ccp-dev-v5.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) driver
  3. *
  4. * Copyright (C) 2016 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Gary R Hook <gary.hook@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/pci.h>
  15. #include <linux/kthread.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/compiler.h>
  19. #include <linux/ccp.h>
  20. #include "ccp-dev.h"
  21. static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
  22. {
  23. struct ccp_device *ccp;
  24. int start;
  25. /* First look at the map for the queue */
  26. if (cmd_q->lsb >= 0) {
  27. start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
  28. LSB_SIZE,
  29. 0, count, 0);
  30. if (start < LSB_SIZE) {
  31. bitmap_set(cmd_q->lsbmap, start, count);
  32. return start + cmd_q->lsb * LSB_SIZE;
  33. }
  34. }
  35. /* No joy; try to get an entry from the shared blocks */
  36. ccp = cmd_q->ccp;
  37. for (;;) {
  38. mutex_lock(&ccp->sb_mutex);
  39. start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
  40. MAX_LSB_CNT * LSB_SIZE,
  41. 0,
  42. count, 0);
  43. if (start <= MAX_LSB_CNT * LSB_SIZE) {
  44. bitmap_set(ccp->lsbmap, start, count);
  45. mutex_unlock(&ccp->sb_mutex);
  46. return start * LSB_ITEM_SIZE;
  47. }
  48. ccp->sb_avail = 0;
  49. mutex_unlock(&ccp->sb_mutex);
  50. /* Wait for KSB entries to become available */
  51. if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
  52. return 0;
  53. }
  54. }
  55. static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
  56. unsigned int count)
  57. {
  58. int lsbno = start / LSB_SIZE;
  59. if (!start)
  60. return;
  61. if (cmd_q->lsb == lsbno) {
  62. /* An entry from the private LSB */
  63. bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
  64. } else {
  65. /* From the shared LSBs */
  66. struct ccp_device *ccp = cmd_q->ccp;
  67. mutex_lock(&ccp->sb_mutex);
  68. bitmap_clear(ccp->lsbmap, start, count);
  69. ccp->sb_avail = 1;
  70. mutex_unlock(&ccp->sb_mutex);
  71. wake_up_interruptible_all(&ccp->sb_queue);
  72. }
  73. }
  74. /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
  75. union ccp_function {
  76. struct {
  77. u16 size:7;
  78. u16 encrypt:1;
  79. u16 mode:5;
  80. u16 type:2;
  81. } aes;
  82. struct {
  83. u16 size:7;
  84. u16 encrypt:1;
  85. u16 rsvd:5;
  86. u16 type:2;
  87. } aes_xts;
  88. struct {
  89. u16 rsvd1:10;
  90. u16 type:4;
  91. u16 rsvd2:1;
  92. } sha;
  93. struct {
  94. u16 mode:3;
  95. u16 size:12;
  96. } rsa;
  97. struct {
  98. u16 byteswap:2;
  99. u16 bitwise:3;
  100. u16 reflect:2;
  101. u16 rsvd:8;
  102. } pt;
  103. struct {
  104. u16 rsvd:13;
  105. } zlib;
  106. struct {
  107. u16 size:10;
  108. u16 type:2;
  109. u16 mode:3;
  110. } ecc;
  111. u16 raw;
  112. };
  113. #define CCP_AES_SIZE(p) ((p)->aes.size)
  114. #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
  115. #define CCP_AES_MODE(p) ((p)->aes.mode)
  116. #define CCP_AES_TYPE(p) ((p)->aes.type)
  117. #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
  118. #define CCP_XTS_TYPE(p) ((p)->aes_xts.type)
  119. #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
  120. #define CCP_SHA_TYPE(p) ((p)->sha.type)
  121. #define CCP_RSA_SIZE(p) ((p)->rsa.size)
  122. #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
  123. #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
  124. #define CCP_ECC_MODE(p) ((p)->ecc.mode)
  125. #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
  126. /* Word 0 */
  127. #define CCP5_CMD_DW0(p) ((p)->dw0)
  128. #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
  129. #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
  130. #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
  131. #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
  132. #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
  133. #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
  134. #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
  135. /* Word 1 */
  136. #define CCP5_CMD_DW1(p) ((p)->length)
  137. #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
  138. /* Word 2 */
  139. #define CCP5_CMD_DW2(p) ((p)->src_lo)
  140. #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
  141. /* Word 3 */
  142. #define CCP5_CMD_DW3(p) ((p)->dw3)
  143. #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
  144. #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
  145. #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
  146. #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
  147. /* Words 4/5 */
  148. #define CCP5_CMD_DW4(p) ((p)->dw4)
  149. #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
  150. #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
  151. #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
  152. #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
  153. #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
  154. #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
  155. #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
  156. /* Word 6/7 */
  157. #define CCP5_CMD_DW6(p) ((p)->key_lo)
  158. #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
  159. #define CCP5_CMD_DW7(p) ((p)->dw7)
  160. #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
  161. #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
  162. static inline u32 low_address(unsigned long addr)
  163. {
  164. return (u64)addr & 0x0ffffffff;
  165. }
  166. static inline u32 high_address(unsigned long addr)
  167. {
  168. return ((u64)addr >> 32) & 0x00000ffff;
  169. }
  170. static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
  171. {
  172. unsigned int head_idx, n;
  173. u32 head_lo, queue_start;
  174. queue_start = low_address(cmd_q->qdma_tail);
  175. head_lo = ioread32(cmd_q->reg_head_lo);
  176. head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
  177. n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
  178. return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
  179. }
  180. static int ccp5_do_cmd(struct ccp5_desc *desc,
  181. struct ccp_cmd_queue *cmd_q)
  182. {
  183. u32 *mP;
  184. __le32 *dP;
  185. u32 tail;
  186. int i;
  187. int ret = 0;
  188. if (CCP5_CMD_SOC(desc)) {
  189. CCP5_CMD_IOC(desc) = 1;
  190. CCP5_CMD_SOC(desc) = 0;
  191. }
  192. mutex_lock(&cmd_q->q_mutex);
  193. mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
  194. dP = (__le32 *) desc;
  195. for (i = 0; i < 8; i++)
  196. mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
  197. cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
  198. /* The data used by this command must be flushed to memory */
  199. wmb();
  200. /* Write the new tail address back to the queue register */
  201. tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
  202. iowrite32(tail, cmd_q->reg_tail_lo);
  203. /* Turn the queue back on using our cached control register */
  204. iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
  205. mutex_unlock(&cmd_q->q_mutex);
  206. if (CCP5_CMD_IOC(desc)) {
  207. /* Wait for the job to complete */
  208. ret = wait_event_interruptible(cmd_q->int_queue,
  209. cmd_q->int_rcvd);
  210. if (ret || cmd_q->cmd_error) {
  211. if (cmd_q->cmd_error)
  212. ccp_log_error(cmd_q->ccp,
  213. cmd_q->cmd_error);
  214. /* A version 5 device doesn't use Job IDs... */
  215. if (!ret)
  216. ret = -EIO;
  217. }
  218. cmd_q->int_rcvd = 0;
  219. }
  220. return 0;
  221. }
  222. static int ccp5_perform_aes(struct ccp_op *op)
  223. {
  224. struct ccp5_desc desc;
  225. union ccp_function function;
  226. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  227. /* Zero out all the fields of the command desc */
  228. memset(&desc, 0, Q_DESC_SIZE);
  229. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
  230. CCP5_CMD_SOC(&desc) = op->soc;
  231. CCP5_CMD_IOC(&desc) = 1;
  232. CCP5_CMD_INIT(&desc) = op->init;
  233. CCP5_CMD_EOM(&desc) = op->eom;
  234. CCP5_CMD_PROT(&desc) = 0;
  235. function.raw = 0;
  236. CCP_AES_ENCRYPT(&function) = op->u.aes.action;
  237. CCP_AES_MODE(&function) = op->u.aes.mode;
  238. CCP_AES_TYPE(&function) = op->u.aes.type;
  239. if (op->u.aes.mode == CCP_AES_MODE_CFB)
  240. CCP_AES_SIZE(&function) = 0x7f;
  241. CCP5_CMD_FUNCTION(&desc) = function.raw;
  242. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  243. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  244. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  245. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  246. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  247. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  248. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  249. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  250. CCP5_CMD_KEY_HI(&desc) = 0;
  251. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  252. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  253. return ccp5_do_cmd(&desc, op->cmd_q);
  254. }
  255. static int ccp5_perform_xts_aes(struct ccp_op *op)
  256. {
  257. struct ccp5_desc desc;
  258. union ccp_function function;
  259. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  260. /* Zero out all the fields of the command desc */
  261. memset(&desc, 0, Q_DESC_SIZE);
  262. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
  263. CCP5_CMD_SOC(&desc) = op->soc;
  264. CCP5_CMD_IOC(&desc) = 1;
  265. CCP5_CMD_INIT(&desc) = op->init;
  266. CCP5_CMD_EOM(&desc) = op->eom;
  267. CCP5_CMD_PROT(&desc) = 0;
  268. function.raw = 0;
  269. CCP_XTS_TYPE(&function) = op->u.xts.type;
  270. CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
  271. CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
  272. CCP5_CMD_FUNCTION(&desc) = function.raw;
  273. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  274. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  275. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  276. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  277. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  278. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  279. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  280. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  281. CCP5_CMD_KEY_HI(&desc) = 0;
  282. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  283. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  284. return ccp5_do_cmd(&desc, op->cmd_q);
  285. }
  286. static int ccp5_perform_sha(struct ccp_op *op)
  287. {
  288. struct ccp5_desc desc;
  289. union ccp_function function;
  290. /* Zero out all the fields of the command desc */
  291. memset(&desc, 0, Q_DESC_SIZE);
  292. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
  293. CCP5_CMD_SOC(&desc) = op->soc;
  294. CCP5_CMD_IOC(&desc) = 1;
  295. CCP5_CMD_INIT(&desc) = 1;
  296. CCP5_CMD_EOM(&desc) = op->eom;
  297. CCP5_CMD_PROT(&desc) = 0;
  298. function.raw = 0;
  299. CCP_SHA_TYPE(&function) = op->u.sha.type;
  300. CCP5_CMD_FUNCTION(&desc) = function.raw;
  301. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  302. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  303. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  304. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  305. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  306. if (op->eom) {
  307. CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
  308. CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
  309. } else {
  310. CCP5_CMD_SHA_LO(&desc) = 0;
  311. CCP5_CMD_SHA_HI(&desc) = 0;
  312. }
  313. return ccp5_do_cmd(&desc, op->cmd_q);
  314. }
  315. static int ccp5_perform_rsa(struct ccp_op *op)
  316. {
  317. struct ccp5_desc desc;
  318. union ccp_function function;
  319. /* Zero out all the fields of the command desc */
  320. memset(&desc, 0, Q_DESC_SIZE);
  321. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
  322. CCP5_CMD_SOC(&desc) = op->soc;
  323. CCP5_CMD_IOC(&desc) = 1;
  324. CCP5_CMD_INIT(&desc) = 0;
  325. CCP5_CMD_EOM(&desc) = 1;
  326. CCP5_CMD_PROT(&desc) = 0;
  327. function.raw = 0;
  328. CCP_RSA_SIZE(&function) = op->u.rsa.mod_size;
  329. CCP5_CMD_FUNCTION(&desc) = function.raw;
  330. CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
  331. /* Source is from external memory */
  332. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  333. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  334. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  335. /* Destination is in external memory */
  336. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  337. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  338. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  339. /* Key (Exponent) is in external memory */
  340. CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
  341. CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
  342. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  343. return ccp5_do_cmd(&desc, op->cmd_q);
  344. }
  345. static int ccp5_perform_passthru(struct ccp_op *op)
  346. {
  347. struct ccp5_desc desc;
  348. union ccp_function function;
  349. struct ccp_dma_info *saddr = &op->src.u.dma;
  350. struct ccp_dma_info *daddr = &op->dst.u.dma;
  351. memset(&desc, 0, Q_DESC_SIZE);
  352. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
  353. CCP5_CMD_SOC(&desc) = 0;
  354. CCP5_CMD_IOC(&desc) = 1;
  355. CCP5_CMD_INIT(&desc) = 0;
  356. CCP5_CMD_EOM(&desc) = op->eom;
  357. CCP5_CMD_PROT(&desc) = 0;
  358. function.raw = 0;
  359. CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
  360. CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
  361. CCP5_CMD_FUNCTION(&desc) = function.raw;
  362. /* Length of source data is always 256 bytes */
  363. if (op->src.type == CCP_MEMTYPE_SYSTEM)
  364. CCP5_CMD_LEN(&desc) = saddr->length;
  365. else
  366. CCP5_CMD_LEN(&desc) = daddr->length;
  367. if (op->src.type == CCP_MEMTYPE_SYSTEM) {
  368. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  369. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  370. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  371. if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
  372. CCP5_CMD_LSB_ID(&desc) = op->sb_key;
  373. } else {
  374. u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
  375. CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
  376. CCP5_CMD_SRC_HI(&desc) = 0;
  377. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
  378. }
  379. if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
  380. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  381. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  382. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  383. } else {
  384. u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
  385. CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
  386. CCP5_CMD_DST_HI(&desc) = 0;
  387. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
  388. }
  389. return ccp5_do_cmd(&desc, op->cmd_q);
  390. }
  391. static int ccp5_perform_ecc(struct ccp_op *op)
  392. {
  393. struct ccp5_desc desc;
  394. union ccp_function function;
  395. /* Zero out all the fields of the command desc */
  396. memset(&desc, 0, Q_DESC_SIZE);
  397. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
  398. CCP5_CMD_SOC(&desc) = 0;
  399. CCP5_CMD_IOC(&desc) = 1;
  400. CCP5_CMD_INIT(&desc) = 0;
  401. CCP5_CMD_EOM(&desc) = 1;
  402. CCP5_CMD_PROT(&desc) = 0;
  403. function.raw = 0;
  404. function.ecc.mode = op->u.ecc.function;
  405. CCP5_CMD_FUNCTION(&desc) = function.raw;
  406. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  407. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  408. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  409. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  410. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  411. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  412. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  413. return ccp5_do_cmd(&desc, op->cmd_q);
  414. }
  415. static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
  416. {
  417. int q_mask = 1 << cmd_q->id;
  418. int queues = 0;
  419. int j;
  420. /* Build a bit mask to know which LSBs this queue has access to.
  421. * Don't bother with segment 0 as it has special privileges.
  422. */
  423. for (j = 1; j < MAX_LSB_CNT; j++) {
  424. if (status & q_mask)
  425. bitmap_set(cmd_q->lsbmask, j, 1);
  426. status >>= LSB_REGION_WIDTH;
  427. }
  428. queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  429. dev_info(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
  430. cmd_q->id, queues);
  431. return queues ? 0 : -EINVAL;
  432. }
  433. static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
  434. int lsb_cnt, int n_lsbs,
  435. unsigned long *lsb_pub)
  436. {
  437. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  438. int bitno;
  439. int qlsb_wgt;
  440. int i;
  441. /* For each queue:
  442. * If the count of potential LSBs available to a queue matches the
  443. * ordinal given to us in lsb_cnt:
  444. * Copy the mask of possible LSBs for this queue into "qlsb";
  445. * For each bit in qlsb, see if the corresponding bit in the
  446. * aggregation mask is set; if so, we have a match.
  447. * If we have a match, clear the bit in the aggregation to
  448. * mark it as no longer available.
  449. * If there is no match, clear the bit in qlsb and keep looking.
  450. */
  451. for (i = 0; i < ccp->cmd_q_count; i++) {
  452. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  453. qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  454. if (qlsb_wgt == lsb_cnt) {
  455. bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
  456. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  457. while (bitno < MAX_LSB_CNT) {
  458. if (test_bit(bitno, lsb_pub)) {
  459. /* We found an available LSB
  460. * that this queue can access
  461. */
  462. cmd_q->lsb = bitno;
  463. bitmap_clear(lsb_pub, bitno, 1);
  464. dev_info(ccp->dev,
  465. "Queue %d gets LSB %d\n",
  466. i, bitno);
  467. break;
  468. }
  469. bitmap_clear(qlsb, bitno, 1);
  470. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  471. }
  472. if (bitno >= MAX_LSB_CNT)
  473. return -EINVAL;
  474. n_lsbs--;
  475. }
  476. }
  477. return n_lsbs;
  478. }
  479. /* For each queue, from the most- to least-constrained:
  480. * find an LSB that can be assigned to the queue. If there are N queues that
  481. * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
  482. * dedicated LSB. Remaining LSB regions become a shared resource.
  483. * If we have fewer LSBs than queues, all LSB regions become shared resources.
  484. */
  485. static int ccp_assign_lsbs(struct ccp_device *ccp)
  486. {
  487. DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
  488. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  489. int n_lsbs = 0;
  490. int bitno;
  491. int i, lsb_cnt;
  492. int rc = 0;
  493. bitmap_zero(lsb_pub, MAX_LSB_CNT);
  494. /* Create an aggregate bitmap to get a total count of available LSBs */
  495. for (i = 0; i < ccp->cmd_q_count; i++)
  496. bitmap_or(lsb_pub,
  497. lsb_pub, ccp->cmd_q[i].lsbmask,
  498. MAX_LSB_CNT);
  499. n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
  500. if (n_lsbs >= ccp->cmd_q_count) {
  501. /* We have enough LSBS to give every queue a private LSB.
  502. * Brute force search to start with the queues that are more
  503. * constrained in LSB choice. When an LSB is privately
  504. * assigned, it is removed from the public mask.
  505. * This is an ugly N squared algorithm with some optimization.
  506. */
  507. for (lsb_cnt = 1;
  508. n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
  509. lsb_cnt++) {
  510. rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
  511. lsb_pub);
  512. if (rc < 0)
  513. return -EINVAL;
  514. n_lsbs = rc;
  515. }
  516. }
  517. rc = 0;
  518. /* What's left of the LSBs, according to the public mask, now become
  519. * shared. Any zero bits in the lsb_pub mask represent an LSB region
  520. * that can't be used as a shared resource, so mark the LSB slots for
  521. * them as "in use".
  522. */
  523. bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
  524. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  525. while (bitno < MAX_LSB_CNT) {
  526. bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
  527. bitmap_set(qlsb, bitno, 1);
  528. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  529. }
  530. return rc;
  531. }
  532. static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
  533. {
  534. unsigned int i;
  535. for (i = 0; i < ccp->cmd_q_count; i++)
  536. iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
  537. }
  538. static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
  539. {
  540. unsigned int i;
  541. for (i = 0; i < ccp->cmd_q_count; i++)
  542. iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
  543. }
  544. static void ccp5_irq_bh(unsigned long data)
  545. {
  546. struct ccp_device *ccp = (struct ccp_device *)data;
  547. u32 status;
  548. unsigned int i;
  549. for (i = 0; i < ccp->cmd_q_count; i++) {
  550. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  551. status = ioread32(cmd_q->reg_interrupt_status);
  552. if (status) {
  553. cmd_q->int_status = status;
  554. cmd_q->q_status = ioread32(cmd_q->reg_status);
  555. cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
  556. /* On error, only save the first error value */
  557. if ((status & INT_ERROR) && !cmd_q->cmd_error)
  558. cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
  559. cmd_q->int_rcvd = 1;
  560. /* Acknowledge the interrupt and wake the kthread */
  561. iowrite32(status, cmd_q->reg_interrupt_status);
  562. wake_up_interruptible(&cmd_q->int_queue);
  563. }
  564. }
  565. ccp5_enable_queue_interrupts(ccp);
  566. }
  567. static irqreturn_t ccp5_irq_handler(int irq, void *data)
  568. {
  569. struct device *dev = data;
  570. struct ccp_device *ccp = dev_get_drvdata(dev);
  571. ccp5_disable_queue_interrupts(ccp);
  572. if (ccp->use_tasklet)
  573. tasklet_schedule(&ccp->irq_tasklet);
  574. else
  575. ccp5_irq_bh((unsigned long)ccp);
  576. return IRQ_HANDLED;
  577. }
  578. static int ccp5_init(struct ccp_device *ccp)
  579. {
  580. struct device *dev = ccp->dev;
  581. struct ccp_cmd_queue *cmd_q;
  582. struct dma_pool *dma_pool;
  583. char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
  584. unsigned int qmr, qim, i;
  585. u64 status;
  586. u32 status_lo, status_hi;
  587. int ret;
  588. /* Find available queues */
  589. qim = 0;
  590. qmr = ioread32(ccp->io_regs + Q_MASK_REG);
  591. for (i = 0; i < MAX_HW_QUEUES; i++) {
  592. if (!(qmr & (1 << i)))
  593. continue;
  594. /* Allocate a dma pool for this queue */
  595. snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
  596. ccp->name, i);
  597. dma_pool = dma_pool_create(dma_pool_name, dev,
  598. CCP_DMAPOOL_MAX_SIZE,
  599. CCP_DMAPOOL_ALIGN, 0);
  600. if (!dma_pool) {
  601. dev_err(dev, "unable to allocate dma pool\n");
  602. ret = -ENOMEM;
  603. }
  604. cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
  605. ccp->cmd_q_count++;
  606. cmd_q->ccp = ccp;
  607. cmd_q->id = i;
  608. cmd_q->dma_pool = dma_pool;
  609. mutex_init(&cmd_q->q_mutex);
  610. /* Page alignment satisfies our needs for N <= 128 */
  611. BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
  612. cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
  613. cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
  614. &cmd_q->qbase_dma,
  615. GFP_KERNEL);
  616. if (!cmd_q->qbase) {
  617. dev_err(dev, "unable to allocate command queue\n");
  618. ret = -ENOMEM;
  619. goto e_pool;
  620. }
  621. cmd_q->qidx = 0;
  622. /* Preset some register values and masks that are queue
  623. * number dependent
  624. */
  625. cmd_q->reg_control = ccp->io_regs +
  626. CMD5_Q_STATUS_INCR * (i + 1);
  627. cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
  628. cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
  629. cmd_q->reg_int_enable = cmd_q->reg_control +
  630. CMD5_Q_INT_ENABLE_BASE;
  631. cmd_q->reg_interrupt_status = cmd_q->reg_control +
  632. CMD5_Q_INTERRUPT_STATUS_BASE;
  633. cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
  634. cmd_q->reg_int_status = cmd_q->reg_control +
  635. CMD5_Q_INT_STATUS_BASE;
  636. cmd_q->reg_dma_status = cmd_q->reg_control +
  637. CMD5_Q_DMA_STATUS_BASE;
  638. cmd_q->reg_dma_read_status = cmd_q->reg_control +
  639. CMD5_Q_DMA_READ_STATUS_BASE;
  640. cmd_q->reg_dma_write_status = cmd_q->reg_control +
  641. CMD5_Q_DMA_WRITE_STATUS_BASE;
  642. init_waitqueue_head(&cmd_q->int_queue);
  643. dev_dbg(dev, "queue #%u available\n", i);
  644. }
  645. if (ccp->cmd_q_count == 0) {
  646. dev_notice(dev, "no command queues available\n");
  647. ret = -EIO;
  648. goto e_pool;
  649. }
  650. dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
  651. /* Turn off the queues and disable interrupts until ready */
  652. ccp5_disable_queue_interrupts(ccp);
  653. for (i = 0; i < ccp->cmd_q_count; i++) {
  654. cmd_q = &ccp->cmd_q[i];
  655. cmd_q->qcontrol = 0; /* Start with nothing */
  656. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  657. ioread32(cmd_q->reg_int_status);
  658. ioread32(cmd_q->reg_status);
  659. /* Clear the interrupt status */
  660. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
  661. }
  662. dev_dbg(dev, "Requesting an IRQ...\n");
  663. /* Request an irq */
  664. ret = ccp->get_irq(ccp);
  665. if (ret) {
  666. dev_err(dev, "unable to allocate an IRQ\n");
  667. goto e_pool;
  668. }
  669. /* Initialize the ISR tasklet */
  670. if (ccp->use_tasklet)
  671. tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
  672. (unsigned long)ccp);
  673. /* Initialize the queue used to suspend */
  674. init_waitqueue_head(&ccp->suspend_queue);
  675. dev_dbg(dev, "Loading LSB map...\n");
  676. /* Copy the private LSB mask to the public registers */
  677. status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  678. status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  679. iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
  680. iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
  681. status = ((u64)status_hi<<30) | (u64)status_lo;
  682. dev_dbg(dev, "Configuring virtual queues...\n");
  683. /* Configure size of each virtual queue accessible to host */
  684. for (i = 0; i < ccp->cmd_q_count; i++) {
  685. u32 dma_addr_lo;
  686. u32 dma_addr_hi;
  687. cmd_q = &ccp->cmd_q[i];
  688. cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
  689. cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
  690. cmd_q->qdma_tail = cmd_q->qbase_dma;
  691. dma_addr_lo = low_address(cmd_q->qdma_tail);
  692. iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
  693. iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
  694. dma_addr_hi = high_address(cmd_q->qdma_tail);
  695. cmd_q->qcontrol |= (dma_addr_hi << 16);
  696. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  697. /* Find the LSB regions accessible to the queue */
  698. ccp_find_lsb_regions(cmd_q, status);
  699. cmd_q->lsb = -1; /* Unassigned value */
  700. }
  701. dev_dbg(dev, "Assigning LSBs...\n");
  702. ret = ccp_assign_lsbs(ccp);
  703. if (ret) {
  704. dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
  705. goto e_irq;
  706. }
  707. /* Optimization: pre-allocate LSB slots for each queue */
  708. for (i = 0; i < ccp->cmd_q_count; i++) {
  709. ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  710. ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  711. }
  712. dev_dbg(dev, "Starting threads...\n");
  713. /* Create a kthread for each queue */
  714. for (i = 0; i < ccp->cmd_q_count; i++) {
  715. struct task_struct *kthread;
  716. cmd_q = &ccp->cmd_q[i];
  717. kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
  718. "%s-q%u", ccp->name, cmd_q->id);
  719. if (IS_ERR(kthread)) {
  720. dev_err(dev, "error creating queue thread (%ld)\n",
  721. PTR_ERR(kthread));
  722. ret = PTR_ERR(kthread);
  723. goto e_kthread;
  724. }
  725. cmd_q->kthread = kthread;
  726. wake_up_process(kthread);
  727. }
  728. dev_dbg(dev, "Enabling interrupts...\n");
  729. ccp5_enable_queue_interrupts(ccp);
  730. dev_dbg(dev, "Registering device...\n");
  731. /* Put this on the unit list to make it available */
  732. ccp_add_device(ccp);
  733. ret = ccp_register_rng(ccp);
  734. if (ret)
  735. goto e_kthread;
  736. /* Register the DMA engine support */
  737. ret = ccp_dmaengine_register(ccp);
  738. if (ret)
  739. goto e_hwrng;
  740. return 0;
  741. e_hwrng:
  742. ccp_unregister_rng(ccp);
  743. e_kthread:
  744. for (i = 0; i < ccp->cmd_q_count; i++)
  745. if (ccp->cmd_q[i].kthread)
  746. kthread_stop(ccp->cmd_q[i].kthread);
  747. e_irq:
  748. ccp->free_irq(ccp);
  749. e_pool:
  750. for (i = 0; i < ccp->cmd_q_count; i++)
  751. dma_pool_destroy(ccp->cmd_q[i].dma_pool);
  752. return ret;
  753. }
  754. static void ccp5_destroy(struct ccp_device *ccp)
  755. {
  756. struct device *dev = ccp->dev;
  757. struct ccp_cmd_queue *cmd_q;
  758. struct ccp_cmd *cmd;
  759. unsigned int i;
  760. /* Unregister the DMA engine */
  761. ccp_dmaengine_unregister(ccp);
  762. /* Unregister the RNG */
  763. ccp_unregister_rng(ccp);
  764. /* Remove this device from the list of available units first */
  765. ccp_del_device(ccp);
  766. /* Disable and clear interrupts */
  767. ccp5_disable_queue_interrupts(ccp);
  768. for (i = 0; i < ccp->cmd_q_count; i++) {
  769. cmd_q = &ccp->cmd_q[i];
  770. /* Turn off the run bit */
  771. iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
  772. /* Clear the interrupt status */
  773. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
  774. ioread32(cmd_q->reg_int_status);
  775. ioread32(cmd_q->reg_status);
  776. }
  777. /* Stop the queue kthreads */
  778. for (i = 0; i < ccp->cmd_q_count; i++)
  779. if (ccp->cmd_q[i].kthread)
  780. kthread_stop(ccp->cmd_q[i].kthread);
  781. ccp->free_irq(ccp);
  782. for (i = 0; i < ccp->cmd_q_count; i++) {
  783. cmd_q = &ccp->cmd_q[i];
  784. dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
  785. cmd_q->qbase_dma);
  786. }
  787. /* Flush the cmd and backlog queue */
  788. while (!list_empty(&ccp->cmd)) {
  789. /* Invoke the callback directly with an error code */
  790. cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
  791. list_del(&cmd->entry);
  792. cmd->callback(cmd->data, -ENODEV);
  793. }
  794. while (!list_empty(&ccp->backlog)) {
  795. /* Invoke the callback directly with an error code */
  796. cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
  797. list_del(&cmd->entry);
  798. cmd->callback(cmd->data, -ENODEV);
  799. }
  800. }
  801. static void ccp5_config(struct ccp_device *ccp)
  802. {
  803. /* Public side */
  804. iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
  805. }
  806. static void ccp5other_config(struct ccp_device *ccp)
  807. {
  808. int i;
  809. u32 rnd;
  810. /* We own all of the queues on the NTB CCP */
  811. iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
  812. iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
  813. for (i = 0; i < 12; i++) {
  814. rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
  815. iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
  816. }
  817. iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
  818. iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
  819. iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
  820. iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  821. iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  822. iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
  823. ccp5_config(ccp);
  824. }
  825. /* Version 5 adds some function, but is essentially the same as v5 */
  826. static const struct ccp_actions ccp5_actions = {
  827. .aes = ccp5_perform_aes,
  828. .xts_aes = ccp5_perform_xts_aes,
  829. .sha = ccp5_perform_sha,
  830. .rsa = ccp5_perform_rsa,
  831. .passthru = ccp5_perform_passthru,
  832. .ecc = ccp5_perform_ecc,
  833. .sballoc = ccp_lsb_alloc,
  834. .sbfree = ccp_lsb_free,
  835. .init = ccp5_init,
  836. .destroy = ccp5_destroy,
  837. .get_free_slots = ccp5_get_free_slots,
  838. .irqhandler = ccp5_irq_handler,
  839. };
  840. const struct ccp_vdata ccpv5a = {
  841. .version = CCP_VERSION(5, 0),
  842. .setup = ccp5_config,
  843. .perform = &ccp5_actions,
  844. .bar = 2,
  845. .offset = 0x0,
  846. };
  847. const struct ccp_vdata ccpv5b = {
  848. .version = CCP_VERSION(5, 0),
  849. .setup = ccp5other_config,
  850. .perform = &ccp5_actions,
  851. .bar = 2,
  852. .offset = 0x0,
  853. };