |= readw_relaxed(addr + 2) << 16;
  277. break;
  278. case OMAP_DMA_REG_32BIT:
  279. val = readl_relaxed(addr);
  280. break;
  281. default:
  282. WARN_ON(1);
  283. val = 0;
  284. }
  285. return val;
  286. }
  287. static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
  288. {
  289. const struct omap_dma_reg *r = od->reg_map + reg;
  290. WARN_ON(r->stride);
  291. omap_dma_write(val, r->type, od->base + r->offset);
  292. }
  293. static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
  294. {
  295. const struct omap_dma_reg *r = od->reg_map + reg;
  296. WARN_ON(r->stride);
  297. return omap_dma_read(r->type, od->base + r->offset);
  298. }
  299. static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
  300. {
  301. const struct omap_dma_reg *r = c->reg_map + reg;
  302. omap_dma_write(val, r->type, c->channel_base + r->offset);
  303. }
  304. static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
  305. {
  306. const struct omap_dma_reg *r = c->reg_map + reg;
  307. return omap_dma_read(r->type, c->channel_base + r->offset);
  308. }
  309. static void omap_dma_clear_csr(struct omap_chan *c)
  310. {
  311. if (dma_omap1())
  312. omap_dma_chan_read(c, CSR);
  313. else
  314. omap_dma_chan_write(c, CSR, ~0);
  315. }
  316. static unsigned omap_dma_get_csr(struct omap_chan *c)
  317. {
  318. unsigned val = omap_dma_chan_read(c, CSR);
  319. if (!dma_omap1())
  320. omap_dma_chan_write(c, CSR, val);
  321. return val;
  322. }
  323. static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
  324. unsigned lch)
  325. {
  326. c->channel_base = od->base + od->plat->channel_stride * lch;
  327. od->lch_map[lch] = c;
  328. }
  329. static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
  330. {
  331. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  332. uint16_t cicr = d->cicr;
  333. if (__dma_omap15xx(od->plat->dma_attr))
  334. omap_dma_chan_write(c, CPC, 0);
  335. else
  336. omap_dma_chan_write(c, CDAC, 0);
  337. omap_dma_clear_csr(c);
  338. if (d->using_ll) {
  339. uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
  340. if (d->dir == DMA_DEV_TO_MEM)
  341. cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
  342. else
  343. cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
  344. omap_dma_chan_write(c, CDP, cdp);
  345. omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
  346. omap_dma_chan_write(c, CCDN, 0);
  347. omap_dma_chan_write(c, CCFN, 0xffff);
  348. omap_dma_chan_write(c, CCEN, 0xffffff);
  349. cicr &= ~CICR_BLOCK_IE;
  350. } else if (od->ll123_supported) {
  351. omap_dma_chan_write(c, CDP, 0);
  352. }
  353. /* Enable interrupts */
  354. omap_dma_chan_write(c, CICR, cicr);
  355. /* Enable channel */
  356. omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
  357. c->running = true;
  358. }
  359. static void omap_dma_drain_chan(struct omap_chan *c)
  360. {
  361. int i;
  362. u32 val;
  363. /* Wait for sDMA FIFO to drain */
  364. for (i = 0; ; i++) {
  365. val = omap_dma_chan_read(c, CCR);
  366. if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
  367. break;
  368. if (i > 100)
  369. break;
  370. udelay(5);
  371. }
  372. if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
  373. dev_err(c->vc.chan.device->dev,
  374. "DMA drain did not complete on lch %d\n",
  375. c->dma_ch);
  376. }
  377. static int omap_dma_stop(struct omap_chan *c)
  378. {
  379. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  380. uint32_t val;
  381. /* disable irq */
  382. omap_dma_chan_write(c, CICR, 0);
  383. omap_dma_clear_csr(c);
  384. val = omap_dma_chan_read(c, CCR);
  385. if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
  386. uint32_t sysconfig;
  387. sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
  388. val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
  389. val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
  390. omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
  391. val = omap_dma_chan_read(c, CCR);
  392. val &= ~CCR_ENABLE;
  393. omap_dma_chan_write(c, CCR, val);
  394. if (!(c->ccr & CCR_BUFFERING_DISABLE))
  395. omap_dma_drain_chan(c);
  396. omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
  397. } else {
  398. if (!(val & CCR_ENABLE))
  399. return -EINVAL;
  400. val &= ~CCR_ENABLE;
  401. omap_dma_chan_write(c, CCR, val);
  402. if (!(c->ccr & CCR_BUFFERING_DISABLE))
  403. omap_dma_drain_chan(c);
  404. }
  405. mb();
  406. if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
  407. val = omap_dma_chan_read(c, CLNK_CTRL);
  408. if (dma_omap1())
  409. val |= 1 << 14; /* set the STOP_LNK bit */
  410. else
  411. val &= ~CLNK_CTRL_ENABLE_LNK;
  412. omap_dma_chan_write(c, CLNK_CTRL, val);
  413. }
  414. c->running = false;
  415. return 0;
  416. }
  417. static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
  418. {
  419. struct omap_sg *sg = d->sg + c->sgidx;
  420. unsigned cxsa, cxei, cxfi;
  421. if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
  422. cxsa = CDSA;
  423. cxei = CDEI;
  424. cxfi = CDFI;
  425. } else {
  426. cxsa = CSSA;
  427. cxei = CSEI;
  428. cxfi = CSFI;
  429. }
  430. omap_dma_chan_write(c, cxsa, sg->addr);
  431. omap_dma_chan_write(c, cxei, sg->ei);
  432. omap_dma_chan_write(c, cxfi, sg->fi);
  433. omap_dma_chan_write(c, CEN, sg->en);
  434. omap_dma_chan_write(c, CFN, sg->fn);
  435. omap_dma_start(c, d);
  436. c->sgidx++;
  437. }
  438. static void omap_dma_start_desc(struct omap_chan *c)
  439. {
  440. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  441. struct omap_desc *d;
  442. unsigned cxsa, cxei, cxfi;
  443. if (!vd) {
  444. c->desc = NULL;
  445. return;
  446. }
  447. list_del(&vd->node);
  448. c->desc = d = to_omap_dma_desc(&vd->tx);
  449. c->sgidx = 0;
  450. /*
  451. * This provides the necessary barrier to ensure data held in
  452. * DMA coherent memory is visible to the DMA engine prior to
  453. * the transfer starting.
  454. */
  455. mb();
  456. omap_dma_chan_write(c, CCR, d->ccr);
  457. if (dma_omap1())
  458. omap_dma_chan_write(c, CCR2, d->ccr >> 16);
  459. if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
  460. cxsa = CSSA;
  461. cxei = CSEI;
  462. cxfi = CSFI;
  463. } else {
  464. cxsa = CDSA;
  465. cxei = CDEI;
  466. cxfi = CDFI;
  467. }
  468. omap_dma_chan_write(c, cxsa, d->dev_addr);
  469. omap_dma_chan_write(c, cxei, d->ei);
  470. omap_dma_chan_write(c, cxfi, d->fi);
  471. omap_dma_chan_write(c, CSDP, d->csdp);
  472. omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
  473. omap_dma_start_sg(c, d);
  474. }
  475. static void omap_dma_callback(int ch, u16 status, void *data)
  476. {
  477. struct omap_chan *c = data;
  478. struct omap_desc *d;
  479. unsigned long flags;
  480. spin_lock_irqsave(&c->vc.lock, flags);
  481. d = c->desc;
  482. if (d) {
  483. if (c->cyclic) {
  484. vchan_cyclic_callback(&d->vd);
  485. } else if (d->using_ll || c->sgidx == d->sglen) {
  486. omap_dma_start_desc(c);
  487. vchan_cookie_complete(&d->vd);
  488. } else {
  489. omap_dma_start_sg(c, d);
  490. }
  491. }
  492. spin_unlock_irqrestore(&c->vc.lock, flags);
  493. }
  494. static irqreturn_t omap_dma_irq(int irq, void *devid)
  495. {
  496. struct omap_dmadev *od = devid;
  497. unsigned status, channel;
  498. spin_lock(&od->irq_lock);
  499. status = omap_dma_glbl_read(od, IRQSTATUS_L1);
  500. status &= od->irq_enable_mask;
  501. if (status == 0) {
  502. spin_unlock(&od->irq_lock);
  503. return IRQ_NONE;
  504. }
  505. while ((channel = ffs(status)) != 0) {
  506. unsigned mask, csr;
  507. struct omap_chan *c;
  508. channel -= 1;
  509. mask = BIT(channel);
  510. status &= ~mask;
  511. c = od->lch_map[channel];
  512. if (c == NULL) {
  513. /* This should never happen */
  514. dev_err(od->ddev.dev, "invalid channel %u\n", channel);
  515. continue;
  516. }
  517. csr = omap_dma_get_csr(c);
  518. omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
  519. omap_dma_callback(channel, csr, c);
  520. }
  521. spin_unlock(&od->irq_lock);
  522. return IRQ_HANDLED;
  523. }
  524. static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
  525. {
  526. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  527. struct omap_chan *c = to_omap_dma_chan(chan);
  528. struct device *dev = od->ddev.dev;
  529. int ret;
  530. if (od->legacy) {
  531. ret = omap_request_dma(c->dma_sig, "DMA engine",
  532. omap_dma_callback, c, &c->dma_ch);
  533. } else {
  534. ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
  535. &c->dma_ch);
  536. }
  537. dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
  538. if (ret >= 0) {
  539. omap_dma_assign(od, c, c->dma_ch);
  540. if (!od->legacy) {
  541. unsigned val;
  542. spin_lock_irq(&od->irq_lock);
  543. val = BIT(c->dma_ch);
  544. omap_dma_glbl_write(od, IRQSTATUS_L1, val);
  545. od->irq_enable_mask |= val;
  546. omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
  547. val = omap_dma_glbl_read(od, IRQENABLE_L0);
  548. val &= ~BIT(c->dma_ch);
  549. omap_dma_glbl_write(od, IRQENABLE_L0, val);
  550. spin_unlock_irq(&od->irq_lock);
  551. }
  552. }
  553. if (dma_omap1()) {
  554. if (__dma_omap16xx(od->plat->dma_attr)) {
  555. c->ccr = CCR_OMAP31_DISABLE;
  556. /* Duplicate what plat-omap/dma.c does */
  557. c->ccr |= c->dma_ch + 1;
  558. } else {
  559. c->ccr = c->dma_sig & 0x1f;
  560. }
  561. } else {
  562. c->ccr = c->dma_sig & 0x1f;
  563. c->ccr |= (c->dma_sig & ~0x1f) << 14;
  564. }
  565. if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
  566. c->ccr |= CCR_BUFFERING_DISABLE;
  567. return ret;
  568. }
  569. static void omap_dma_free_chan_resources(struct dma_chan *chan)
  570. {
  571. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  572. struct omap_chan *c = to_omap_dma_chan(chan);
  573. if (!od->legacy) {
  574. spin_lock_irq(&od->irq_lock);
  575. od->irq_enable_mask &= ~BIT(c->dma_ch);
  576. omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
  577. spin_unlock_irq(&od->irq_lock);
  578. }
  579. c->channel_base = NULL;
  580. od->lch_map[c->dma_ch] = NULL;
  581. vchan_free_chan_resources(&c->vc);
  582. omap_free_dma(c->dma_ch);
  583. dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
  584. c->dma_sig);
  585. c->dma_sig = 0;
  586. }
  587. static size_t omap_dma_sg_size(struct omap_sg *sg)
  588. {
  589. return sg->en * sg->fn;
  590. }
  591. static size_t omap_dma_desc_size(struct omap_desc *d)
  592. {
  593. unsigned i;
  594. size_t size;
  595. for (size = i = 0; i < d->sglen; i++)
  596. size += omap_dma_sg_size(&d->sg[i]);
  597. return size * es_bytes[d->es];
  598. }
  599. static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
  600. {
  601. unsigned i;
  602. size_t size, es_size = es_bytes[d->es];
  603. for (size = i = 0; i < d->sglen; i++) {
  604. size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
  605. if (size)
  606. size += this_size;
  607. else if (addr >= d->sg[i].addr &&
  608. addr < d->sg[i].addr + this_size)
  609. size += d->sg[i].addr + this_size - addr;
  610. }
  611. return size;
  612. }
  613. /*
  614. * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
  615. * read before the DMA controller finished disabling the channel.
  616. */
  617. static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
  618. {
  619. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  620. uint32_t val;
  621. val = omap_dma_chan_read(c, reg);
  622. if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
  623. val = omap_dma_chan_read(c, reg);
  624. return val;
  625. }
  626. static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
  627. {
  628. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  629. dma_addr_t addr, cdac;
  630. if (__dma_omap15xx(od->plat->dma_attr)) {
  631. addr = omap_dma_chan_read(c, CPC);
  632. } else {
  633. addr = omap_dma_chan_read_3_3(c, CSAC);
  634. cdac = omap_dma_chan_read_3_3(c, CDAC);
  635. /*
  636. * CDAC == 0 indicates that the DMA transfer on the channel has
  637. * not been started (no data has been transferred so far).
  638. * Return the programmed source start address in this case.
  639. */
  640. if (cdac == 0)
  641. addr = omap_dma_chan_read(c, CSSA);
  642. }
  643. if (dma_omap1())
  644. addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
  645. return addr;
  646. }
  647. static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
  648. {
  649. struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
  650. dma_addr_t addr;
  651. if (__dma_omap15xx(od->plat->dma_attr)) {
  652. addr = omap_dma_chan_read(c, CPC);
  653. } else {
  654. addr = omap_dma_chan_read_3_3(c, CDAC);
  655. /*
  656. * CDAC == 0 indicates that the DMA transfer on the channel
  657. * has not been started (no data has been transferred so
  658. * far). Return the programmed destination start address in
  659. * this case.
  660. */
  661. if (addr == 0)
  662. addr = omap_dma_chan_read(c, CDSA);
  663. }
  664. if (dma_omap1())
  665. addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
  666. return addr;
  667. }
  668. static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
  669. dma_cookie_t cookie, struct dma_tx_state *txstate)
  670. {
  671. struct omap_chan *c = to_omap_dma_chan(chan);
  672. struct virt_dma_desc *vd;
  673. enum dma_status ret;
  674. unsigned long flags;
  675. ret = dma_cookie_status(chan, cookie, txstate);
  676. if (!c->paused && c->running) {
  677. uint32_t ccr = omap_dma_chan_read(c, CCR);
  678. /*
  679. * The channel is no longer active, set the return value
  680. * accordingly
  681. */
  682. if (!(ccr & CCR_ENABLE))
  683. ret = DMA_COMPLETE;
  684. }
  685. if (ret == DMA_COMPLETE || !txstate)
  686. return ret;
  687. spin_lock_irqsave(&c->vc.lock, flags);
  688. vd = vchan_find_desc(&c->vc, cookie);
  689. if (vd) {
  690. txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
  691. } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
  692. struct omap_desc *d = c->desc;
  693. dma_addr_t pos;
  694. if (d->dir == DMA_MEM_TO_DEV)
  695. pos = omap_dma_get_src_pos(c);
  696. else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
  697. pos = omap_dma_get_dst_pos(c);
  698. else
  699. pos = 0;
  700. txstate->residue = omap_dma_desc_size_pos(d, pos);
  701. } else {
  702. txstate->residue = 0;
  703. }
  704. if (ret == DMA_IN_PROGRESS && c->paused)
  705. ret = DMA_PAUSED;
  706. spin_unlock_irqrestore(&c->vc.lock, flags);
  707. return ret;
  708. }
  709. static void omap_dma_issue_pending(struct dma_chan *chan)
  710. {
  711. struct omap_chan *c = to_omap_dma_chan(chan);
  712. unsigned long flags;
  713. spin_lock_irqsave(&c->vc.lock, flags);
  714. if (vchan_issue_pending(&c->vc) && !c->desc)
  715. omap_dma_start_desc(c);
  716. spin_unlock_irqrestore(&c->vc.lock, flags);
  717. }
  718. static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
  719. struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
  720. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  721. {
  722. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  723. struct omap_chan *c = to_omap_dma_chan(chan);
  724. enum dma_slave_buswidth dev_width;
  725. struct scatterlist *sgent;
  726. struct omap_desc *d;
  727. dma_addr_t dev_addr;
  728. unsigned i, es, en, frame_bytes;
  729. bool ll_failed = false;
  730. u32 burst;
  731. if (dir == DMA_DEV_TO_MEM) {
  732. dev_addr = c->cfg.src_addr;
  733. dev_width = c->cfg.src_addr_width;
  734. burst = c->cfg.src_maxburst;
  735. } else if (dir == DMA_MEM_TO_DEV) {
  736. dev_addr = c->cfg.dst_addr;
  737. dev_width = c->cfg.dst_addr_width;
  738. burst = c->cfg.dst_maxburst;
  739. } else {
  740. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  741. return NULL;
  742. }
  743. /* Bus width translates to the element size (ES) */
  744. switch (dev_width) {
  745. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  746. es = CSDP_DATA_TYPE_8;
  747. break;
  748. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  749. es = CSDP_DATA_TYPE_16;
  750. break;
  751. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  752. es = CSDP_DATA_TYPE_32;
  753. break;
  754. default: /* not reached */
  755. return NULL;
  756. }
  757. /* Now allocate and setup the descriptor. */
  758. d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
  759. if (!d)
  760. return NULL;
  761. d->dir = dir;
  762. d->dev_addr = dev_addr;
  763. d->es = es;
  764. d->ccr = c->ccr | CCR_SYNC_FRAME;
  765. if (dir == DMA_DEV_TO_MEM) {
  766. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
  767. d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
  768. } else {
  769. d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
  770. d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
  771. }
  772. d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
  773. d->csdp |= es;
  774. if (dma_omap1()) {
  775. d->cicr |= CICR_TOUT_IE;
  776. if (dir == DMA_DEV_TO_MEM)
  777. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
  778. else
  779. d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
  780. } else {
  781. if (dir == DMA_DEV_TO_MEM)
  782. d->ccr |= CCR_TRIGGER_SRC;
  783. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  784. }
  785. if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
  786. d->clnk_ctrl = c->dma_ch;
  787. /*
  788. * Build our scatterlist entries: each contains the address,
  789. * the number of elements (EN) in each frame, and the number of
  790. * frames (FN). Number of bytes for this entry = ES * EN * FN.
  791. *
  792. * Burst size translates to number of elements with frame sync.
  793. * Note: DMA engine defines burst to be the number of dev-width
  794. * transfers.
  795. */
  796. en = burst;
  797. frame_bytes = es_bytes[es] * en;
  798. if (sglen >= 2)
  799. d->using_ll = od->ll123_supported;
  800. for_each_sg(sgl, sgent, sglen, i) {
  801. struct omap_sg *osg = &d->sg[i];
  802. osg->addr = sg_dma_address(sgent);
  803. osg->en = en;
  804. osg->fn = sg_dma_len(sgent) / frame_bytes;
  805. if (d->using_ll) {
  806. osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
  807. &osg->t2_desc_paddr);
  808. if (!osg->t2_desc) {
  809. dev_err(chan->device->dev,
  810. "t2_desc[%d] allocation failed\n", i);
  811. ll_failed = true;
  812. d->using_ll = false;
  813. continue;
  814. }
  815. omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
  816. }
  817. }
  818. d->sglen = sglen;
  819. /* Release the dma_pool entries if one allocation failed */
  820. if (ll_failed) {
  821. for (i = 0; i < d->sglen; i++) {
  822. struct omap_sg *osg = &d->sg[i];
  823. if (osg->t2_desc) {
  824. dma_pool_free(od->desc_pool, osg->t2_desc,
  825. osg->t2_desc_paddr);
  826. osg->t2_desc = NULL;
  827. }
  828. }
  829. }
  830. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  831. }
  832. static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
  833. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  834. size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
  835. {
  836. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  837. struct omap_chan *c = to_omap_dma_chan(chan);
  838. enum dma_slave_buswidth dev_width;
  839. struct omap_desc *d;
  840. dma_addr_t dev_addr;
  841. unsigned es;
  842. u32 burst;
  843. if (dir == DMA_DEV_TO_MEM) {
  844. dev_addr = c->cfg.src_addr;
  845. dev_width = c->cfg.src_addr_width;
  846. burst = c->cfg.src_maxburst;
  847. } else if (dir == DMA_MEM_TO_DEV) {
  848. dev_addr = c->cfg.dst_addr;
  849. dev_width = c->cfg.dst_addr_width;
  850. burst = c->cfg.dst_maxburst;
  851. } else {
  852. dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
  853. return NULL;
  854. }
  855. /* Bus width translates to the element size (ES) */
  856. switch (dev_width) {
  857. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  858. es = CSDP_DATA_TYPE_8;
  859. break;
  860. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  861. es = CSDP_DATA_TYPE_16;
  862. break;
  863. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  864. es = CSDP_DATA_TYPE_32;
  865. break;
  866. default: /* not reached */
  867. return NULL;
  868. }
  869. /* Now allocate and setup the descriptor. */
  870. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  871. if (!d)
  872. return NULL;
  873. d->dir = dir;
  874. d->dev_addr = dev_addr;
  875. d->fi = burst;
  876. d->es = es;
  877. d->sg[0].addr = buf_addr;
  878. d->sg[0].en = period_len / es_bytes[es];
  879. d->sg[0].fn = buf_len / period_len;
  880. d->sglen = 1;
  881. d->ccr = c->ccr;
  882. if (dir == DMA_DEV_TO_MEM)
  883. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
  884. else
  885. d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
  886. d->cicr = CICR_DROP_IE;
  887. if (flags & DMA_PREP_INTERRUPT)
  888. d->cicr |= CICR_FRAME_IE;
  889. d->csdp = es;
  890. if (dma_omap1()) {
  891. d->cicr |= CICR_TOUT_IE;
  892. if (dir == DMA_DEV_TO_MEM)
  893. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
  894. else
  895. d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
  896. } else {
  897. if (burst)
  898. d->ccr |= CCR_SYNC_PACKET;
  899. else
  900. d->ccr |= CCR_SYNC_ELEMENT;
  901. if (dir == DMA_DEV_TO_MEM) {
  902. d->ccr |= CCR_TRIGGER_SRC;
  903. d->csdp |= CSDP_DST_PACKED;
  904. } else {
  905. d->csdp |= CSDP_SRC_PACKED;
  906. }
  907. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  908. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  909. }
  910. if (__dma_omap15xx(od->plat->dma_attr))
  911. d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
  912. else
  913. d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
  914. c->cyclic = true;
  915. return vchan_tx_prep(&c->vc, &d->vd, flags);
  916. }
  917. static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
  918. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  919. size_t len, unsigned long tx_flags)
  920. {
  921. struct omap_chan *c = to_omap_dma_chan(chan);
  922. struct omap_desc *d;
  923. uint8_t data_type;
  924. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  925. if (!d)
  926. return NULL;
  927. data_type = __ffs((src | dest | len));
  928. if (data_type > CSDP_DATA_TYPE_32)
  929. data_type = CSDP_DATA_TYPE_32;
  930. d->dir = DMA_MEM_TO_MEM;
  931. d->dev_addr = src;
  932. d->fi = 0;
  933. d->es = data_type;
  934. d->sg[0].en = len / BIT(data_type);
  935. d->sg[0].fn = 1;
  936. d->sg[0].addr = dest;
  937. d->sglen = 1;
  938. d->ccr = c->ccr;
  939. d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
  940. d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
  941. d->csdp = data_type;
  942. if (dma_omap1()) {
  943. d->cicr |= CICR_TOUT_IE;
  944. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
  945. } else {
  946. d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
  947. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  948. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  949. }
  950. return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
  951. }
  952. static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
  953. struct dma_chan *chan, struct dma_interleaved_template *xt,
  954. unsigned long flags)
  955. {
  956. struct omap_chan *c = to_omap_dma_chan(chan);
  957. struct omap_desc *d;
  958. struct omap_sg *sg;
  959. uint8_t data_type;
  960. size_t src_icg, dst_icg;
  961. /* Slave mode is not supported */
  962. if (is_slave_direction(xt->dir))
  963. return NULL;
  964. if (xt->frame_size != 1 || xt->numf == 0)
  965. return NULL;
  966. d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
  967. if (!d)
  968. return NULL;
  969. data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
  970. if (data_type > CSDP_DATA_TYPE_32)
  971. data_type = CSDP_DATA_TYPE_32;
  972. sg = &d->sg[0];
  973. d->dir = DMA_MEM_TO_MEM;
  974. d->dev_addr = xt->src_start;
  975. d->es = data_type;
  976. sg->en = xt->sgl[0].size / BIT(data_type);
  977. sg->fn = xt->numf;
  978. sg->addr = xt->dst_start;
  979. d->sglen = 1;
  980. d->ccr = c->ccr;
  981. src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
  982. dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
  983. if (src_icg) {
  984. d->ccr |= CCR_SRC_AMODE_DBLIDX;
  985. d->ei = 1;
  986. d->fi = src_icg;
  987. } else if (xt->src_inc) {
  988. d->ccr |= CCR_SRC_AMODE_POSTINC;
  989. d->fi = 0;
  990. } else {
  991. dev_err(chan->device->dev,
  992. "%s: SRC constant addressing is not supported\n",
  993. __func__);
  994. kfree(d);
  995. return NULL;
  996. }
  997. if (dst_icg) {
  998. d->ccr |= CCR_DST_AMODE_DBLIDX;
  999. sg->ei = 1;
  1000. sg->fi = dst_icg;
  1001. } else if (xt->dst_inc) {
  1002. d->ccr |= CCR_DST_AMODE_POSTINC;
  1003. sg->fi = 0;
  1004. } else {
  1005. dev_err(chan->device->dev,
  1006. "%s: DST constant addressing is not supported\n",
  1007. __func__);
  1008. kfree(d);
  1009. return NULL;
  1010. }
  1011. d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
  1012. d->csdp = data_type;
  1013. if (dma_omap1()) {
  1014. d->cicr |= CICR_TOUT_IE;
  1015. d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
  1016. } else {
  1017. d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
  1018. d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
  1019. d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
  1020. }
  1021. return vchan_tx_prep(&c->vc, &d->vd, flags);
  1022. }
  1023. static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
  1024. {
  1025. struct omap_chan *c = to_omap_dma_chan(chan);
  1026. if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  1027. cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  1028. return -EINVAL;
  1029. memcpy(&c->cfg, cfg, sizeof(c->cfg));
  1030. return 0;
  1031. }
  1032. static int omap_dma_terminate_all(struct dma_chan *chan)
  1033. {
  1034. struct omap_chan *c = to_omap_dma_chan(chan);
  1035. unsigned long flags;
  1036. LIST_HEAD(head);
  1037. spin_lock_irqsave(&c->vc.lock, flags);
  1038. /*
  1039. * Stop DMA activity: we assume the callback will not be called
  1040. * after omap_dma_stop() returns (even if it does, it will see
  1041. * c->desc is NULL and exit.)
  1042. */
  1043. if (c->desc) {
  1044. omap_dma_desc_free(&c->desc->vd);
  1045. c->desc = NULL;
  1046. /* Avoid stopping the dma twice */
  1047. if (!c->paused)
  1048. omap_dma_stop(c);
  1049. }
  1050. c->cyclic = false;
  1051. c->paused = false;
  1052. vchan_get_all_descriptors(&c->vc, &head);
  1053. spin_unlock_irqrestore(&c->vc.lock, flags);
  1054. vchan_dma_desc_free_list(&c->vc, &head);
  1055. return 0;
  1056. }
  1057. static void omap_dma_synchronize(struct dma_chan *chan)
  1058. {
  1059. struct omap_chan *c = to_omap_dma_chan(chan);
  1060. vchan_synchronize(&c->vc);
  1061. }
  1062. static int omap_dma_pause(struct dma_chan *chan)
  1063. {
  1064. struct omap_chan *c = to_omap_dma_chan(chan);
  1065. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1066. unsigned long flags;
  1067. int ret = -EINVAL;
  1068. bool can_pause = false;
  1069. spin_lock_irqsave(&od->irq_lock, flags);
  1070. if (!c->desc)
  1071. goto out;
  1072. if (c->cyclic)
  1073. can_pause = true;
  1074. /*
  1075. * We do not allow DMA_MEM_TO_DEV transfers to be paused.
  1076. * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
  1077. * "When a channel is disabled during a transfer, the channel undergoes
  1078. * an abort, unless it is hardware-source-synchronized …".
  1079. * A source-synchronised channel is one where the fetching of data is
  1080. * under control of the device. In other words, a device-to-memory
  1081. * transfer. So, a destination-synchronised channel (which would be a
  1082. * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE
  1083. * bit is cleared.
  1084. * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
  1085. * aborts immediately after completion of current read/write
  1086. * transactions and then the FIFO is cleaned up." The term "cleaned up"
  1087. * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
  1088. * are both clear _before_ disabling the channel, otherwise data loss
  1089. * will occur.
  1090. * The problem is that if the channel is active, then device activity
  1091. * can result in DMA activity starting between reading those as both
  1092. * clear and the write to DMA_CCR to clear the enable bit hitting the
  1093. * hardware. If the DMA hardware can't drain the data in its FIFO to the
  1094. * destination, then data loss "might" occur (say if we write to an UART
  1095. * and the UART is not accepting any further data).
  1096. */
  1097. else if (c->desc->dir == DMA_DEV_TO_MEM)
  1098. can_pause = true;
  1099. if (can_pause && !c->paused) {
  1100. ret = omap_dma_stop(c);
  1101. if (!ret)
  1102. c->paused = true;
  1103. }
  1104. out:
  1105. spin_unlock_irqrestore(&od->irq_lock, flags);
  1106. return ret;
  1107. }
  1108. static int omap_dma_resume(struct dma_chan *chan)
  1109. {
  1110. struct omap_chan *c = to_omap_dma_chan(chan);
  1111. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1112. unsigned long flags;
  1113. int ret = -EINVAL;
  1114. spin_lock_irqsave(&od->irq_lock, flags);
  1115. if (c->paused && c->desc) {
  1116. mb();
  1117. /* Restore channel link register */
  1118. omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
  1119. omap_dma_start(c, c->desc);
  1120. c->paused = false;
  1121. ret = 0;
  1122. }
  1123. spin_unlock_irqrestore(&od->irq_lock, flags);
  1124. return ret;
  1125. }
  1126. static int omap_dma_chan_init(struct omap_dmadev *od)
  1127. {
  1128. struct omap_chan *c;
  1129. c = kzalloc(sizeof(*c), GFP_KERNEL);
  1130. if (!c)
  1131. return -ENOMEM;
  1132. c->reg_map = od->reg_map;
  1133. c->vc.desc_free = omap_dma_desc_free;
  1134. vchan_init(&c->vc, &od->ddev);
  1135. return 0;
  1136. }
  1137. static void omap_dma_free(struct omap_dmadev *od)
  1138. {
  1139. while (!list_empty(&od->ddev.channels)) {
  1140. struct omap_chan *c = list_first_entry(&od->ddev.channels,
  1141. struct omap_chan, vc.chan.device_node);
  1142. list_del(&c->vc.chan.device_node);
  1143. tasklet_kill(&c->vc.task);
  1144. kfree(c);
  1145. }
  1146. }
  1147. #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  1148. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  1149. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  1150. static int omap_dma_probe(struct platform_device *pdev)
  1151. {
  1152. struct omap_dmadev *od;
  1153. struct resource *res;
  1154. int rc, i, irq;
  1155. u32 lch_count;
  1156. od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
  1157. if (!od)
  1158. return -ENOMEM;
  1159. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1160. od->base = devm_ioremap_resource(&pdev->dev, res);
  1161. if (IS_ERR(od->base))
  1162. return PTR_ERR(od->base);
  1163. od->plat = omap_get_plat_info();
  1164. if (!od->plat)
  1165. return -EPROBE_DEFER;
  1166. od->reg_map = od->plat->reg_map;
  1167. dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
  1168. dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
  1169. dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
  1170. dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
  1171. od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
  1172. od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
  1173. od->ddev.device_tx_status = omap_dma_tx_status;
  1174. od->ddev.device_issue_pending = omap_dma_issue_pending;
  1175. od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
  1176. od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
  1177. od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
  1178. od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
  1179. od->ddev.device_config = omap_dma_slave_config;
  1180. od->ddev.device_pause = omap_dma_pause;
  1181. od->ddev.device_resume = omap_dma_resume;
  1182. od->ddev.device_terminate_all = omap_dma_terminate_all;
  1183. od->ddev.device_synchronize = omap_dma_synchronize;
  1184. od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
  1185. od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
  1186. od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  1187. od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1188. od->ddev.dev = &pdev->dev;
  1189. INIT_LIST_HEAD(&od->ddev.channels);
  1190. spin_lock_init(&od->lock);
  1191. spin_lock_init(&od->irq_lock);
  1192. /* Number of DMA requests */
  1193. od->dma_requests = OMAP_SDMA_REQUESTS;
  1194. if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
  1195. "dma-requests",
  1196. &od->dma_requests)) {
  1197. dev_info(&pdev->dev,
  1198. "Missing dma-requests property, using %u.\n",
  1199. OMAP_SDMA_REQUESTS);
  1200. }
  1201. /* Number of available logical channels */
  1202. if (!pdev->dev.of_node) {
  1203. lch_count = od->plat->dma_attr->lch_count;
  1204. if (unlikely(!lch_count))
  1205. lch_count = OMAP_SDMA_CHANNELS;
  1206. } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
  1207. &lch_count)) {
  1208. dev_info(&pdev->dev,
  1209. "Missing dma-channels property, using %u.\n",
  1210. OMAP_SDMA_CHANNELS);
  1211. lch_count = OMAP_SDMA_CHANNELS;
  1212. }
  1213. od->lch_map = devm_kcalloc(&pdev->dev, lch_count, sizeof(*od->lch_map),
  1214. GFP_KERNEL);
  1215. if (!od->lch_map)
  1216. return -ENOMEM;
  1217. for (i = 0; i < od->dma_requests; i++) {
  1218. rc = omap_dma_chan_init(od);
  1219. if (rc) {
  1220. omap_dma_free(od);
  1221. return rc;
  1222. }
  1223. }
  1224. irq = platform_get_irq(pdev, 1);
  1225. if (irq <= 0) {
  1226. dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
  1227. od->legacy = true;
  1228. } else {
  1229. /* Disable all interrupts */
  1230. od->irq_enable_mask = 0;
  1231. omap_dma_glbl_write(od, IRQENABLE_L1, 0);
  1232. rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
  1233. IRQF_SHARED, "omap-dma-engine", od);
  1234. if (rc)
  1235. return rc;
  1236. }
  1237. if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
  1238. od->ll123_supported = true;
  1239. od->ddev.filter.map = od->plat->slave_map;
  1240. od->ddev.filter.mapcnt = od->plat->slavecnt;
  1241. od->ddev.filter.fn = omap_dma_filter_fn;
  1242. if (od->ll123_supported) {
  1243. od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
  1244. &pdev->dev,
  1245. sizeof(struct omap_type2_desc),
  1246. 4, 0);
  1247. if (!od->desc_pool) {
  1248. dev_err(&pdev->dev,
  1249. "unable to allocate descriptor pool\n");
  1250. od->ll123_supported = false;
  1251. }
  1252. }
  1253. rc = dma_async_device_register(&od->ddev);
  1254. if (rc) {
  1255. pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
  1256. rc);
  1257. omap_dma_free(od);
  1258. return rc;
  1259. }
  1260. platform_set_drvdata(pdev, od);
  1261. if (pdev->dev.of_node) {
  1262. omap_dma_info.dma_cap = od->ddev.cap_mask;
  1263. /* Device-tree DMA controller registration */
  1264. rc = of_dma_controller_register(pdev->dev.of_node,
  1265. of_dma_simple_xlate, &omap_dma_info);
  1266. if (rc) {
  1267. pr_warn("OMAP-DMA: failed to register DMA controller\n");
  1268. dma_async_device_unregister(&od->ddev);
  1269. omap_dma_free(od);
  1270. }
  1271. }
  1272. dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
  1273. od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
  1274. return rc;
  1275. }
  1276. static int omap_dma_remove(struct platform_device *pdev)
  1277. {
  1278. struct omap_dmadev *od = platform_get_drvdata(pdev);
  1279. int irq;
  1280. if (pdev->dev.of_node)
  1281. of_dma_controller_free(pdev->dev.of_node);
  1282. irq = platform_get_irq(pdev, 1);
  1283. devm_free_irq(&pdev->dev, irq, od);
  1284. dma_async_device_unregister(&od->ddev);
  1285. if (!od->legacy) {
  1286. /* Disable all interrupts */
  1287. omap_dma_glbl_write(od, IRQENABLE_L0, 0);
  1288. }
  1289. if (od->ll123_supported)
  1290. dma_pool_destroy(od->desc_pool);
  1291. omap_dma_free(od);
  1292. return 0;
  1293. }
  1294. static const struct of_device_id omap_dma_match[] = {
  1295. { .compatible = "ti,omap2420-sdma", },
  1296. { .compatible = "ti,omap2430-sdma", },
  1297. { .compatible = "ti,omap3430-sdma", },
  1298. { .compatible = "ti,omap3630-sdma", },
  1299. { .compatible = "ti,omap4430-sdma", },
  1300. {},
  1301. };
  1302. MODULE_DEVICE_TABLE(of, omap_dma_match);
  1303. static struct platform_driver omap_dma_driver = {
  1304. .probe = omap_dma_probe,
  1305. .remove = omap_dma_remove,
  1306. .driver = {
  1307. .name = "omap-dma-engine",
  1308. .of_match_table = of_match_ptr(omap_dma_match),
  1309. },
  1310. };
  1311. bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
  1312. {
  1313. if (chan->device->dev->driver == &omap_dma_driver.driver) {
  1314. struct omap_dmadev *od = to_omap_dma_dev(chan->device);
  1315. struct omap_chan *c = to_omap_dma_chan(chan);
  1316. unsigned req = *(unsigned *)param;
  1317. if (req <= od->dma_requests) {
  1318. c->dma_sig = req;
  1319. return true;
  1320. }
  1321. }
  1322. return false;
  1323. }
  1324. EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
  1325. static int omap_dma_init(void)
  1326. {
  1327. return platform_driver_register(&omap_dma_driver);
  1328. }
  1329. subsys_initcall(omap_dma_init);
  1330. static void __exit omap_dma_exit(void)
  1331. {
  1332. platform_driver_unregister(&omap_dma_driver);
  1333. }
  1334. module_exit(omap_dma_exit);
  1335. MODULE_AUTHOR("Russell King");
  1336. MODULE_LICENSE("GPL");