caamhash.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  94. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  95. dma_addr_t sh_desc_update_dma ____cacheline_aligned;
  96. dma_addr_t sh_desc_update_first_dma;
  97. dma_addr_t sh_desc_fin_dma;
  98. dma_addr_t sh_desc_digest_dma;
  99. dma_addr_t sh_desc_finup_dma;
  100. struct device *jrdev;
  101. u32 alg_type;
  102. u32 alg_op;
  103. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  104. dma_addr_t key_dma;
  105. int ctx_len;
  106. unsigned int split_key_len;
  107. unsigned int split_key_pad_len;
  108. };
  109. /* ahash state */
  110. struct caam_hash_state {
  111. dma_addr_t buf_dma;
  112. dma_addr_t ctx_dma;
  113. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  114. int buflen_0;
  115. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_1;
  117. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  118. int (*update)(struct ahash_request *req);
  119. int (*final)(struct ahash_request *req);
  120. int (*finup)(struct ahash_request *req);
  121. int current_buf;
  122. };
  123. struct caam_export_state {
  124. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  125. u8 caam_ctx[MAX_CTX_LEN];
  126. int buflen;
  127. int (*update)(struct ahash_request *req);
  128. int (*final)(struct ahash_request *req);
  129. int (*finup)(struct ahash_request *req);
  130. };
  131. /* Common job descriptor seq in/out ptr routines */
  132. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  133. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  134. struct caam_hash_state *state,
  135. int ctx_len)
  136. {
  137. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  138. ctx_len, DMA_FROM_DEVICE);
  139. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  140. dev_err(jrdev, "unable to map ctx\n");
  141. state->ctx_dma = 0;
  142. return -ENOMEM;
  143. }
  144. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  145. return 0;
  146. }
  147. /* Map req->result, and append seq_out_ptr command that points to it */
  148. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  149. u8 *result, int digestsize)
  150. {
  151. dma_addr_t dst_dma;
  152. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  153. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  154. return dst_dma;
  155. }
  156. /* Map current buffer in state and put it in link table */
  157. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  158. struct sec4_sg_entry *sec4_sg,
  159. u8 *buf, int buflen)
  160. {
  161. dma_addr_t buf_dma;
  162. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  163. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  164. return buf_dma;
  165. }
  166. /*
  167. * Only put buffer in link table if it contains data, which is possible,
  168. * since a buffer has previously been used, and needs to be unmapped,
  169. */
  170. static inline dma_addr_t
  171. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  172. u8 *buf, dma_addr_t buf_dma, int buflen,
  173. int last_buflen)
  174. {
  175. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  176. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  177. if (buflen)
  178. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  179. else
  180. buf_dma = 0;
  181. return buf_dma;
  182. }
  183. /* Map state->caam_ctx, and add it to link table */
  184. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  185. struct caam_hash_state *state, int ctx_len,
  186. struct sec4_sg_entry *sec4_sg, u32 flag)
  187. {
  188. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  189. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  190. dev_err(jrdev, "unable to map ctx\n");
  191. state->ctx_dma = 0;
  192. return -ENOMEM;
  193. }
  194. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  195. return 0;
  196. }
  197. /* Common shared descriptor commands */
  198. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  199. {
  200. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  201. ctx->split_key_len, CLASS_2 |
  202. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  203. }
  204. /* Append key if it has been set */
  205. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  206. {
  207. u32 *key_jump_cmd;
  208. init_sh_desc(desc, HDR_SHARE_SERIAL);
  209. if (ctx->split_key_len) {
  210. /* Skip if already shared */
  211. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  212. JUMP_COND_SHRD);
  213. append_key_ahash(desc, ctx);
  214. set_jump_tgt_here(desc, key_jump_cmd);
  215. }
  216. /* Propagate errors from shared to job descriptor */
  217. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  218. }
  219. /*
  220. * For ahash read data from seqin following state->caam_ctx,
  221. * and write resulting class2 context to seqout, which may be state->caam_ctx
  222. * or req->result
  223. */
  224. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  225. {
  226. /* Calculate remaining bytes to read */
  227. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  228. /* Read remaining bytes */
  229. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  230. FIFOLD_TYPE_MSG | KEY_VLF);
  231. /* Store class2 context bytes */
  232. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  233. LDST_SRCDST_BYTE_CONTEXT);
  234. }
  235. /*
  236. * For ahash update, final and finup, import context, read and write to seqout
  237. */
  238. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  239. int digestsize,
  240. struct caam_hash_ctx *ctx)
  241. {
  242. init_sh_desc_key_ahash(desc, ctx);
  243. /* Import context from software */
  244. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  245. LDST_CLASS_2_CCB | ctx->ctx_len);
  246. /* Class 2 operation */
  247. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  248. /*
  249. * Load from buf and/or src and write to req->result or state->context
  250. */
  251. ahash_append_load_str(desc, digestsize);
  252. }
  253. /* For ahash firsts and digest, read and write to seqout */
  254. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  255. int digestsize, struct caam_hash_ctx *ctx)
  256. {
  257. init_sh_desc_key_ahash(desc, ctx);
  258. /* Class 2 operation */
  259. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  260. /*
  261. * Load from buf and/or src and write to req->result or state->context
  262. */
  263. ahash_append_load_str(desc, digestsize);
  264. }
  265. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  266. {
  267. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  268. int digestsize = crypto_ahash_digestsize(ahash);
  269. struct device *jrdev = ctx->jrdev;
  270. u32 have_key = 0;
  271. u32 *desc;
  272. if (ctx->split_key_len)
  273. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  274. /* ahash_update shared descriptor */
  275. desc = ctx->sh_desc_update;
  276. init_sh_desc(desc, HDR_SHARE_SERIAL);
  277. /* Import context from software */
  278. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  279. LDST_CLASS_2_CCB | ctx->ctx_len);
  280. /* Class 2 operation */
  281. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  282. OP_ALG_ENCRYPT);
  283. /* Load data and write to result or context */
  284. ahash_append_load_str(desc, ctx->ctx_len);
  285. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  286. DMA_TO_DEVICE);
  287. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  288. dev_err(jrdev, "unable to map shared descriptor\n");
  289. return -ENOMEM;
  290. }
  291. #ifdef DEBUG
  292. print_hex_dump(KERN_ERR,
  293. "ahash update shdesc@"__stringify(__LINE__)": ",
  294. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  295. #endif
  296. /* ahash_update_first shared descriptor */
  297. desc = ctx->sh_desc_update_first;
  298. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  299. ctx->ctx_len, ctx);
  300. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  301. desc_bytes(desc),
  302. DMA_TO_DEVICE);
  303. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  304. dev_err(jrdev, "unable to map shared descriptor\n");
  305. return -ENOMEM;
  306. }
  307. #ifdef DEBUG
  308. print_hex_dump(KERN_ERR,
  309. "ahash update first shdesc@"__stringify(__LINE__)": ",
  310. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  311. #endif
  312. /* ahash_final shared descriptor */
  313. desc = ctx->sh_desc_fin;
  314. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  315. OP_ALG_AS_FINALIZE, digestsize, ctx);
  316. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  317. DMA_TO_DEVICE);
  318. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  319. dev_err(jrdev, "unable to map shared descriptor\n");
  320. return -ENOMEM;
  321. }
  322. #ifdef DEBUG
  323. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  324. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  325. desc_bytes(desc), 1);
  326. #endif
  327. /* ahash_finup shared descriptor */
  328. desc = ctx->sh_desc_finup;
  329. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  330. OP_ALG_AS_FINALIZE, digestsize, ctx);
  331. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  332. DMA_TO_DEVICE);
  333. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  334. dev_err(jrdev, "unable to map shared descriptor\n");
  335. return -ENOMEM;
  336. }
  337. #ifdef DEBUG
  338. print_hex_dump(KERN_ERR, "ahash finup shdesc@"__stringify(__LINE__)": ",
  339. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  340. desc_bytes(desc), 1);
  341. #endif
  342. /* ahash_digest shared descriptor */
  343. desc = ctx->sh_desc_digest;
  344. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  345. digestsize, ctx);
  346. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  347. desc_bytes(desc),
  348. DMA_TO_DEVICE);
  349. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  350. dev_err(jrdev, "unable to map shared descriptor\n");
  351. return -ENOMEM;
  352. }
  353. #ifdef DEBUG
  354. print_hex_dump(KERN_ERR,
  355. "ahash digest shdesc@"__stringify(__LINE__)": ",
  356. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  357. desc_bytes(desc), 1);
  358. #endif
  359. return 0;
  360. }
  361. static int gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  362. u32 keylen)
  363. {
  364. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  365. ctx->split_key_pad_len, key_in, keylen,
  366. ctx->alg_op);
  367. }
  368. /* Digest hash size if it is too large */
  369. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  370. u32 *keylen, u8 *key_out, u32 digestsize)
  371. {
  372. struct device *jrdev = ctx->jrdev;
  373. u32 *desc;
  374. struct split_key_result result;
  375. dma_addr_t src_dma, dst_dma;
  376. int ret;
  377. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  378. if (!desc) {
  379. dev_err(jrdev, "unable to allocate key input memory\n");
  380. return -ENOMEM;
  381. }
  382. init_job_desc(desc, 0);
  383. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  384. DMA_TO_DEVICE);
  385. if (dma_mapping_error(jrdev, src_dma)) {
  386. dev_err(jrdev, "unable to map key input memory\n");
  387. kfree(desc);
  388. return -ENOMEM;
  389. }
  390. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  391. DMA_FROM_DEVICE);
  392. if (dma_mapping_error(jrdev, dst_dma)) {
  393. dev_err(jrdev, "unable to map key output memory\n");
  394. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  395. kfree(desc);
  396. return -ENOMEM;
  397. }
  398. /* Job descriptor to perform unkeyed hash on key_in */
  399. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  400. OP_ALG_AS_INITFINAL);
  401. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  402. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  403. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  404. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  405. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  406. LDST_SRCDST_BYTE_CONTEXT);
  407. #ifdef DEBUG
  408. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  409. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  410. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  411. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  412. #endif
  413. result.err = 0;
  414. init_completion(&result.completion);
  415. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  416. if (!ret) {
  417. /* in progress */
  418. wait_for_completion(&result.completion);
  419. ret = result.err;
  420. #ifdef DEBUG
  421. print_hex_dump(KERN_ERR,
  422. "digested key@"__stringify(__LINE__)": ",
  423. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  424. digestsize, 1);
  425. #endif
  426. }
  427. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  428. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  429. *keylen = digestsize;
  430. kfree(desc);
  431. return ret;
  432. }
  433. static int ahash_setkey(struct crypto_ahash *ahash,
  434. const u8 *key, unsigned int keylen)
  435. {
  436. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  437. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  438. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  439. struct device *jrdev = ctx->jrdev;
  440. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  441. int digestsize = crypto_ahash_digestsize(ahash);
  442. int ret;
  443. u8 *hashed_key = NULL;
  444. #ifdef DEBUG
  445. printk(KERN_ERR "keylen %d\n", keylen);
  446. #endif
  447. if (keylen > blocksize) {
  448. hashed_key = kmalloc_array(digestsize,
  449. sizeof(*hashed_key),
  450. GFP_KERNEL | GFP_DMA);
  451. if (!hashed_key)
  452. return -ENOMEM;
  453. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  454. digestsize);
  455. if (ret)
  456. goto bad_free_key;
  457. key = hashed_key;
  458. }
  459. /* Pick class 2 key length from algorithm submask */
  460. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  461. OP_ALG_ALGSEL_SHIFT] * 2;
  462. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  463. #ifdef DEBUG
  464. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  465. ctx->split_key_len, ctx->split_key_pad_len);
  466. print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
  467. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  468. #endif
  469. ret = gen_split_hash_key(ctx, key, keylen);
  470. if (ret)
  471. goto bad_free_key;
  472. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  473. DMA_TO_DEVICE);
  474. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  475. dev_err(jrdev, "unable to map key i/o memory\n");
  476. ret = -ENOMEM;
  477. goto error_free_key;
  478. }
  479. #ifdef DEBUG
  480. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  481. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  482. ctx->split_key_pad_len, 1);
  483. #endif
  484. ret = ahash_set_sh_desc(ahash);
  485. if (ret) {
  486. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  487. DMA_TO_DEVICE);
  488. }
  489. error_free_key:
  490. kfree(hashed_key);
  491. return ret;
  492. bad_free_key:
  493. kfree(hashed_key);
  494. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  495. return -EINVAL;
  496. }
  497. /*
  498. * ahash_edesc - s/w-extended ahash descriptor
  499. * @dst_dma: physical mapped address of req->result
  500. * @sec4_sg_dma: physical mapped address of h/w link table
  501. * @src_nents: number of segments in input scatterlist
  502. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  503. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  504. * @sec4_sg: h/w link table
  505. */
  506. struct ahash_edesc {
  507. dma_addr_t dst_dma;
  508. dma_addr_t sec4_sg_dma;
  509. int src_nents;
  510. int sec4_sg_bytes;
  511. u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
  512. struct sec4_sg_entry sec4_sg[0];
  513. };
  514. static inline void ahash_unmap(struct device *dev,
  515. struct ahash_edesc *edesc,
  516. struct ahash_request *req, int dst_len)
  517. {
  518. if (edesc->src_nents)
  519. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  520. if (edesc->dst_dma)
  521. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  522. if (edesc->sec4_sg_bytes)
  523. dma_unmap_single(dev, edesc->sec4_sg_dma,
  524. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  525. }
  526. static inline void ahash_unmap_ctx(struct device *dev,
  527. struct ahash_edesc *edesc,
  528. struct ahash_request *req, int dst_len, u32 flag)
  529. {
  530. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  531. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  532. struct caam_hash_state *state = ahash_request_ctx(req);
  533. if (state->ctx_dma) {
  534. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  535. state->ctx_dma = 0;
  536. }
  537. ahash_unmap(dev, edesc, req, dst_len);
  538. }
  539. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  540. void *context)
  541. {
  542. struct ahash_request *req = context;
  543. struct ahash_edesc *edesc;
  544. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  545. int digestsize = crypto_ahash_digestsize(ahash);
  546. #ifdef DEBUG
  547. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  548. struct caam_hash_state *state = ahash_request_ctx(req);
  549. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  550. #endif
  551. edesc = (struct ahash_edesc *)((char *)desc -
  552. offsetof(struct ahash_edesc, hw_desc));
  553. if (err)
  554. caam_jr_strstatus(jrdev, err);
  555. ahash_unmap(jrdev, edesc, req, digestsize);
  556. kfree(edesc);
  557. #ifdef DEBUG
  558. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  559. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  560. ctx->ctx_len, 1);
  561. if (req->result)
  562. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  563. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  564. digestsize, 1);
  565. #endif
  566. req->base.complete(&req->base, err);
  567. }
  568. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  569. void *context)
  570. {
  571. struct ahash_request *req = context;
  572. struct ahash_edesc *edesc;
  573. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  574. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  575. #ifdef DEBUG
  576. struct caam_hash_state *state = ahash_request_ctx(req);
  577. int digestsize = crypto_ahash_digestsize(ahash);
  578. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  579. #endif
  580. edesc = (struct ahash_edesc *)((char *)desc -
  581. offsetof(struct ahash_edesc, hw_desc));
  582. if (err)
  583. caam_jr_strstatus(jrdev, err);
  584. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  585. kfree(edesc);
  586. #ifdef DEBUG
  587. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  588. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  589. ctx->ctx_len, 1);
  590. if (req->result)
  591. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  592. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  593. digestsize, 1);
  594. #endif
  595. req->base.complete(&req->base, err);
  596. }
  597. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  598. void *context)
  599. {
  600. struct ahash_request *req = context;
  601. struct ahash_edesc *edesc;
  602. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  603. int digestsize = crypto_ahash_digestsize(ahash);
  604. #ifdef DEBUG
  605. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  606. struct caam_hash_state *state = ahash_request_ctx(req);
  607. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  608. #endif
  609. edesc = (struct ahash_edesc *)((char *)desc -
  610. offsetof(struct ahash_edesc, hw_desc));
  611. if (err)
  612. caam_jr_strstatus(jrdev, err);
  613. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  614. kfree(edesc);
  615. #ifdef DEBUG
  616. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  617. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  618. ctx->ctx_len, 1);
  619. if (req->result)
  620. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  621. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  622. digestsize, 1);
  623. #endif
  624. req->base.complete(&req->base, err);
  625. }
  626. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  627. void *context)
  628. {
  629. struct ahash_request *req = context;
  630. struct ahash_edesc *edesc;
  631. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  632. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  633. #ifdef DEBUG
  634. struct caam_hash_state *state = ahash_request_ctx(req);
  635. int digestsize = crypto_ahash_digestsize(ahash);
  636. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  637. #endif
  638. edesc = (struct ahash_edesc *)((char *)desc -
  639. offsetof(struct ahash_edesc, hw_desc));
  640. if (err)
  641. caam_jr_strstatus(jrdev, err);
  642. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  643. kfree(edesc);
  644. #ifdef DEBUG
  645. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  646. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  647. ctx->ctx_len, 1);
  648. if (req->result)
  649. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  650. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  651. digestsize, 1);
  652. #endif
  653. req->base.complete(&req->base, err);
  654. }
  655. /*
  656. * Allocate an enhanced descriptor, which contains the hardware descriptor
  657. * and space for hardware scatter table containing sg_num entries.
  658. */
  659. static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
  660. int sg_num, u32 *sh_desc,
  661. dma_addr_t sh_desc_dma,
  662. gfp_t flags)
  663. {
  664. struct ahash_edesc *edesc;
  665. unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
  666. edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
  667. if (!edesc) {
  668. dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
  669. return NULL;
  670. }
  671. init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
  672. HDR_SHARE_DEFER | HDR_REVERSE);
  673. return edesc;
  674. }
  675. static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
  676. struct ahash_edesc *edesc,
  677. struct ahash_request *req, int nents,
  678. unsigned int first_sg,
  679. unsigned int first_bytes, size_t to_hash)
  680. {
  681. dma_addr_t src_dma;
  682. u32 options;
  683. if (nents > 1 || first_sg) {
  684. struct sec4_sg_entry *sg = edesc->sec4_sg;
  685. unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
  686. sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
  687. src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
  688. if (dma_mapping_error(ctx->jrdev, src_dma)) {
  689. dev_err(ctx->jrdev, "unable to map S/G table\n");
  690. return -ENOMEM;
  691. }
  692. edesc->sec4_sg_bytes = sgsize;
  693. edesc->sec4_sg_dma = src_dma;
  694. options = LDST_SGF;
  695. } else {
  696. src_dma = sg_dma_address(req->src);
  697. options = 0;
  698. }
  699. append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
  700. options);
  701. return 0;
  702. }
  703. /* submit update job descriptor */
  704. static int ahash_update_ctx(struct ahash_request *req)
  705. {
  706. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  707. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  708. struct caam_hash_state *state = ahash_request_ctx(req);
  709. struct device *jrdev = ctx->jrdev;
  710. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  711. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  712. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  713. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  714. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  715. int *next_buflen = state->current_buf ? &state->buflen_0 :
  716. &state->buflen_1, last_buflen;
  717. int in_len = *buflen + req->nbytes, to_hash;
  718. u32 *desc;
  719. int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
  720. struct ahash_edesc *edesc;
  721. int ret = 0;
  722. last_buflen = *next_buflen;
  723. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  724. to_hash = in_len - *next_buflen;
  725. if (to_hash) {
  726. src_nents = sg_nents_for_len(req->src,
  727. req->nbytes - (*next_buflen));
  728. if (src_nents < 0) {
  729. dev_err(jrdev, "Invalid number of src SG.\n");
  730. return src_nents;
  731. }
  732. if (src_nents) {
  733. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  734. DMA_TO_DEVICE);
  735. if (!mapped_nents) {
  736. dev_err(jrdev, "unable to DMA map source\n");
  737. return -ENOMEM;
  738. }
  739. } else {
  740. mapped_nents = 0;
  741. }
  742. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  743. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  744. sizeof(struct sec4_sg_entry);
  745. /*
  746. * allocate space for base edesc and hw desc commands,
  747. * link tables
  748. */
  749. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  750. ctx->sh_desc_update,
  751. ctx->sh_desc_update_dma, flags);
  752. if (!edesc) {
  753. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  754. return -ENOMEM;
  755. }
  756. edesc->src_nents = src_nents;
  757. edesc->sec4_sg_bytes = sec4_sg_bytes;
  758. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  759. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  760. if (ret)
  761. goto unmap_ctx;
  762. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  763. edesc->sec4_sg + 1,
  764. buf, state->buf_dma,
  765. *buflen, last_buflen);
  766. if (mapped_nents) {
  767. sg_to_sec4_sg_last(req->src, mapped_nents,
  768. edesc->sec4_sg + sec4_sg_src_index,
  769. 0);
  770. if (*next_buflen)
  771. scatterwalk_map_and_copy(next_buf, req->src,
  772. to_hash - *buflen,
  773. *next_buflen, 0);
  774. } else {
  775. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  776. cpu_to_caam32(SEC4_SG_LEN_FIN);
  777. }
  778. state->current_buf = !state->current_buf;
  779. desc = edesc->hw_desc;
  780. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  781. sec4_sg_bytes,
  782. DMA_TO_DEVICE);
  783. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  784. dev_err(jrdev, "unable to map S/G table\n");
  785. ret = -ENOMEM;
  786. goto unmap_ctx;
  787. }
  788. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  789. to_hash, LDST_SGF);
  790. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  791. #ifdef DEBUG
  792. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  793. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  794. desc_bytes(desc), 1);
  795. #endif
  796. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  797. if (ret)
  798. goto unmap_ctx;
  799. ret = -EINPROGRESS;
  800. } else if (*next_buflen) {
  801. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  802. req->nbytes, 0);
  803. *buflen = *next_buflen;
  804. *next_buflen = last_buflen;
  805. }
  806. #ifdef DEBUG
  807. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  808. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  809. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  810. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  811. *next_buflen, 1);
  812. #endif
  813. return ret;
  814. unmap_ctx:
  815. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  816. kfree(edesc);
  817. return ret;
  818. }
  819. static int ahash_final_ctx(struct ahash_request *req)
  820. {
  821. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  822. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  823. struct caam_hash_state *state = ahash_request_ctx(req);
  824. struct device *jrdev = ctx->jrdev;
  825. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  826. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  827. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  828. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  829. int last_buflen = state->current_buf ? state->buflen_0 :
  830. state->buflen_1;
  831. u32 *desc;
  832. int sec4_sg_bytes, sec4_sg_src_index;
  833. int digestsize = crypto_ahash_digestsize(ahash);
  834. struct ahash_edesc *edesc;
  835. int ret;
  836. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  837. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  838. /* allocate space for base edesc and hw desc commands, link tables */
  839. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
  840. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  841. flags);
  842. if (!edesc)
  843. return -ENOMEM;
  844. desc = edesc->hw_desc;
  845. edesc->sec4_sg_bytes = sec4_sg_bytes;
  846. edesc->src_nents = 0;
  847. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  848. edesc->sec4_sg, DMA_TO_DEVICE);
  849. if (ret)
  850. goto unmap_ctx;
  851. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  852. buf, state->buf_dma, buflen,
  853. last_buflen);
  854. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  855. cpu_to_caam32(SEC4_SG_LEN_FIN);
  856. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  857. sec4_sg_bytes, DMA_TO_DEVICE);
  858. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  859. dev_err(jrdev, "unable to map S/G table\n");
  860. ret = -ENOMEM;
  861. goto unmap_ctx;
  862. }
  863. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  864. LDST_SGF);
  865. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  866. digestsize);
  867. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  868. dev_err(jrdev, "unable to map dst\n");
  869. ret = -ENOMEM;
  870. goto unmap_ctx;
  871. }
  872. #ifdef DEBUG
  873. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  874. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  875. #endif
  876. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  877. if (ret)
  878. goto unmap_ctx;
  879. return -EINPROGRESS;
  880. unmap_ctx:
  881. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  882. kfree(edesc);
  883. return ret;
  884. }
  885. static int ahash_finup_ctx(struct ahash_request *req)
  886. {
  887. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  888. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  889. struct caam_hash_state *state = ahash_request_ctx(req);
  890. struct device *jrdev = ctx->jrdev;
  891. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  892. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  893. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  894. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  895. int last_buflen = state->current_buf ? state->buflen_0 :
  896. state->buflen_1;
  897. u32 *desc;
  898. int sec4_sg_src_index;
  899. int src_nents, mapped_nents;
  900. int digestsize = crypto_ahash_digestsize(ahash);
  901. struct ahash_edesc *edesc;
  902. int ret;
  903. src_nents = sg_nents_for_len(req->src, req->nbytes);
  904. if (src_nents < 0) {
  905. dev_err(jrdev, "Invalid number of src SG.\n");
  906. return src_nents;
  907. }
  908. if (src_nents) {
  909. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  910. DMA_TO_DEVICE);
  911. if (!mapped_nents) {
  912. dev_err(jrdev, "unable to DMA map source\n");
  913. return -ENOMEM;
  914. }
  915. } else {
  916. mapped_nents = 0;
  917. }
  918. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  919. /* allocate space for base edesc and hw desc commands, link tables */
  920. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  921. ctx->sh_desc_finup, ctx->sh_desc_finup_dma,
  922. flags);
  923. if (!edesc) {
  924. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  925. return -ENOMEM;
  926. }
  927. desc = edesc->hw_desc;
  928. edesc->src_nents = src_nents;
  929. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  930. edesc->sec4_sg, DMA_TO_DEVICE);
  931. if (ret)
  932. goto unmap_ctx;
  933. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  934. buf, state->buf_dma, buflen,
  935. last_buflen);
  936. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
  937. sec4_sg_src_index, ctx->ctx_len + buflen,
  938. req->nbytes);
  939. if (ret)
  940. goto unmap_ctx;
  941. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  942. digestsize);
  943. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  944. dev_err(jrdev, "unable to map dst\n");
  945. ret = -ENOMEM;
  946. goto unmap_ctx;
  947. }
  948. #ifdef DEBUG
  949. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  950. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  951. #endif
  952. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  953. if (ret)
  954. goto unmap_ctx;
  955. return -EINPROGRESS;
  956. unmap_ctx:
  957. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  958. kfree(edesc);
  959. return ret;
  960. }
  961. static int ahash_digest(struct ahash_request *req)
  962. {
  963. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  964. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  965. struct device *jrdev = ctx->jrdev;
  966. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  967. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  968. u32 *desc;
  969. int digestsize = crypto_ahash_digestsize(ahash);
  970. int src_nents, mapped_nents;
  971. struct ahash_edesc *edesc;
  972. int ret;
  973. src_nents = sg_nents_for_len(req->src, req->nbytes);
  974. if (src_nents < 0) {
  975. dev_err(jrdev, "Invalid number of src SG.\n");
  976. return src_nents;
  977. }
  978. if (src_nents) {
  979. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  980. DMA_TO_DEVICE);
  981. if (!mapped_nents) {
  982. dev_err(jrdev, "unable to map source for DMA\n");
  983. return -ENOMEM;
  984. }
  985. } else {
  986. mapped_nents = 0;
  987. }
  988. /* allocate space for base edesc and hw desc commands, link tables */
  989. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
  990. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  991. flags);
  992. if (!edesc) {
  993. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  994. return -ENOMEM;
  995. }
  996. edesc->src_nents = src_nents;
  997. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  998. req->nbytes);
  999. if (ret) {
  1000. ahash_unmap(jrdev, edesc, req, digestsize);
  1001. kfree(edesc);
  1002. return ret;
  1003. }
  1004. desc = edesc->hw_desc;
  1005. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1006. digestsize);
  1007. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1008. dev_err(jrdev, "unable to map dst\n");
  1009. ahash_unmap(jrdev, edesc, req, digestsize);
  1010. kfree(edesc);
  1011. return -ENOMEM;
  1012. }
  1013. #ifdef DEBUG
  1014. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1015. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1016. #endif
  1017. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1018. if (!ret) {
  1019. ret = -EINPROGRESS;
  1020. } else {
  1021. ahash_unmap(jrdev, edesc, req, digestsize);
  1022. kfree(edesc);
  1023. }
  1024. return ret;
  1025. }
  1026. /* submit ahash final if it the first job descriptor */
  1027. static int ahash_final_no_ctx(struct ahash_request *req)
  1028. {
  1029. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1030. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1031. struct caam_hash_state *state = ahash_request_ctx(req);
  1032. struct device *jrdev = ctx->jrdev;
  1033. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1034. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1035. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1036. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1037. u32 *desc;
  1038. int digestsize = crypto_ahash_digestsize(ahash);
  1039. struct ahash_edesc *edesc;
  1040. int ret;
  1041. /* allocate space for base edesc and hw desc commands, link tables */
  1042. edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
  1043. ctx->sh_desc_digest_dma, flags);
  1044. if (!edesc)
  1045. return -ENOMEM;
  1046. desc = edesc->hw_desc;
  1047. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  1048. if (dma_mapping_error(jrdev, state->buf_dma)) {
  1049. dev_err(jrdev, "unable to map src\n");
  1050. goto unmap;
  1051. }
  1052. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  1053. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1054. digestsize);
  1055. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1056. dev_err(jrdev, "unable to map dst\n");
  1057. goto unmap;
  1058. }
  1059. edesc->src_nents = 0;
  1060. #ifdef DEBUG
  1061. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1062. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1063. #endif
  1064. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1065. if (!ret) {
  1066. ret = -EINPROGRESS;
  1067. } else {
  1068. ahash_unmap(jrdev, edesc, req, digestsize);
  1069. kfree(edesc);
  1070. }
  1071. return ret;
  1072. unmap:
  1073. ahash_unmap(jrdev, edesc, req, digestsize);
  1074. kfree(edesc);
  1075. return -ENOMEM;
  1076. }
  1077. /* submit ahash update if it the first job descriptor after update */
  1078. static int ahash_update_no_ctx(struct ahash_request *req)
  1079. {
  1080. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1081. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1082. struct caam_hash_state *state = ahash_request_ctx(req);
  1083. struct device *jrdev = ctx->jrdev;
  1084. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1085. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1086. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1087. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  1088. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  1089. int *next_buflen = state->current_buf ? &state->buflen_0 :
  1090. &state->buflen_1;
  1091. int in_len = *buflen + req->nbytes, to_hash;
  1092. int sec4_sg_bytes, src_nents, mapped_nents;
  1093. struct ahash_edesc *edesc;
  1094. u32 *desc;
  1095. int ret = 0;
  1096. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1097. to_hash = in_len - *next_buflen;
  1098. if (to_hash) {
  1099. src_nents = sg_nents_for_len(req->src,
  1100. req->nbytes - *next_buflen);
  1101. if (src_nents < 0) {
  1102. dev_err(jrdev, "Invalid number of src SG.\n");
  1103. return src_nents;
  1104. }
  1105. if (src_nents) {
  1106. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1107. DMA_TO_DEVICE);
  1108. if (!mapped_nents) {
  1109. dev_err(jrdev, "unable to DMA map source\n");
  1110. return -ENOMEM;
  1111. }
  1112. } else {
  1113. mapped_nents = 0;
  1114. }
  1115. sec4_sg_bytes = (1 + mapped_nents) *
  1116. sizeof(struct sec4_sg_entry);
  1117. /*
  1118. * allocate space for base edesc and hw desc commands,
  1119. * link tables
  1120. */
  1121. edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
  1122. ctx->sh_desc_update_first,
  1123. ctx->sh_desc_update_first_dma,
  1124. flags);
  1125. if (!edesc) {
  1126. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1127. return -ENOMEM;
  1128. }
  1129. edesc->src_nents = src_nents;
  1130. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1131. edesc->dst_dma = 0;
  1132. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1133. buf, *buflen);
  1134. sg_to_sec4_sg_last(req->src, mapped_nents,
  1135. edesc->sec4_sg + 1, 0);
  1136. if (*next_buflen) {
  1137. scatterwalk_map_and_copy(next_buf, req->src,
  1138. to_hash - *buflen,
  1139. *next_buflen, 0);
  1140. }
  1141. state->current_buf = !state->current_buf;
  1142. desc = edesc->hw_desc;
  1143. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1144. sec4_sg_bytes,
  1145. DMA_TO_DEVICE);
  1146. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1147. dev_err(jrdev, "unable to map S/G table\n");
  1148. ret = -ENOMEM;
  1149. goto unmap_ctx;
  1150. }
  1151. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1152. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1153. if (ret)
  1154. goto unmap_ctx;
  1155. #ifdef DEBUG
  1156. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1157. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1158. desc_bytes(desc), 1);
  1159. #endif
  1160. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1161. if (ret)
  1162. goto unmap_ctx;
  1163. ret = -EINPROGRESS;
  1164. state->update = ahash_update_ctx;
  1165. state->finup = ahash_finup_ctx;
  1166. state->final = ahash_final_ctx;
  1167. } else if (*next_buflen) {
  1168. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1169. req->nbytes, 0);
  1170. *buflen = *next_buflen;
  1171. *next_buflen = 0;
  1172. }
  1173. #ifdef DEBUG
  1174. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1175. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1176. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1177. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1178. *next_buflen, 1);
  1179. #endif
  1180. return ret;
  1181. unmap_ctx:
  1182. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1183. kfree(edesc);
  1184. return ret;
  1185. }
  1186. /* submit ahash finup if it the first job descriptor after update */
  1187. static int ahash_finup_no_ctx(struct ahash_request *req)
  1188. {
  1189. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1190. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1191. struct caam_hash_state *state = ahash_request_ctx(req);
  1192. struct device *jrdev = ctx->jrdev;
  1193. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1194. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1195. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1196. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1197. int last_buflen = state->current_buf ? state->buflen_0 :
  1198. state->buflen_1;
  1199. u32 *desc;
  1200. int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
  1201. int digestsize = crypto_ahash_digestsize(ahash);
  1202. struct ahash_edesc *edesc;
  1203. int ret;
  1204. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1205. if (src_nents < 0) {
  1206. dev_err(jrdev, "Invalid number of src SG.\n");
  1207. return src_nents;
  1208. }
  1209. if (src_nents) {
  1210. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1211. DMA_TO_DEVICE);
  1212. if (!mapped_nents) {
  1213. dev_err(jrdev, "unable to DMA map source\n");
  1214. return -ENOMEM;
  1215. }
  1216. } else {
  1217. mapped_nents = 0;
  1218. }
  1219. sec4_sg_src_index = 2;
  1220. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  1221. sizeof(struct sec4_sg_entry);
  1222. /* allocate space for base edesc and hw desc commands, link tables */
  1223. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  1224. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  1225. flags);
  1226. if (!edesc) {
  1227. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1228. return -ENOMEM;
  1229. }
  1230. desc = edesc->hw_desc;
  1231. edesc->src_nents = src_nents;
  1232. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1233. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1234. state->buf_dma, buflen,
  1235. last_buflen);
  1236. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
  1237. req->nbytes);
  1238. if (ret) {
  1239. dev_err(jrdev, "unable to map S/G table\n");
  1240. goto unmap;
  1241. }
  1242. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1243. digestsize);
  1244. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1245. dev_err(jrdev, "unable to map dst\n");
  1246. goto unmap;
  1247. }
  1248. #ifdef DEBUG
  1249. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1250. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1251. #endif
  1252. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1253. if (!ret) {
  1254. ret = -EINPROGRESS;
  1255. } else {
  1256. ahash_unmap(jrdev, edesc, req, digestsize);
  1257. kfree(edesc);
  1258. }
  1259. return ret;
  1260. unmap:
  1261. ahash_unmap(jrdev, edesc, req, digestsize);
  1262. kfree(edesc);
  1263. return -ENOMEM;
  1264. }
  1265. /* submit first update job descriptor after init */
  1266. static int ahash_update_first(struct ahash_request *req)
  1267. {
  1268. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1269. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1270. struct caam_hash_state *state = ahash_request_ctx(req);
  1271. struct device *jrdev = ctx->jrdev;
  1272. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1273. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1274. u8 *next_buf = state->current_buf ? state->buf_1 : state->buf_0;
  1275. int *next_buflen = state->current_buf ?
  1276. &state->buflen_1 : &state->buflen_0;
  1277. int to_hash;
  1278. u32 *desc;
  1279. int src_nents, mapped_nents;
  1280. struct ahash_edesc *edesc;
  1281. int ret = 0;
  1282. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1283. 1);
  1284. to_hash = req->nbytes - *next_buflen;
  1285. if (to_hash) {
  1286. src_nents = sg_nents_for_len(req->src,
  1287. req->nbytes - *next_buflen);
  1288. if (src_nents < 0) {
  1289. dev_err(jrdev, "Invalid number of src SG.\n");
  1290. return src_nents;
  1291. }
  1292. if (src_nents) {
  1293. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1294. DMA_TO_DEVICE);
  1295. if (!mapped_nents) {
  1296. dev_err(jrdev, "unable to map source for DMA\n");
  1297. return -ENOMEM;
  1298. }
  1299. } else {
  1300. mapped_nents = 0;
  1301. }
  1302. /*
  1303. * allocate space for base edesc and hw desc commands,
  1304. * link tables
  1305. */
  1306. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
  1307. mapped_nents : 0,
  1308. ctx->sh_desc_update_first,
  1309. ctx->sh_desc_update_first_dma,
  1310. flags);
  1311. if (!edesc) {
  1312. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1313. return -ENOMEM;
  1314. }
  1315. edesc->src_nents = src_nents;
  1316. edesc->dst_dma = 0;
  1317. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  1318. to_hash);
  1319. if (ret)
  1320. goto unmap_ctx;
  1321. if (*next_buflen)
  1322. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1323. *next_buflen, 0);
  1324. desc = edesc->hw_desc;
  1325. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1326. if (ret)
  1327. goto unmap_ctx;
  1328. #ifdef DEBUG
  1329. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1330. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1331. desc_bytes(desc), 1);
  1332. #endif
  1333. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1334. if (ret)
  1335. goto unmap_ctx;
  1336. ret = -EINPROGRESS;
  1337. state->update = ahash_update_ctx;
  1338. state->finup = ahash_finup_ctx;
  1339. state->final = ahash_final_ctx;
  1340. } else if (*next_buflen) {
  1341. state->update = ahash_update_no_ctx;
  1342. state->finup = ahash_finup_no_ctx;
  1343. state->final = ahash_final_no_ctx;
  1344. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1345. req->nbytes, 0);
  1346. }
  1347. #ifdef DEBUG
  1348. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1349. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1350. *next_buflen, 1);
  1351. #endif
  1352. return ret;
  1353. unmap_ctx:
  1354. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1355. kfree(edesc);
  1356. return ret;
  1357. }
  1358. static int ahash_finup_first(struct ahash_request *req)
  1359. {
  1360. return ahash_digest(req);
  1361. }
  1362. static int ahash_init(struct ahash_request *req)
  1363. {
  1364. struct caam_hash_state *state = ahash_request_ctx(req);
  1365. state->update = ahash_update_first;
  1366. state->finup = ahash_finup_first;
  1367. state->final = ahash_final_no_ctx;
  1368. state->ctx_dma = 0;
  1369. state->current_buf = 0;
  1370. state->buf_dma = 0;
  1371. state->buflen_0 = 0;
  1372. state->buflen_1 = 0;
  1373. return 0;
  1374. }
  1375. static int ahash_update(struct ahash_request *req)
  1376. {
  1377. struct caam_hash_state *state = ahash_request_ctx(req);
  1378. return state->update(req);
  1379. }
  1380. static int ahash_finup(struct ahash_request *req)
  1381. {
  1382. struct caam_hash_state *state = ahash_request_ctx(req);
  1383. return state->finup(req);
  1384. }
  1385. static int ahash_final(struct ahash_request *req)
  1386. {
  1387. struct caam_hash_state *state = ahash_request_ctx(req);
  1388. return state->final(req);
  1389. }
  1390. static int ahash_export(struct ahash_request *req, void *out)
  1391. {
  1392. struct caam_hash_state *state = ahash_request_ctx(req);
  1393. struct caam_export_state *export = out;
  1394. int len;
  1395. u8 *buf;
  1396. if (state->current_buf) {
  1397. buf = state->buf_1;
  1398. len = state->buflen_1;
  1399. } else {
  1400. buf = state->buf_0;
  1401. len = state->buflen_0;
  1402. }
  1403. memcpy(export->buf, buf, len);
  1404. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1405. export->buflen = len;
  1406. export->update = state->update;
  1407. export->final = state->final;
  1408. export->finup = state->finup;
  1409. return 0;
  1410. }
  1411. static int ahash_import(struct ahash_request *req, const void *in)
  1412. {
  1413. struct caam_hash_state *state = ahash_request_ctx(req);
  1414. const struct caam_export_state *export = in;
  1415. memset(state, 0, sizeof(*state));
  1416. memcpy(state->buf_0, export->buf, export->buflen);
  1417. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1418. state->buflen_0 = export->buflen;
  1419. state->update = export->update;
  1420. state->final = export->final;
  1421. state->finup = export->finup;
  1422. return 0;
  1423. }
  1424. struct caam_hash_template {
  1425. char name[CRYPTO_MAX_ALG_NAME];
  1426. char driver_name[CRYPTO_MAX_ALG_NAME];
  1427. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1428. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1429. unsigned int blocksize;
  1430. struct ahash_alg template_ahash;
  1431. u32 alg_type;
  1432. u32 alg_op;
  1433. };
  1434. /* ahash descriptors */
  1435. static struct caam_hash_template driver_hash[] = {
  1436. {
  1437. .name = "sha1",
  1438. .driver_name = "sha1-caam",
  1439. .hmac_name = "hmac(sha1)",
  1440. .hmac_driver_name = "hmac-sha1-caam",
  1441. .blocksize = SHA1_BLOCK_SIZE,
  1442. .template_ahash = {
  1443. .init = ahash_init,
  1444. .update = ahash_update,
  1445. .final = ahash_final,
  1446. .finup = ahash_finup,
  1447. .digest = ahash_digest,
  1448. .export = ahash_export,
  1449. .import = ahash_import,
  1450. .setkey = ahash_setkey,
  1451. .halg = {
  1452. .digestsize = SHA1_DIGEST_SIZE,
  1453. .statesize = sizeof(struct caam_export_state),
  1454. },
  1455. },
  1456. .alg_type = OP_ALG_ALGSEL_SHA1,
  1457. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1458. }, {
  1459. .name = "sha224",
  1460. .driver_name = "sha224-caam",
  1461. .hmac_name = "hmac(sha224)",
  1462. .hmac_driver_name = "hmac-sha224-caam",
  1463. .blocksize = SHA224_BLOCK_SIZE,
  1464. .template_ahash = {
  1465. .init = ahash_init,
  1466. .update = ahash_update,
  1467. .final = ahash_final,
  1468. .finup = ahash_finup,
  1469. .digest = ahash_digest,
  1470. .export = ahash_export,
  1471. .import = ahash_import,
  1472. .setkey = ahash_setkey,
  1473. .halg = {
  1474. .digestsize = SHA224_DIGEST_SIZE,
  1475. .statesize = sizeof(struct caam_export_state),
  1476. },
  1477. },
  1478. .alg_type = OP_ALG_ALGSEL_SHA224,
  1479. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1480. }, {
  1481. .name = "sha256",
  1482. .driver_name = "sha256-caam",
  1483. .hmac_name = "hmac(sha256)",
  1484. .hmac_driver_name = "hmac-sha256-caam",
  1485. .blocksize = SHA256_BLOCK_SIZE,
  1486. .template_ahash = {
  1487. .init = ahash_init,
  1488. .update = ahash_update,
  1489. .final = ahash_final,
  1490. .finup = ahash_finup,
  1491. .digest = ahash_digest,
  1492. .export = ahash_export,
  1493. .import = ahash_import,
  1494. .setkey = ahash_setkey,
  1495. .halg = {
  1496. .digestsize = SHA256_DIGEST_SIZE,
  1497. .statesize = sizeof(struct caam_export_state),
  1498. },
  1499. },
  1500. .alg_type = OP_ALG_ALGSEL_SHA256,
  1501. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1502. }, {
  1503. .name = "sha384",
  1504. .driver_name = "sha384-caam",
  1505. .hmac_name = "hmac(sha384)",
  1506. .hmac_driver_name = "hmac-sha384-caam",
  1507. .blocksize = SHA384_BLOCK_SIZE,
  1508. .template_ahash = {
  1509. .init = ahash_init,
  1510. .update = ahash_update,
  1511. .final = ahash_final,
  1512. .finup = ahash_finup,
  1513. .digest = ahash_digest,
  1514. .export = ahash_export,
  1515. .import = ahash_import,
  1516. .setkey = ahash_setkey,
  1517. .halg = {
  1518. .digestsize = SHA384_DIGEST_SIZE,
  1519. .statesize = sizeof(struct caam_export_state),
  1520. },
  1521. },
  1522. .alg_type = OP_ALG_ALGSEL_SHA384,
  1523. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1524. }, {
  1525. .name = "sha512",
  1526. .driver_name = "sha512-caam",
  1527. .hmac_name = "hmac(sha512)",
  1528. .hmac_driver_name = "hmac-sha512-caam",
  1529. .blocksize = SHA512_BLOCK_SIZE,
  1530. .template_ahash = {
  1531. .init = ahash_init,
  1532. .update = ahash_update,
  1533. .final = ahash_final,
  1534. .finup = ahash_finup,
  1535. .digest = ahash_digest,
  1536. .export = ahash_export,
  1537. .import = ahash_import,
  1538. .setkey = ahash_setkey,
  1539. .halg = {
  1540. .digestsize = SHA512_DIGEST_SIZE,
  1541. .statesize = sizeof(struct caam_export_state),
  1542. },
  1543. },
  1544. .alg_type = OP_ALG_ALGSEL_SHA512,
  1545. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1546. }, {
  1547. .name = "md5",
  1548. .driver_name = "md5-caam",
  1549. .hmac_name = "hmac(md5)",
  1550. .hmac_driver_name = "hmac-md5-caam",
  1551. .blocksize = MD5_BLOCK_WORDS * 4,
  1552. .template_ahash = {
  1553. .init = ahash_init,
  1554. .update = ahash_update,
  1555. .final = ahash_final,
  1556. .finup = ahash_finup,
  1557. .digest = ahash_digest,
  1558. .export = ahash_export,
  1559. .import = ahash_import,
  1560. .setkey = ahash_setkey,
  1561. .halg = {
  1562. .digestsize = MD5_DIGEST_SIZE,
  1563. .statesize = sizeof(struct caam_export_state),
  1564. },
  1565. },
  1566. .alg_type = OP_ALG_ALGSEL_MD5,
  1567. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1568. },
  1569. };
  1570. struct caam_hash_alg {
  1571. struct list_head entry;
  1572. int alg_type;
  1573. int alg_op;
  1574. struct ahash_alg ahash_alg;
  1575. };
  1576. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1577. {
  1578. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1579. struct crypto_alg *base = tfm->__crt_alg;
  1580. struct hash_alg_common *halg =
  1581. container_of(base, struct hash_alg_common, base);
  1582. struct ahash_alg *alg =
  1583. container_of(halg, struct ahash_alg, halg);
  1584. struct caam_hash_alg *caam_hash =
  1585. container_of(alg, struct caam_hash_alg, ahash_alg);
  1586. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1587. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1588. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1589. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1590. HASH_MSG_LEN + 32,
  1591. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1592. HASH_MSG_LEN + 64,
  1593. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1594. /*
  1595. * Get a Job ring from Job Ring driver to ensure in-order
  1596. * crypto request processing per tfm
  1597. */
  1598. ctx->jrdev = caam_jr_alloc();
  1599. if (IS_ERR(ctx->jrdev)) {
  1600. pr_err("Job Ring Device allocation for transform failed\n");
  1601. return PTR_ERR(ctx->jrdev);
  1602. }
  1603. /* copy descriptor header template value */
  1604. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1605. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1606. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1607. OP_ALG_ALGSEL_SHIFT];
  1608. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1609. sizeof(struct caam_hash_state));
  1610. return ahash_set_sh_desc(ahash);
  1611. }
  1612. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1613. {
  1614. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1615. if (ctx->sh_desc_update_dma &&
  1616. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1617. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1618. desc_bytes(ctx->sh_desc_update),
  1619. DMA_TO_DEVICE);
  1620. if (ctx->sh_desc_update_first_dma &&
  1621. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1622. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1623. desc_bytes(ctx->sh_desc_update_first),
  1624. DMA_TO_DEVICE);
  1625. if (ctx->sh_desc_fin_dma &&
  1626. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1627. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1628. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1629. if (ctx->sh_desc_digest_dma &&
  1630. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1631. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1632. desc_bytes(ctx->sh_desc_digest),
  1633. DMA_TO_DEVICE);
  1634. if (ctx->sh_desc_finup_dma &&
  1635. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1636. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1637. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1638. caam_jr_free(ctx->jrdev);
  1639. }
  1640. static void __exit caam_algapi_hash_exit(void)
  1641. {
  1642. struct caam_hash_alg *t_alg, *n;
  1643. if (!hash_list.next)
  1644. return;
  1645. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1646. crypto_unregister_ahash(&t_alg->ahash_alg);
  1647. list_del(&t_alg->entry);
  1648. kfree(t_alg);
  1649. }
  1650. }
  1651. static struct caam_hash_alg *
  1652. caam_hash_alloc(struct caam_hash_template *template,
  1653. bool keyed)
  1654. {
  1655. struct caam_hash_alg *t_alg;
  1656. struct ahash_alg *halg;
  1657. struct crypto_alg *alg;
  1658. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1659. if (!t_alg) {
  1660. pr_err("failed to allocate t_alg\n");
  1661. return ERR_PTR(-ENOMEM);
  1662. }
  1663. t_alg->ahash_alg = template->template_ahash;
  1664. halg = &t_alg->ahash_alg;
  1665. alg = &halg->halg.base;
  1666. if (keyed) {
  1667. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1668. template->hmac_name);
  1669. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1670. template->hmac_driver_name);
  1671. } else {
  1672. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1673. template->name);
  1674. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1675. template->driver_name);
  1676. t_alg->ahash_alg.setkey = NULL;
  1677. }
  1678. alg->cra_module = THIS_MODULE;
  1679. alg->cra_init = caam_hash_cra_init;
  1680. alg->cra_exit = caam_hash_cra_exit;
  1681. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1682. alg->cra_priority = CAAM_CRA_PRIORITY;
  1683. alg->cra_blocksize = template->blocksize;
  1684. alg->cra_alignmask = 0;
  1685. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1686. alg->cra_type = &crypto_ahash_type;
  1687. t_alg->alg_type = template->alg_type;
  1688. t_alg->alg_op = template->alg_op;
  1689. return t_alg;
  1690. }
  1691. static int __init caam_algapi_hash_init(void)
  1692. {
  1693. struct device_node *dev_node;
  1694. struct platform_device *pdev;
  1695. struct device *ctrldev;
  1696. int i = 0, err = 0;
  1697. struct caam_drv_private *priv;
  1698. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1699. u32 cha_inst, cha_vid;
  1700. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1701. if (!dev_node) {
  1702. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1703. if (!dev_node)
  1704. return -ENODEV;
  1705. }
  1706. pdev = of_find_device_by_node(dev_node);
  1707. if (!pdev) {
  1708. of_node_put(dev_node);
  1709. return -ENODEV;
  1710. }
  1711. ctrldev = &pdev->dev;
  1712. priv = dev_get_drvdata(ctrldev);
  1713. of_node_put(dev_node);
  1714. /*
  1715. * If priv is NULL, it's probably because the caam driver wasn't
  1716. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1717. */
  1718. if (!priv)
  1719. return -ENODEV;
  1720. /*
  1721. * Register crypto algorithms the device supports. First, identify
  1722. * presence and attributes of MD block.
  1723. */
  1724. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1725. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1726. /*
  1727. * Skip registration of any hashing algorithms if MD block
  1728. * is not present.
  1729. */
  1730. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1731. return -ENODEV;
  1732. /* Limit digest size based on LP256 */
  1733. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1734. md_limit = SHA256_DIGEST_SIZE;
  1735. INIT_LIST_HEAD(&hash_list);
  1736. /* register crypto algorithms the device supports */
  1737. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1738. struct caam_hash_alg *t_alg;
  1739. struct caam_hash_template *alg = driver_hash + i;
  1740. /* If MD size is not supported by device, skip registration */
  1741. if (alg->template_ahash.halg.digestsize > md_limit)
  1742. continue;
  1743. /* register hmac version */
  1744. t_alg = caam_hash_alloc(alg, true);
  1745. if (IS_ERR(t_alg)) {
  1746. err = PTR_ERR(t_alg);
  1747. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1748. continue;
  1749. }
  1750. err = crypto_register_ahash(&t_alg->ahash_alg);
  1751. if (err) {
  1752. pr_warn("%s alg registration failed: %d\n",
  1753. t_alg->ahash_alg.halg.base.cra_driver_name,
  1754. err);
  1755. kfree(t_alg);
  1756. } else
  1757. list_add_tail(&t_alg->entry, &hash_list);
  1758. /* register unkeyed version */
  1759. t_alg = caam_hash_alloc(alg, false);
  1760. if (IS_ERR(t_alg)) {
  1761. err = PTR_ERR(t_alg);
  1762. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1763. continue;
  1764. }
  1765. err = crypto_register_ahash(&t_alg->ahash_alg);
  1766. if (err) {
  1767. pr_warn("%s alg registration failed: %d\n",
  1768. t_alg->ahash_alg.halg.base.cra_driver_name,
  1769. err);
  1770. kfree(t_alg);
  1771. } else
  1772. list_add_tail(&t_alg->entry, &hash_list);
  1773. }
  1774. return err;
  1775. }
  1776. module_init(caam_algapi_hash_init);
  1777. module_exit(caam_algapi_hash_exit);
  1778. MODULE_LICENSE("GPL");
  1779. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1780. MODULE_AUTHOR("Freescale Semiconductor - NMG");