timer-stm32.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. /*
  2. * Copyright (C) Maxime Coquelin 2015
  3. * Author: Maxime Coquelin <mcoquelin.stm32@gmail.com>
  4. * License terms: GNU General Public License (GPL), version 2
  5. *
  6. * Inspired by time-efm32.c from Uwe Kleine-Koenig
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/irq.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/of.h>
  14. #include <linux/of_address.h>
  15. #include <linux/of_irq.h>
  16. #include <linux/clk.h>
  17. #include <linux/reset.h>
  18. #define TIM_CR1 0x00
  19. #define TIM_DIER 0x0c
  20. #define TIM_SR 0x10
  21. #define TIM_EGR 0x14
  22. #define TIM_PSC 0x28
  23. #define TIM_ARR 0x2c
  24. #define TIM_CR1_CEN BIT(0)
  25. #define TIM_CR1_OPM BIT(3)
  26. #define TIM_CR1_ARPE BIT(7)
  27. #define TIM_DIER_UIE BIT(0)
  28. #define TIM_SR_UIF BIT(0)
  29. #define TIM_EGR_UG BIT(0)
  30. struct stm32_clock_event_ddata {
  31. struct clock_event_device evtdev;
  32. unsigned periodic_top;
  33. void __iomem *base;
  34. };
  35. static int stm32_clock_event_shutdown(struct clock_event_device *evtdev)
  36. {
  37. struct stm32_clock_event_ddata *data =
  38. container_of(evtdev, struct stm32_clock_event_ddata, evtdev);
  39. void *base = data->base;
  40. writel_relaxed(0, base + TIM_CR1);
  41. return 0;
  42. }
  43. static int stm32_clock_event_set_periodic(struct clock_event_device *evtdev)
  44. {
  45. struct stm32_clock_event_ddata *data =
  46. container_of(evtdev, struct stm32_clock_event_ddata, evtdev);
  47. void *base = data->base;
  48. writel_relaxed(data->periodic_top, base + TIM_ARR);
  49. writel_relaxed(TIM_CR1_ARPE | TIM_CR1_CEN, base + TIM_CR1);
  50. return 0;
  51. }
  52. static int stm32_clock_event_set_next_event(unsigned long evt,
  53. struct clock_event_device *evtdev)
  54. {
  55. struct stm32_clock_event_ddata *data =
  56. container_of(evtdev, struct stm32_clock_event_ddata, evtdev);
  57. writel_relaxed(evt, data->base + TIM_ARR);
  58. writel_relaxed(TIM_CR1_ARPE | TIM_CR1_OPM | TIM_CR1_CEN,
  59. data->base + TIM_CR1);
  60. return 0;
  61. }
  62. static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
  63. {
  64. struct stm32_clock_event_ddata *data = dev_id;
  65. writel_relaxed(0, data->base + TIM_SR);
  66. data->evtdev.event_handler(&data->evtdev);
  67. return IRQ_HANDLED;
  68. }
  69. static struct stm32_clock_event_ddata clock_event_ddata = {
  70. .evtdev = {
  71. .name = "stm32 clockevent",
  72. .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
  73. .set_state_shutdown = stm32_clock_event_shutdown,
  74. .set_state_periodic = stm32_clock_event_set_periodic,
  75. .set_state_oneshot = stm32_clock_event_shutdown,
  76. .tick_resume = stm32_clock_event_shutdown,
  77. .set_next_event = stm32_clock_event_set_next_event,
  78. .rating = 200,
  79. },
  80. };
  81. static int __init stm32_clockevent_init(struct device_node *np)
  82. {
  83. struct stm32_clock_event_ddata *data = &clock_event_ddata;
  84. struct clk *clk;
  85. struct reset_control *rstc;
  86. unsigned long rate, max_delta;
  87. int irq, ret, bits, prescaler = 1;
  88. clk = of_clk_get(np, 0);
  89. if (IS_ERR(clk)) {
  90. ret = PTR_ERR(clk);
  91. pr_err("failed to get clock for clockevent (%d)\n", ret);
  92. goto err_clk_get;
  93. }
  94. ret = clk_prepare_enable(clk);
  95. if (ret) {
  96. pr_err("failed to enable timer clock for clockevent (%d)\n",
  97. ret);
  98. goto err_clk_enable;
  99. }
  100. rate = clk_get_rate(clk);
  101. rstc = of_reset_control_get(np, NULL);
  102. if (!IS_ERR(rstc)) {
  103. reset_control_assert(rstc);
  104. reset_control_deassert(rstc);
  105. }
  106. data->base = of_iomap(np, 0);
  107. if (!data->base) {
  108. ret = -ENXIO;
  109. pr_err("failed to map registers for clockevent\n");
  110. goto err_iomap;
  111. }
  112. irq = irq_of_parse_and_map(np, 0);
  113. if (!irq) {
  114. ret = -EINVAL;
  115. pr_err("%s: failed to get irq.\n", np->full_name);
  116. goto err_get_irq;
  117. }
  118. /* Detect whether the timer is 16 or 32 bits */
  119. writel_relaxed(~0U, data->base + TIM_ARR);
  120. max_delta = readl_relaxed(data->base + TIM_ARR);
  121. if (max_delta == ~0U) {
  122. prescaler = 1;
  123. bits = 32;
  124. } else {
  125. prescaler = 1024;
  126. bits = 16;
  127. }
  128. writel_relaxed(0, data->base + TIM_ARR);
  129. writel_relaxed(prescaler - 1, data->base + TIM_PSC);
  130. writel_relaxed(TIM_EGR_UG, data->base + TIM_EGR);
  131. writel_relaxed(TIM_DIER_UIE, data->base + TIM_DIER);
  132. writel_relaxed(0, data->base + TIM_SR);
  133. data->periodic_top = DIV_ROUND_CLOSEST(rate, prescaler * HZ);
  134. clockevents_config_and_register(&data->evtdev,
  135. DIV_ROUND_CLOSEST(rate, prescaler),
  136. 0x1, max_delta);
  137. ret = request_irq(irq, stm32_clock_event_handler, IRQF_TIMER,
  138. "stm32 clockevent", data);
  139. if (ret) {
  140. pr_err("%s: failed to request irq.\n", np->full_name);
  141. goto err_get_irq;
  142. }
  143. pr_info("%s: STM32 clockevent driver initialized (%d bits)\n",
  144. np->full_name, bits);
  145. return ret;
  146. err_get_irq:
  147. iounmap(data->base);
  148. err_iomap:
  149. clk_disable_unprepare(clk);
  150. err_clk_enable:
  151. clk_put(clk);
  152. err_clk_get:
  153. return ret;
  154. }
  155. CLOCKSOURCE_OF_DECLARE(stm32, "st,stm32-timer", stm32_clockevent_init);