cipher.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823
  1. /*
  2. * Cipher algorithms supported by the CESA: DES, 3DES and AES.
  3. *
  4. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  5. * Author: Arnaud Ebalard <arno@natisbad.org>
  6. *
  7. * This work is based on an initial version written by
  8. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. */
  14. #include <crypto/aes.h>
  15. #include <crypto/des.h>
  16. #include "cesa.h"
  17. struct mv_cesa_des_ctx {
  18. struct mv_cesa_ctx base;
  19. u8 key[DES_KEY_SIZE];
  20. };
  21. struct mv_cesa_des3_ctx {
  22. struct mv_cesa_ctx base;
  23. u8 key[DES3_EDE_KEY_SIZE];
  24. };
  25. struct mv_cesa_aes_ctx {
  26. struct mv_cesa_ctx base;
  27. struct crypto_aes_ctx aes;
  28. };
  29. struct mv_cesa_ablkcipher_dma_iter {
  30. struct mv_cesa_dma_iter base;
  31. struct mv_cesa_sg_dma_iter src;
  32. struct mv_cesa_sg_dma_iter dst;
  33. };
  34. static inline void
  35. mv_cesa_ablkcipher_req_iter_init(struct mv_cesa_ablkcipher_dma_iter *iter,
  36. struct ablkcipher_request *req)
  37. {
  38. mv_cesa_req_dma_iter_init(&iter->base, req->nbytes);
  39. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  40. mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE);
  41. }
  42. static inline bool
  43. mv_cesa_ablkcipher_req_iter_next_op(struct mv_cesa_ablkcipher_dma_iter *iter)
  44. {
  45. iter->src.op_offset = 0;
  46. iter->dst.op_offset = 0;
  47. return mv_cesa_req_dma_iter_next_op(&iter->base);
  48. }
  49. static inline void
  50. mv_cesa_ablkcipher_dma_cleanup(struct ablkcipher_request *req)
  51. {
  52. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  53. if (req->dst != req->src) {
  54. dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  55. DMA_FROM_DEVICE);
  56. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  57. DMA_TO_DEVICE);
  58. } else {
  59. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  60. DMA_BIDIRECTIONAL);
  61. }
  62. mv_cesa_dma_cleanup(&creq->base);
  63. }
  64. static inline void mv_cesa_ablkcipher_cleanup(struct ablkcipher_request *req)
  65. {
  66. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  67. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  68. mv_cesa_ablkcipher_dma_cleanup(req);
  69. }
  70. static void mv_cesa_ablkcipher_std_step(struct ablkcipher_request *req)
  71. {
  72. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  73. struct mv_cesa_ablkcipher_std_req *sreq = &creq->std;
  74. struct mv_cesa_engine *engine = creq->base.engine;
  75. size_t len = min_t(size_t, req->nbytes - sreq->offset,
  76. CESA_SA_SRAM_PAYLOAD_SIZE);
  77. mv_cesa_adjust_op(engine, &sreq->op);
  78. memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op));
  79. len = sg_pcopy_to_buffer(req->src, creq->src_nents,
  80. engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  81. len, sreq->offset);
  82. sreq->size = len;
  83. mv_cesa_set_crypt_op_len(&sreq->op, len);
  84. /* FIXME: only update enc_len field */
  85. if (!sreq->skip_ctx) {
  86. memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op));
  87. sreq->skip_ctx = true;
  88. } else {
  89. memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op.desc));
  90. }
  91. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  92. writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  93. BUG_ON(readl(engine->regs + CESA_SA_CMD) &
  94. CESA_SA_CMD_EN_CESA_SA_ACCL0);
  95. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  96. }
  97. static int mv_cesa_ablkcipher_std_process(struct ablkcipher_request *req,
  98. u32 status)
  99. {
  100. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  101. struct mv_cesa_ablkcipher_std_req *sreq = &creq->std;
  102. struct mv_cesa_engine *engine = creq->base.engine;
  103. size_t len;
  104. len = sg_pcopy_from_buffer(req->dst, creq->dst_nents,
  105. engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  106. sreq->size, sreq->offset);
  107. sreq->offset += len;
  108. if (sreq->offset < req->nbytes)
  109. return -EINPROGRESS;
  110. return 0;
  111. }
  112. static int mv_cesa_ablkcipher_process(struct crypto_async_request *req,
  113. u32 status)
  114. {
  115. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  116. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  117. struct mv_cesa_req *basereq = &creq->base;
  118. if (mv_cesa_req_get_type(basereq) == CESA_STD_REQ)
  119. return mv_cesa_ablkcipher_std_process(ablkreq, status);
  120. return mv_cesa_dma_process(basereq, status);
  121. }
  122. static void mv_cesa_ablkcipher_step(struct crypto_async_request *req)
  123. {
  124. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  125. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  126. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  127. mv_cesa_dma_step(&creq->base);
  128. else
  129. mv_cesa_ablkcipher_std_step(ablkreq);
  130. }
  131. static inline void
  132. mv_cesa_ablkcipher_dma_prepare(struct ablkcipher_request *req)
  133. {
  134. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  135. struct mv_cesa_req *basereq = &creq->base;
  136. mv_cesa_dma_prepare(basereq, basereq->engine);
  137. }
  138. static inline void
  139. mv_cesa_ablkcipher_std_prepare(struct ablkcipher_request *req)
  140. {
  141. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  142. struct mv_cesa_ablkcipher_std_req *sreq = &creq->std;
  143. sreq->size = 0;
  144. sreq->offset = 0;
  145. }
  146. static inline void mv_cesa_ablkcipher_prepare(struct crypto_async_request *req,
  147. struct mv_cesa_engine *engine)
  148. {
  149. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  150. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  151. creq->base.engine = engine;
  152. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  153. mv_cesa_ablkcipher_dma_prepare(ablkreq);
  154. else
  155. mv_cesa_ablkcipher_std_prepare(ablkreq);
  156. }
  157. static inline void
  158. mv_cesa_ablkcipher_req_cleanup(struct crypto_async_request *req)
  159. {
  160. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  161. mv_cesa_ablkcipher_cleanup(ablkreq);
  162. }
  163. static void
  164. mv_cesa_ablkcipher_complete(struct crypto_async_request *req)
  165. {
  166. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  167. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  168. struct mv_cesa_engine *engine = creq->base.engine;
  169. unsigned int ivsize;
  170. atomic_sub(ablkreq->nbytes, &engine->load);
  171. ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(ablkreq));
  172. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) {
  173. struct mv_cesa_req *basereq;
  174. basereq = &creq->base;
  175. memcpy(ablkreq->info, basereq->chain.last->data, ivsize);
  176. } else {
  177. memcpy_fromio(ablkreq->info,
  178. engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET,
  179. ivsize);
  180. }
  181. }
  182. static const struct mv_cesa_req_ops mv_cesa_ablkcipher_req_ops = {
  183. .step = mv_cesa_ablkcipher_step,
  184. .process = mv_cesa_ablkcipher_process,
  185. .cleanup = mv_cesa_ablkcipher_req_cleanup,
  186. .complete = mv_cesa_ablkcipher_complete,
  187. };
  188. static int mv_cesa_ablkcipher_cra_init(struct crypto_tfm *tfm)
  189. {
  190. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  191. ctx->base.ops = &mv_cesa_ablkcipher_req_ops;
  192. tfm->crt_ablkcipher.reqsize = sizeof(struct mv_cesa_ablkcipher_req);
  193. return 0;
  194. }
  195. static int mv_cesa_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  196. unsigned int len)
  197. {
  198. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  199. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  200. int remaining;
  201. int offset;
  202. int ret;
  203. int i;
  204. ret = crypto_aes_expand_key(&ctx->aes, key, len);
  205. if (ret) {
  206. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  207. return ret;
  208. }
  209. remaining = (ctx->aes.key_length - 16) / 4;
  210. offset = ctx->aes.key_length + 24 - remaining;
  211. for (i = 0; i < remaining; i++)
  212. ctx->aes.key_dec[4 + i] =
  213. cpu_to_le32(ctx->aes.key_enc[offset + i]);
  214. return 0;
  215. }
  216. static int mv_cesa_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  217. unsigned int len)
  218. {
  219. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  220. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(tfm);
  221. u32 tmp[DES_EXPKEY_WORDS];
  222. int ret;
  223. if (len != DES_KEY_SIZE) {
  224. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  225. return -EINVAL;
  226. }
  227. ret = des_ekey(tmp, key);
  228. if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
  229. tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
  230. return -EINVAL;
  231. }
  232. memcpy(ctx->key, key, DES_KEY_SIZE);
  233. return 0;
  234. }
  235. static int mv_cesa_des3_ede_setkey(struct crypto_ablkcipher *cipher,
  236. const u8 *key, unsigned int len)
  237. {
  238. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  239. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(tfm);
  240. if (len != DES3_EDE_KEY_SIZE) {
  241. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  242. return -EINVAL;
  243. }
  244. memcpy(ctx->key, key, DES3_EDE_KEY_SIZE);
  245. return 0;
  246. }
  247. static int mv_cesa_ablkcipher_dma_req_init(struct ablkcipher_request *req,
  248. const struct mv_cesa_op_ctx *op_templ)
  249. {
  250. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  251. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  252. GFP_KERNEL : GFP_ATOMIC;
  253. struct mv_cesa_req *basereq = &creq->base;
  254. struct mv_cesa_ablkcipher_dma_iter iter;
  255. bool skip_ctx = false;
  256. int ret;
  257. unsigned int ivsize;
  258. basereq->chain.first = NULL;
  259. basereq->chain.last = NULL;
  260. if (req->src != req->dst) {
  261. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  262. DMA_TO_DEVICE);
  263. if (!ret)
  264. return -ENOMEM;
  265. ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  266. DMA_FROM_DEVICE);
  267. if (!ret) {
  268. ret = -ENOMEM;
  269. goto err_unmap_src;
  270. }
  271. } else {
  272. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  273. DMA_BIDIRECTIONAL);
  274. if (!ret)
  275. return -ENOMEM;
  276. }
  277. mv_cesa_tdma_desc_iter_init(&basereq->chain);
  278. mv_cesa_ablkcipher_req_iter_init(&iter, req);
  279. do {
  280. struct mv_cesa_op_ctx *op;
  281. op = mv_cesa_dma_add_op(&basereq->chain, op_templ, skip_ctx, flags);
  282. if (IS_ERR(op)) {
  283. ret = PTR_ERR(op);
  284. goto err_free_tdma;
  285. }
  286. skip_ctx = true;
  287. mv_cesa_set_crypt_op_len(op, iter.base.op_len);
  288. /* Add input transfers */
  289. ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base,
  290. &iter.src, flags);
  291. if (ret)
  292. goto err_free_tdma;
  293. /* Add dummy desc to launch the crypto operation */
  294. ret = mv_cesa_dma_add_dummy_launch(&basereq->chain, flags);
  295. if (ret)
  296. goto err_free_tdma;
  297. /* Add output transfers */
  298. ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base,
  299. &iter.dst, flags);
  300. if (ret)
  301. goto err_free_tdma;
  302. } while (mv_cesa_ablkcipher_req_iter_next_op(&iter));
  303. /* Add output data for IV */
  304. ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
  305. ret = mv_cesa_dma_add_iv_op(&basereq->chain, CESA_SA_CRYPT_IV_SRAM_OFFSET,
  306. ivsize, CESA_TDMA_SRC_IN_SRAM, flags);
  307. if (ret)
  308. goto err_free_tdma;
  309. basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
  310. return 0;
  311. err_free_tdma:
  312. mv_cesa_dma_cleanup(basereq);
  313. if (req->dst != req->src)
  314. dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  315. DMA_FROM_DEVICE);
  316. err_unmap_src:
  317. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  318. req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
  319. return ret;
  320. }
  321. static inline int
  322. mv_cesa_ablkcipher_std_req_init(struct ablkcipher_request *req,
  323. const struct mv_cesa_op_ctx *op_templ)
  324. {
  325. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  326. struct mv_cesa_ablkcipher_std_req *sreq = &creq->std;
  327. struct mv_cesa_req *basereq = &creq->base;
  328. sreq->op = *op_templ;
  329. sreq->skip_ctx = false;
  330. basereq->chain.first = NULL;
  331. basereq->chain.last = NULL;
  332. return 0;
  333. }
  334. static int mv_cesa_ablkcipher_req_init(struct ablkcipher_request *req,
  335. struct mv_cesa_op_ctx *tmpl)
  336. {
  337. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  338. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  339. unsigned int blksize = crypto_ablkcipher_blocksize(tfm);
  340. int ret;
  341. if (!IS_ALIGNED(req->nbytes, blksize))
  342. return -EINVAL;
  343. creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
  344. if (creq->src_nents < 0) {
  345. dev_err(cesa_dev->dev, "Invalid number of src SG");
  346. return creq->src_nents;
  347. }
  348. creq->dst_nents = sg_nents_for_len(req->dst, req->nbytes);
  349. if (creq->dst_nents < 0) {
  350. dev_err(cesa_dev->dev, "Invalid number of dst SG");
  351. return creq->dst_nents;
  352. }
  353. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY,
  354. CESA_SA_DESC_CFG_OP_MSK);
  355. if (cesa_dev->caps->has_tdma)
  356. ret = mv_cesa_ablkcipher_dma_req_init(req, tmpl);
  357. else
  358. ret = mv_cesa_ablkcipher_std_req_init(req, tmpl);
  359. return ret;
  360. }
  361. static int mv_cesa_ablkcipher_queue_req(struct ablkcipher_request *req,
  362. struct mv_cesa_op_ctx *tmpl)
  363. {
  364. int ret;
  365. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  366. struct mv_cesa_engine *engine;
  367. ret = mv_cesa_ablkcipher_req_init(req, tmpl);
  368. if (ret)
  369. return ret;
  370. engine = mv_cesa_select_engine(req->nbytes);
  371. mv_cesa_ablkcipher_prepare(&req->base, engine);
  372. ret = mv_cesa_queue_req(&req->base, &creq->base);
  373. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  374. mv_cesa_ablkcipher_cleanup(req);
  375. return ret;
  376. }
  377. static int mv_cesa_des_op(struct ablkcipher_request *req,
  378. struct mv_cesa_op_ctx *tmpl)
  379. {
  380. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  381. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES,
  382. CESA_SA_DESC_CFG_CRYPTM_MSK);
  383. memcpy(tmpl->ctx.blkcipher.key, ctx->key, DES_KEY_SIZE);
  384. return mv_cesa_ablkcipher_queue_req(req, tmpl);
  385. }
  386. static int mv_cesa_ecb_des_encrypt(struct ablkcipher_request *req)
  387. {
  388. struct mv_cesa_op_ctx tmpl;
  389. mv_cesa_set_op_cfg(&tmpl,
  390. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  391. CESA_SA_DESC_CFG_DIR_ENC);
  392. return mv_cesa_des_op(req, &tmpl);
  393. }
  394. static int mv_cesa_ecb_des_decrypt(struct ablkcipher_request *req)
  395. {
  396. struct mv_cesa_op_ctx tmpl;
  397. mv_cesa_set_op_cfg(&tmpl,
  398. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  399. CESA_SA_DESC_CFG_DIR_DEC);
  400. return mv_cesa_des_op(req, &tmpl);
  401. }
  402. struct crypto_alg mv_cesa_ecb_des_alg = {
  403. .cra_name = "ecb(des)",
  404. .cra_driver_name = "mv-ecb-des",
  405. .cra_priority = 300,
  406. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  407. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  408. .cra_blocksize = DES_BLOCK_SIZE,
  409. .cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
  410. .cra_alignmask = 0,
  411. .cra_type = &crypto_ablkcipher_type,
  412. .cra_module = THIS_MODULE,
  413. .cra_init = mv_cesa_ablkcipher_cra_init,
  414. .cra_u = {
  415. .ablkcipher = {
  416. .min_keysize = DES_KEY_SIZE,
  417. .max_keysize = DES_KEY_SIZE,
  418. .setkey = mv_cesa_des_setkey,
  419. .encrypt = mv_cesa_ecb_des_encrypt,
  420. .decrypt = mv_cesa_ecb_des_decrypt,
  421. },
  422. },
  423. };
  424. static int mv_cesa_cbc_des_op(struct ablkcipher_request *req,
  425. struct mv_cesa_op_ctx *tmpl)
  426. {
  427. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
  428. CESA_SA_DESC_CFG_CRYPTCM_MSK);
  429. memcpy(tmpl->ctx.blkcipher.iv, req->info, DES_BLOCK_SIZE);
  430. return mv_cesa_des_op(req, tmpl);
  431. }
  432. static int mv_cesa_cbc_des_encrypt(struct ablkcipher_request *req)
  433. {
  434. struct mv_cesa_op_ctx tmpl;
  435. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);
  436. return mv_cesa_cbc_des_op(req, &tmpl);
  437. }
  438. static int mv_cesa_cbc_des_decrypt(struct ablkcipher_request *req)
  439. {
  440. struct mv_cesa_op_ctx tmpl;
  441. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);
  442. return mv_cesa_cbc_des_op(req, &tmpl);
  443. }
  444. struct crypto_alg mv_cesa_cbc_des_alg = {
  445. .cra_name = "cbc(des)",
  446. .cra_driver_name = "mv-cbc-des",
  447. .cra_priority = 300,
  448. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  449. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  450. .cra_blocksize = DES_BLOCK_SIZE,
  451. .cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
  452. .cra_alignmask = 0,
  453. .cra_type = &crypto_ablkcipher_type,
  454. .cra_module = THIS_MODULE,
  455. .cra_init = mv_cesa_ablkcipher_cra_init,
  456. .cra_u = {
  457. .ablkcipher = {
  458. .min_keysize = DES_KEY_SIZE,
  459. .max_keysize = DES_KEY_SIZE,
  460. .ivsize = DES_BLOCK_SIZE,
  461. .setkey = mv_cesa_des_setkey,
  462. .encrypt = mv_cesa_cbc_des_encrypt,
  463. .decrypt = mv_cesa_cbc_des_decrypt,
  464. },
  465. },
  466. };
  467. static int mv_cesa_des3_op(struct ablkcipher_request *req,
  468. struct mv_cesa_op_ctx *tmpl)
  469. {
  470. struct mv_cesa_des3_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  471. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_3DES,
  472. CESA_SA_DESC_CFG_CRYPTM_MSK);
  473. memcpy(tmpl->ctx.blkcipher.key, ctx->key, DES3_EDE_KEY_SIZE);
  474. return mv_cesa_ablkcipher_queue_req(req, tmpl);
  475. }
  476. static int mv_cesa_ecb_des3_ede_encrypt(struct ablkcipher_request *req)
  477. {
  478. struct mv_cesa_op_ctx tmpl;
  479. mv_cesa_set_op_cfg(&tmpl,
  480. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  481. CESA_SA_DESC_CFG_3DES_EDE |
  482. CESA_SA_DESC_CFG_DIR_ENC);
  483. return mv_cesa_des3_op(req, &tmpl);
  484. }
  485. static int mv_cesa_ecb_des3_ede_decrypt(struct ablkcipher_request *req)
  486. {
  487. struct mv_cesa_op_ctx tmpl;
  488. mv_cesa_set_op_cfg(&tmpl,
  489. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  490. CESA_SA_DESC_CFG_3DES_EDE |
  491. CESA_SA_DESC_CFG_DIR_DEC);
  492. return mv_cesa_des3_op(req, &tmpl);
  493. }
  494. struct crypto_alg mv_cesa_ecb_des3_ede_alg = {
  495. .cra_name = "ecb(des3_ede)",
  496. .cra_driver_name = "mv-ecb-des3-ede",
  497. .cra_priority = 300,
  498. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  499. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  500. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  501. .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx),
  502. .cra_alignmask = 0,
  503. .cra_type = &crypto_ablkcipher_type,
  504. .cra_module = THIS_MODULE,
  505. .cra_init = mv_cesa_ablkcipher_cra_init,
  506. .cra_u = {
  507. .ablkcipher = {
  508. .min_keysize = DES3_EDE_KEY_SIZE,
  509. .max_keysize = DES3_EDE_KEY_SIZE,
  510. .ivsize = DES3_EDE_BLOCK_SIZE,
  511. .setkey = mv_cesa_des3_ede_setkey,
  512. .encrypt = mv_cesa_ecb_des3_ede_encrypt,
  513. .decrypt = mv_cesa_ecb_des3_ede_decrypt,
  514. },
  515. },
  516. };
  517. static int mv_cesa_cbc_des3_op(struct ablkcipher_request *req,
  518. struct mv_cesa_op_ctx *tmpl)
  519. {
  520. memcpy(tmpl->ctx.blkcipher.iv, req->info, DES3_EDE_BLOCK_SIZE);
  521. return mv_cesa_des3_op(req, tmpl);
  522. }
  523. static int mv_cesa_cbc_des3_ede_encrypt(struct ablkcipher_request *req)
  524. {
  525. struct mv_cesa_op_ctx tmpl;
  526. mv_cesa_set_op_cfg(&tmpl,
  527. CESA_SA_DESC_CFG_CRYPTCM_CBC |
  528. CESA_SA_DESC_CFG_3DES_EDE |
  529. CESA_SA_DESC_CFG_DIR_ENC);
  530. return mv_cesa_cbc_des3_op(req, &tmpl);
  531. }
  532. static int mv_cesa_cbc_des3_ede_decrypt(struct ablkcipher_request *req)
  533. {
  534. struct mv_cesa_op_ctx tmpl;
  535. mv_cesa_set_op_cfg(&tmpl,
  536. CESA_SA_DESC_CFG_CRYPTCM_CBC |
  537. CESA_SA_DESC_CFG_3DES_EDE |
  538. CESA_SA_DESC_CFG_DIR_DEC);
  539. return mv_cesa_cbc_des3_op(req, &tmpl);
  540. }
  541. struct crypto_alg mv_cesa_cbc_des3_ede_alg = {
  542. .cra_name = "cbc(des3_ede)",
  543. .cra_driver_name = "mv-cbc-des3-ede",
  544. .cra_priority = 300,
  545. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  546. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  547. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  548. .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx),
  549. .cra_alignmask = 0,
  550. .cra_type = &crypto_ablkcipher_type,
  551. .cra_module = THIS_MODULE,
  552. .cra_init = mv_cesa_ablkcipher_cra_init,
  553. .cra_u = {
  554. .ablkcipher = {
  555. .min_keysize = DES3_EDE_KEY_SIZE,
  556. .max_keysize = DES3_EDE_KEY_SIZE,
  557. .ivsize = DES3_EDE_BLOCK_SIZE,
  558. .setkey = mv_cesa_des3_ede_setkey,
  559. .encrypt = mv_cesa_cbc_des3_ede_encrypt,
  560. .decrypt = mv_cesa_cbc_des3_ede_decrypt,
  561. },
  562. },
  563. };
  564. static int mv_cesa_aes_op(struct ablkcipher_request *req,
  565. struct mv_cesa_op_ctx *tmpl)
  566. {
  567. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  568. int i;
  569. u32 *key;
  570. u32 cfg;
  571. cfg = CESA_SA_DESC_CFG_CRYPTM_AES;
  572. if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC)
  573. key = ctx->aes.key_dec;
  574. else
  575. key = ctx->aes.key_enc;
  576. for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++)
  577. tmpl->ctx.blkcipher.key[i] = cpu_to_le32(key[i]);
  578. if (ctx->aes.key_length == 24)
  579. cfg |= CESA_SA_DESC_CFG_AES_LEN_192;
  580. else if (ctx->aes.key_length == 32)
  581. cfg |= CESA_SA_DESC_CFG_AES_LEN_256;
  582. mv_cesa_update_op_cfg(tmpl, cfg,
  583. CESA_SA_DESC_CFG_CRYPTM_MSK |
  584. CESA_SA_DESC_CFG_AES_LEN_MSK);
  585. return mv_cesa_ablkcipher_queue_req(req, tmpl);
  586. }
  587. static int mv_cesa_ecb_aes_encrypt(struct ablkcipher_request *req)
  588. {
  589. struct mv_cesa_op_ctx tmpl;
  590. mv_cesa_set_op_cfg(&tmpl,
  591. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  592. CESA_SA_DESC_CFG_DIR_ENC);
  593. return mv_cesa_aes_op(req, &tmpl);
  594. }
  595. static int mv_cesa_ecb_aes_decrypt(struct ablkcipher_request *req)
  596. {
  597. struct mv_cesa_op_ctx tmpl;
  598. mv_cesa_set_op_cfg(&tmpl,
  599. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  600. CESA_SA_DESC_CFG_DIR_DEC);
  601. return mv_cesa_aes_op(req, &tmpl);
  602. }
  603. struct crypto_alg mv_cesa_ecb_aes_alg = {
  604. .cra_name = "ecb(aes)",
  605. .cra_driver_name = "mv-ecb-aes",
  606. .cra_priority = 300,
  607. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  608. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  609. .cra_blocksize = AES_BLOCK_SIZE,
  610. .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
  611. .cra_alignmask = 0,
  612. .cra_type = &crypto_ablkcipher_type,
  613. .cra_module = THIS_MODULE,
  614. .cra_init = mv_cesa_ablkcipher_cra_init,
  615. .cra_u = {
  616. .ablkcipher = {
  617. .min_keysize = AES_MIN_KEY_SIZE,
  618. .max_keysize = AES_MAX_KEY_SIZE,
  619. .setkey = mv_cesa_aes_setkey,
  620. .encrypt = mv_cesa_ecb_aes_encrypt,
  621. .decrypt = mv_cesa_ecb_aes_decrypt,
  622. },
  623. },
  624. };
  625. static int mv_cesa_cbc_aes_op(struct ablkcipher_request *req,
  626. struct mv_cesa_op_ctx *tmpl)
  627. {
  628. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
  629. CESA_SA_DESC_CFG_CRYPTCM_MSK);
  630. memcpy(tmpl->ctx.blkcipher.iv, req->info, AES_BLOCK_SIZE);
  631. return mv_cesa_aes_op(req, tmpl);
  632. }
  633. static int mv_cesa_cbc_aes_encrypt(struct ablkcipher_request *req)
  634. {
  635. struct mv_cesa_op_ctx tmpl;
  636. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);
  637. return mv_cesa_cbc_aes_op(req, &tmpl);
  638. }
  639. static int mv_cesa_cbc_aes_decrypt(struct ablkcipher_request *req)
  640. {
  641. struct mv_cesa_op_ctx tmpl;
  642. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);
  643. return mv_cesa_cbc_aes_op(req, &tmpl);
  644. }
  645. struct crypto_alg mv_cesa_cbc_aes_alg = {
  646. .cra_name = "cbc(aes)",
  647. .cra_driver_name = "mv-cbc-aes",
  648. .cra_priority = 300,
  649. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  650. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  651. .cra_blocksize = AES_BLOCK_SIZE,
  652. .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
  653. .cra_alignmask = 0,
  654. .cra_type = &crypto_ablkcipher_type,
  655. .cra_module = THIS_MODULE,
  656. .cra_init = mv_cesa_ablkcipher_cra_init,
  657. .cra_u = {
  658. .ablkcipher = {
  659. .min_keysize = AES_MIN_KEY_SIZE,
  660. .max_keysize = AES_MAX_KEY_SIZE,
  661. .ivsize = AES_BLOCK_SIZE,
  662. .setkey = mv_cesa_aes_setkey,
  663. .encrypt = mv_cesa_cbc_aes_encrypt,
  664. .decrypt = mv_cesa_cbc_aes_decrypt,
  665. },
  666. },
  667. };