clk-bcm2835.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919
  1. /*
  2. * Copyright (C) 2010,2015 Broadcom
  3. * Copyright (C) 2012 Stephen Warren
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. /**
  17. * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
  18. *
  19. * The clock tree on the 2835 has several levels. There's a root
  20. * oscillator running at 19.2Mhz. After the oscillator there are 5
  21. * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  22. * and "HDMI displays". Those 5 PLLs each can divide their output to
  23. * produce up to 4 channels. Finally, there is the level of clocks to
  24. * be consumed by other hardware components (like "H264" or "HDMI
  25. * state machine"), which divide off of some subset of the PLL
  26. * channels.
  27. *
  28. * All of the clocks in the tree are exposed in the DT, because the DT
  29. * may want to make assignments of the final layer of clocks to the
  30. * PLL channels, and some components of the hardware will actually
  31. * skip layers of the tree (for example, the pixel clock comes
  32. * directly from the PLLH PIX channel without using a CM_*CTL clock
  33. * generator).
  34. */
  35. #include <linux/clk-provider.h>
  36. #include <linux/clkdev.h>
  37. #include <linux/clk.h>
  38. #include <linux/clk/bcm2835.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/module.h>
  41. #include <linux/of.h>
  42. #include <linux/platform_device.h>
  43. #include <linux/slab.h>
  44. #include <dt-bindings/clock/bcm2835.h>
  45. #define CM_PASSWORD 0x5a000000
  46. #define CM_GNRICCTL 0x000
  47. #define CM_GNRICDIV 0x004
  48. # define CM_DIV_FRAC_BITS 12
  49. # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  50. #define CM_VPUCTL 0x008
  51. #define CM_VPUDIV 0x00c
  52. #define CM_SYSCTL 0x010
  53. #define CM_SYSDIV 0x014
  54. #define CM_PERIACTL 0x018
  55. #define CM_PERIADIV 0x01c
  56. #define CM_PERIICTL 0x020
  57. #define CM_PERIIDIV 0x024
  58. #define CM_H264CTL 0x028
  59. #define CM_H264DIV 0x02c
  60. #define CM_ISPCTL 0x030
  61. #define CM_ISPDIV 0x034
  62. #define CM_V3DCTL 0x038
  63. #define CM_V3DDIV 0x03c
  64. #define CM_CAM0CTL 0x040
  65. #define CM_CAM0DIV 0x044
  66. #define CM_CAM1CTL 0x048
  67. #define CM_CAM1DIV 0x04c
  68. #define CM_CCP2CTL 0x050
  69. #define CM_CCP2DIV 0x054
  70. #define CM_DSI0ECTL 0x058
  71. #define CM_DSI0EDIV 0x05c
  72. #define CM_DSI0PCTL 0x060
  73. #define CM_DSI0PDIV 0x064
  74. #define CM_DPICTL 0x068
  75. #define CM_DPIDIV 0x06c
  76. #define CM_GP0CTL 0x070
  77. #define CM_GP0DIV 0x074
  78. #define CM_GP1CTL 0x078
  79. #define CM_GP1DIV 0x07c
  80. #define CM_GP2CTL 0x080
  81. #define CM_GP2DIV 0x084
  82. #define CM_HSMCTL 0x088
  83. #define CM_HSMDIV 0x08c
  84. #define CM_OTPCTL 0x090
  85. #define CM_OTPDIV 0x094
  86. #define CM_PCMCTL 0x098
  87. #define CM_PCMDIV 0x09c
  88. #define CM_PWMCTL 0x0a0
  89. #define CM_PWMDIV 0x0a4
  90. #define CM_SLIMCTL 0x0a8
  91. #define CM_SLIMDIV 0x0ac
  92. #define CM_SMICTL 0x0b0
  93. #define CM_SMIDIV 0x0b4
  94. /* no definition for 0x0b8 and 0x0bc */
  95. #define CM_TCNTCTL 0x0c0
  96. #define CM_TCNTDIV 0x0c4
  97. #define CM_TECCTL 0x0c8
  98. #define CM_TECDIV 0x0cc
  99. #define CM_TD0CTL 0x0d0
  100. #define CM_TD0DIV 0x0d4
  101. #define CM_TD1CTL 0x0d8
  102. #define CM_TD1DIV 0x0dc
  103. #define CM_TSENSCTL 0x0e0
  104. #define CM_TSENSDIV 0x0e4
  105. #define CM_TIMERCTL 0x0e8
  106. #define CM_TIMERDIV 0x0ec
  107. #define CM_UARTCTL 0x0f0
  108. #define CM_UARTDIV 0x0f4
  109. #define CM_VECCTL 0x0f8
  110. #define CM_VECDIV 0x0fc
  111. #define CM_PULSECTL 0x190
  112. #define CM_PULSEDIV 0x194
  113. #define CM_SDCCTL 0x1a8
  114. #define CM_SDCDIV 0x1ac
  115. #define CM_ARMCTL 0x1b0
  116. #define CM_AVEOCTL 0x1b8
  117. #define CM_AVEODIV 0x1bc
  118. #define CM_EMMCCTL 0x1c0
  119. #define CM_EMMCDIV 0x1c4
  120. /* General bits for the CM_*CTL regs */
  121. # define CM_ENABLE BIT(4)
  122. # define CM_KILL BIT(5)
  123. # define CM_GATE_BIT 6
  124. # define CM_GATE BIT(CM_GATE_BIT)
  125. # define CM_BUSY BIT(7)
  126. # define CM_BUSYD BIT(8)
  127. # define CM_FRAC BIT(9)
  128. # define CM_SRC_SHIFT 0
  129. # define CM_SRC_BITS 4
  130. # define CM_SRC_MASK 0xf
  131. # define CM_SRC_GND 0
  132. # define CM_SRC_OSC 1
  133. # define CM_SRC_TESTDEBUG0 2
  134. # define CM_SRC_TESTDEBUG1 3
  135. # define CM_SRC_PLLA_CORE 4
  136. # define CM_SRC_PLLA_PER 4
  137. # define CM_SRC_PLLC_CORE0 5
  138. # define CM_SRC_PLLC_PER 5
  139. # define CM_SRC_PLLC_CORE1 8
  140. # define CM_SRC_PLLD_CORE 6
  141. # define CM_SRC_PLLD_PER 6
  142. # define CM_SRC_PLLH_AUX 7
  143. # define CM_SRC_PLLC_CORE1 8
  144. # define CM_SRC_PLLC_CORE2 9
  145. #define CM_OSCCOUNT 0x100
  146. #define CM_PLLA 0x104
  147. # define CM_PLL_ANARST BIT(8)
  148. # define CM_PLLA_HOLDPER BIT(7)
  149. # define CM_PLLA_LOADPER BIT(6)
  150. # define CM_PLLA_HOLDCORE BIT(5)
  151. # define CM_PLLA_LOADCORE BIT(4)
  152. # define CM_PLLA_HOLDCCP2 BIT(3)
  153. # define CM_PLLA_LOADCCP2 BIT(2)
  154. # define CM_PLLA_HOLDDSI0 BIT(1)
  155. # define CM_PLLA_LOADDSI0 BIT(0)
  156. #define CM_PLLC 0x108
  157. # define CM_PLLC_HOLDPER BIT(7)
  158. # define CM_PLLC_LOADPER BIT(6)
  159. # define CM_PLLC_HOLDCORE2 BIT(5)
  160. # define CM_PLLC_LOADCORE2 BIT(4)
  161. # define CM_PLLC_HOLDCORE1 BIT(3)
  162. # define CM_PLLC_LOADCORE1 BIT(2)
  163. # define CM_PLLC_HOLDCORE0 BIT(1)
  164. # define CM_PLLC_LOADCORE0 BIT(0)
  165. #define CM_PLLD 0x10c
  166. # define CM_PLLD_HOLDPER BIT(7)
  167. # define CM_PLLD_LOADPER BIT(6)
  168. # define CM_PLLD_HOLDCORE BIT(5)
  169. # define CM_PLLD_LOADCORE BIT(4)
  170. # define CM_PLLD_HOLDDSI1 BIT(3)
  171. # define CM_PLLD_LOADDSI1 BIT(2)
  172. # define CM_PLLD_HOLDDSI0 BIT(1)
  173. # define CM_PLLD_LOADDSI0 BIT(0)
  174. #define CM_PLLH 0x110
  175. # define CM_PLLH_LOADRCAL BIT(2)
  176. # define CM_PLLH_LOADAUX BIT(1)
  177. # define CM_PLLH_LOADPIX BIT(0)
  178. #define CM_LOCK 0x114
  179. # define CM_LOCK_FLOCKH BIT(12)
  180. # define CM_LOCK_FLOCKD BIT(11)
  181. # define CM_LOCK_FLOCKC BIT(10)
  182. # define CM_LOCK_FLOCKB BIT(9)
  183. # define CM_LOCK_FLOCKA BIT(8)
  184. #define CM_EVENT 0x118
  185. #define CM_DSI1ECTL 0x158
  186. #define CM_DSI1EDIV 0x15c
  187. #define CM_DSI1PCTL 0x160
  188. #define CM_DSI1PDIV 0x164
  189. #define CM_DFTCTL 0x168
  190. #define CM_DFTDIV 0x16c
  191. #define CM_PLLB 0x170
  192. # define CM_PLLB_HOLDARM BIT(1)
  193. # define CM_PLLB_LOADARM BIT(0)
  194. #define A2W_PLLA_CTRL 0x1100
  195. #define A2W_PLLC_CTRL 0x1120
  196. #define A2W_PLLD_CTRL 0x1140
  197. #define A2W_PLLH_CTRL 0x1160
  198. #define A2W_PLLB_CTRL 0x11e0
  199. # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
  200. # define A2W_PLL_CTRL_PWRDN BIT(16)
  201. # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
  202. # define A2W_PLL_CTRL_PDIV_SHIFT 12
  203. # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
  204. # define A2W_PLL_CTRL_NDIV_SHIFT 0
  205. #define A2W_PLLA_ANA0 0x1010
  206. #define A2W_PLLC_ANA0 0x1030
  207. #define A2W_PLLD_ANA0 0x1050
  208. #define A2W_PLLH_ANA0 0x1070
  209. #define A2W_PLLB_ANA0 0x10f0
  210. #define A2W_PLL_KA_SHIFT 7
  211. #define A2W_PLL_KA_MASK GENMASK(9, 7)
  212. #define A2W_PLL_KI_SHIFT 19
  213. #define A2W_PLL_KI_MASK GENMASK(21, 19)
  214. #define A2W_PLL_KP_SHIFT 15
  215. #define A2W_PLL_KP_MASK GENMASK(18, 15)
  216. #define A2W_PLLH_KA_SHIFT 19
  217. #define A2W_PLLH_KA_MASK GENMASK(21, 19)
  218. #define A2W_PLLH_KI_LOW_SHIFT 22
  219. #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
  220. #define A2W_PLLH_KI_HIGH_SHIFT 0
  221. #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
  222. #define A2W_PLLH_KP_SHIFT 1
  223. #define A2W_PLLH_KP_MASK GENMASK(4, 1)
  224. #define A2W_XOSC_CTRL 0x1190
  225. # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
  226. # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
  227. # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
  228. # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
  229. # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
  230. # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
  231. # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
  232. # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
  233. #define A2W_PLLA_FRAC 0x1200
  234. #define A2W_PLLC_FRAC 0x1220
  235. #define A2W_PLLD_FRAC 0x1240
  236. #define A2W_PLLH_FRAC 0x1260
  237. #define A2W_PLLB_FRAC 0x12e0
  238. # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
  239. # define A2W_PLL_FRAC_BITS 20
  240. #define A2W_PLL_CHANNEL_DISABLE BIT(8)
  241. #define A2W_PLL_DIV_BITS 8
  242. #define A2W_PLL_DIV_SHIFT 0
  243. #define A2W_PLLA_DSI0 0x1300
  244. #define A2W_PLLA_CORE 0x1400
  245. #define A2W_PLLA_PER 0x1500
  246. #define A2W_PLLA_CCP2 0x1600
  247. #define A2W_PLLC_CORE2 0x1320
  248. #define A2W_PLLC_CORE1 0x1420
  249. #define A2W_PLLC_PER 0x1520
  250. #define A2W_PLLC_CORE0 0x1620
  251. #define A2W_PLLD_DSI0 0x1340
  252. #define A2W_PLLD_CORE 0x1440
  253. #define A2W_PLLD_PER 0x1540
  254. #define A2W_PLLD_DSI1 0x1640
  255. #define A2W_PLLH_AUX 0x1360
  256. #define A2W_PLLH_RCAL 0x1460
  257. #define A2W_PLLH_PIX 0x1560
  258. #define A2W_PLLH_STS 0x1660
  259. #define A2W_PLLH_CTRLR 0x1960
  260. #define A2W_PLLH_FRACR 0x1a60
  261. #define A2W_PLLH_AUXR 0x1b60
  262. #define A2W_PLLH_RCALR 0x1c60
  263. #define A2W_PLLH_PIXR 0x1d60
  264. #define A2W_PLLH_STSR 0x1e60
  265. #define A2W_PLLB_ARM 0x13e0
  266. #define A2W_PLLB_SP0 0x14e0
  267. #define A2W_PLLB_SP1 0x15e0
  268. #define A2W_PLLB_SP2 0x16e0
  269. #define LOCK_TIMEOUT_NS 100000000
  270. #define BCM2835_MAX_FB_RATE 1750000000u
  271. struct bcm2835_cprman {
  272. struct device *dev;
  273. void __iomem *regs;
  274. spinlock_t regs_lock; /* spinlock for all clocks */
  275. const char *osc_name;
  276. /* Must be last */
  277. struct clk_hw_onecell_data onecell;
  278. };
  279. static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
  280. {
  281. writel(CM_PASSWORD | val, cprman->regs + reg);
  282. }
  283. static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
  284. {
  285. return readl(cprman->regs + reg);
  286. }
  287. static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
  288. struct debugfs_reg32 *regs, size_t nregs,
  289. struct dentry *dentry)
  290. {
  291. struct dentry *regdump;
  292. struct debugfs_regset32 *regset;
  293. regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
  294. if (!regset)
  295. return -ENOMEM;
  296. regset->regs = regs;
  297. regset->nregs = nregs;
  298. regset->base = cprman->regs + base;
  299. regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
  300. regset);
  301. return regdump ? 0 : -ENOMEM;
  302. }
  303. /*
  304. * These are fixed clocks. They're probably not all root clocks and it may
  305. * be possible to turn them on and off but until this is mapped out better
  306. * it's the only way they can be used.
  307. */
  308. void __init bcm2835_init_clocks(void)
  309. {
  310. struct clk_hw *hw;
  311. int ret;
  312. hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
  313. if (IS_ERR(hw))
  314. pr_err("apb_pclk not registered\n");
  315. hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
  316. if (IS_ERR(hw))
  317. pr_err("uart0_pclk not registered\n");
  318. ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
  319. if (ret)
  320. pr_err("uart0_pclk alias not registered\n");
  321. hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
  322. if (IS_ERR(hw))
  323. pr_err("uart1_pclk not registered\n");
  324. ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
  325. if (ret)
  326. pr_err("uart1_pclk alias not registered\n");
  327. }
  328. struct bcm2835_pll_data {
  329. const char *name;
  330. u32 cm_ctrl_reg;
  331. u32 a2w_ctrl_reg;
  332. u32 frac_reg;
  333. u32 ana_reg_base;
  334. u32 reference_enable_mask;
  335. /* Bit in CM_LOCK to indicate when the PLL has locked. */
  336. u32 lock_mask;
  337. const struct bcm2835_pll_ana_bits *ana;
  338. unsigned long min_rate;
  339. unsigned long max_rate;
  340. /*
  341. * Highest rate for the VCO before we have to use the
  342. * pre-divide-by-2.
  343. */
  344. unsigned long max_fb_rate;
  345. };
  346. struct bcm2835_pll_ana_bits {
  347. u32 mask0;
  348. u32 set0;
  349. u32 mask1;
  350. u32 set1;
  351. u32 mask3;
  352. u32 set3;
  353. u32 fb_prediv_mask;
  354. };
  355. static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
  356. .mask0 = 0,
  357. .set0 = 0,
  358. .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
  359. .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
  360. .mask3 = (u32)~A2W_PLL_KA_MASK,
  361. .set3 = (2 << A2W_PLL_KA_SHIFT),
  362. .fb_prediv_mask = BIT(14),
  363. };
  364. static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
  365. .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
  366. .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
  367. .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
  368. .set1 = (6 << A2W_PLLH_KP_SHIFT),
  369. .mask3 = 0,
  370. .set3 = 0,
  371. .fb_prediv_mask = BIT(11),
  372. };
  373. struct bcm2835_pll_divider_data {
  374. const char *name;
  375. const char *source_pll;
  376. u32 cm_reg;
  377. u32 a2w_reg;
  378. u32 load_mask;
  379. u32 hold_mask;
  380. u32 fixed_divider;
  381. };
  382. struct bcm2835_clock_data {
  383. const char *name;
  384. const char *const *parents;
  385. int num_mux_parents;
  386. u32 ctl_reg;
  387. u32 div_reg;
  388. /* Number of integer bits in the divider */
  389. u32 int_bits;
  390. /* Number of fractional bits in the divider */
  391. u32 frac_bits;
  392. u32 flags;
  393. bool is_vpu_clock;
  394. bool is_mash_clock;
  395. };
  396. struct bcm2835_gate_data {
  397. const char *name;
  398. const char *parent;
  399. u32 ctl_reg;
  400. };
  401. struct bcm2835_pll {
  402. struct clk_hw hw;
  403. struct bcm2835_cprman *cprman;
  404. const struct bcm2835_pll_data *data;
  405. };
  406. static int bcm2835_pll_is_on(struct clk_hw *hw)
  407. {
  408. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  409. struct bcm2835_cprman *cprman = pll->cprman;
  410. const struct bcm2835_pll_data *data = pll->data;
  411. return cprman_read(cprman, data->a2w_ctrl_reg) &
  412. A2W_PLL_CTRL_PRST_DISABLE;
  413. }
  414. static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
  415. unsigned long parent_rate,
  416. u32 *ndiv, u32 *fdiv)
  417. {
  418. u64 div;
  419. div = (u64)rate << A2W_PLL_FRAC_BITS;
  420. do_div(div, parent_rate);
  421. *ndiv = div >> A2W_PLL_FRAC_BITS;
  422. *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
  423. }
  424. static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
  425. u32 ndiv, u32 fdiv, u32 pdiv)
  426. {
  427. u64 rate;
  428. if (pdiv == 0)
  429. return 0;
  430. rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
  431. do_div(rate, pdiv);
  432. return rate >> A2W_PLL_FRAC_BITS;
  433. }
  434. static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  435. unsigned long *parent_rate)
  436. {
  437. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  438. const struct bcm2835_pll_data *data = pll->data;
  439. u32 ndiv, fdiv;
  440. rate = clamp(rate, data->min_rate, data->max_rate);
  441. bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
  442. return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
  443. }
  444. static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
  445. unsigned long parent_rate)
  446. {
  447. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  448. struct bcm2835_cprman *cprman = pll->cprman;
  449. const struct bcm2835_pll_data *data = pll->data;
  450. u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
  451. u32 ndiv, pdiv, fdiv;
  452. bool using_prediv;
  453. if (parent_rate == 0)
  454. return 0;
  455. fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
  456. ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
  457. pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
  458. using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
  459. data->ana->fb_prediv_mask;
  460. if (using_prediv)
  461. ndiv *= 2;
  462. return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
  463. }
  464. static void bcm2835_pll_off(struct clk_hw *hw)
  465. {
  466. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  467. struct bcm2835_cprman *cprman = pll->cprman;
  468. const struct bcm2835_pll_data *data = pll->data;
  469. spin_lock(&cprman->regs_lock);
  470. cprman_write(cprman, data->cm_ctrl_reg,
  471. cprman_read(cprman, data->cm_ctrl_reg) |
  472. CM_PLL_ANARST);
  473. cprman_write(cprman, data->a2w_ctrl_reg,
  474. cprman_read(cprman, data->a2w_ctrl_reg) |
  475. A2W_PLL_CTRL_PWRDN);
  476. spin_unlock(&cprman->regs_lock);
  477. }
  478. static int bcm2835_pll_on(struct clk_hw *hw)
  479. {
  480. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  481. struct bcm2835_cprman *cprman = pll->cprman;
  482. const struct bcm2835_pll_data *data = pll->data;
  483. ktime_t timeout;
  484. cprman_write(cprman, data->a2w_ctrl_reg,
  485. cprman_read(cprman, data->a2w_ctrl_reg) &
  486. ~A2W_PLL_CTRL_PWRDN);
  487. /* Take the PLL out of reset. */
  488. cprman_write(cprman, data->cm_ctrl_reg,
  489. cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
  490. /* Wait for the PLL to lock. */
  491. timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  492. while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
  493. if (ktime_after(ktime_get(), timeout)) {
  494. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  495. clk_hw_get_name(hw));
  496. return -ETIMEDOUT;
  497. }
  498. cpu_relax();
  499. }
  500. return 0;
  501. }
  502. static void
  503. bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
  504. {
  505. int i;
  506. /*
  507. * ANA register setup is done as a series of writes to
  508. * ANA3-ANA0, in that order. This lets us write all 4
  509. * registers as a single cycle of the serdes interface (taking
  510. * 100 xosc clocks), whereas if we were to update ana0, 1, and
  511. * 3 individually through their partial-write registers, each
  512. * would be their own serdes cycle.
  513. */
  514. for (i = 3; i >= 0; i--)
  515. cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
  516. }
  517. static int bcm2835_pll_set_rate(struct clk_hw *hw,
  518. unsigned long rate, unsigned long parent_rate)
  519. {
  520. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  521. struct bcm2835_cprman *cprman = pll->cprman;
  522. const struct bcm2835_pll_data *data = pll->data;
  523. bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
  524. u32 ndiv, fdiv, a2w_ctl;
  525. u32 ana[4];
  526. int i;
  527. if (rate > data->max_fb_rate) {
  528. use_fb_prediv = true;
  529. rate /= 2;
  530. } else {
  531. use_fb_prediv = false;
  532. }
  533. bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
  534. for (i = 3; i >= 0; i--)
  535. ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
  536. was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
  537. ana[0] &= ~data->ana->mask0;
  538. ana[0] |= data->ana->set0;
  539. ana[1] &= ~data->ana->mask1;
  540. ana[1] |= data->ana->set1;
  541. ana[3] &= ~data->ana->mask3;
  542. ana[3] |= data->ana->set3;
  543. if (was_using_prediv && !use_fb_prediv) {
  544. ana[1] &= ~data->ana->fb_prediv_mask;
  545. do_ana_setup_first = true;
  546. } else if (!was_using_prediv && use_fb_prediv) {
  547. ana[1] |= data->ana->fb_prediv_mask;
  548. do_ana_setup_first = false;
  549. } else {
  550. do_ana_setup_first = true;
  551. }
  552. /* Unmask the reference clock from the oscillator. */
  553. cprman_write(cprman, A2W_XOSC_CTRL,
  554. cprman_read(cprman, A2W_XOSC_CTRL) |
  555. data->reference_enable_mask);
  556. if (do_ana_setup_first)
  557. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  558. /* Set the PLL multiplier from the oscillator. */
  559. cprman_write(cprman, data->frac_reg, fdiv);
  560. a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
  561. a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
  562. a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
  563. a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
  564. a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
  565. cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
  566. if (!do_ana_setup_first)
  567. bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
  568. return 0;
  569. }
  570. static int bcm2835_pll_debug_init(struct clk_hw *hw,
  571. struct dentry *dentry)
  572. {
  573. struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
  574. struct bcm2835_cprman *cprman = pll->cprman;
  575. const struct bcm2835_pll_data *data = pll->data;
  576. struct debugfs_reg32 *regs;
  577. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  578. if (!regs)
  579. return -ENOMEM;
  580. regs[0].name = "cm_ctrl";
  581. regs[0].offset = data->cm_ctrl_reg;
  582. regs[1].name = "a2w_ctrl";
  583. regs[1].offset = data->a2w_ctrl_reg;
  584. regs[2].name = "frac";
  585. regs[2].offset = data->frac_reg;
  586. regs[3].name = "ana0";
  587. regs[3].offset = data->ana_reg_base + 0 * 4;
  588. regs[4].name = "ana1";
  589. regs[4].offset = data->ana_reg_base + 1 * 4;
  590. regs[5].name = "ana2";
  591. regs[5].offset = data->ana_reg_base + 2 * 4;
  592. regs[6].name = "ana3";
  593. regs[6].offset = data->ana_reg_base + 3 * 4;
  594. return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
  595. }
  596. static const struct clk_ops bcm2835_pll_clk_ops = {
  597. .is_prepared = bcm2835_pll_is_on,
  598. .prepare = bcm2835_pll_on,
  599. .unprepare = bcm2835_pll_off,
  600. .recalc_rate = bcm2835_pll_get_rate,
  601. .set_rate = bcm2835_pll_set_rate,
  602. .round_rate = bcm2835_pll_round_rate,
  603. .debug_init = bcm2835_pll_debug_init,
  604. };
  605. struct bcm2835_pll_divider {
  606. struct clk_divider div;
  607. struct bcm2835_cprman *cprman;
  608. const struct bcm2835_pll_divider_data *data;
  609. };
  610. static struct bcm2835_pll_divider *
  611. bcm2835_pll_divider_from_hw(struct clk_hw *hw)
  612. {
  613. return container_of(hw, struct bcm2835_pll_divider, div.hw);
  614. }
  615. static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
  616. {
  617. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  618. struct bcm2835_cprman *cprman = divider->cprman;
  619. const struct bcm2835_pll_divider_data *data = divider->data;
  620. return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
  621. }
  622. static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
  623. unsigned long rate,
  624. unsigned long *parent_rate)
  625. {
  626. return clk_divider_ops.round_rate(hw, rate, parent_rate);
  627. }
  628. static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
  629. unsigned long parent_rate)
  630. {
  631. return clk_divider_ops.recalc_rate(hw, parent_rate);
  632. }
  633. static void bcm2835_pll_divider_off(struct clk_hw *hw)
  634. {
  635. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  636. struct bcm2835_cprman *cprman = divider->cprman;
  637. const struct bcm2835_pll_divider_data *data = divider->data;
  638. spin_lock(&cprman->regs_lock);
  639. cprman_write(cprman, data->cm_reg,
  640. (cprman_read(cprman, data->cm_reg) &
  641. ~data->load_mask) | data->hold_mask);
  642. cprman_write(cprman, data->a2w_reg,
  643. cprman_read(cprman, data->a2w_reg) |
  644. A2W_PLL_CHANNEL_DISABLE);
  645. spin_unlock(&cprman->regs_lock);
  646. }
  647. static int bcm2835_pll_divider_on(struct clk_hw *hw)
  648. {
  649. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  650. struct bcm2835_cprman *cprman = divider->cprman;
  651. const struct bcm2835_pll_divider_data *data = divider->data;
  652. spin_lock(&cprman->regs_lock);
  653. cprman_write(cprman, data->a2w_reg,
  654. cprman_read(cprman, data->a2w_reg) &
  655. ~A2W_PLL_CHANNEL_DISABLE);
  656. cprman_write(cprman, data->cm_reg,
  657. cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
  658. spin_unlock(&cprman->regs_lock);
  659. return 0;
  660. }
  661. static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
  662. unsigned long rate,
  663. unsigned long parent_rate)
  664. {
  665. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  666. struct bcm2835_cprman *cprman = divider->cprman;
  667. const struct bcm2835_pll_divider_data *data = divider->data;
  668. u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
  669. div = DIV_ROUND_UP_ULL(parent_rate, rate);
  670. div = min(div, max_div);
  671. if (div == max_div)
  672. div = 0;
  673. cprman_write(cprman, data->a2w_reg, div);
  674. cm = cprman_read(cprman, data->cm_reg);
  675. cprman_write(cprman, data->cm_reg, cm | data->load_mask);
  676. cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
  677. return 0;
  678. }
  679. static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
  680. struct dentry *dentry)
  681. {
  682. struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
  683. struct bcm2835_cprman *cprman = divider->cprman;
  684. const struct bcm2835_pll_divider_data *data = divider->data;
  685. struct debugfs_reg32 *regs;
  686. regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
  687. if (!regs)
  688. return -ENOMEM;
  689. regs[0].name = "cm";
  690. regs[0].offset = data->cm_reg;
  691. regs[1].name = "a2w";
  692. regs[1].offset = data->a2w_reg;
  693. return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
  694. }
  695. static const struct clk_ops bcm2835_pll_divider_clk_ops = {
  696. .is_prepared = bcm2835_pll_divider_is_on,
  697. .prepare = bcm2835_pll_divider_on,
  698. .unprepare = bcm2835_pll_divider_off,
  699. .recalc_rate = bcm2835_pll_divider_get_rate,
  700. .set_rate = bcm2835_pll_divider_set_rate,
  701. .round_rate = bcm2835_pll_divider_round_rate,
  702. .debug_init = bcm2835_pll_divider_debug_init,
  703. };
  704. /*
  705. * The CM dividers do fixed-point division, so we can't use the
  706. * generic integer divider code like the PLL dividers do (and we can't
  707. * fake it by having some fixed shifts preceding it in the clock tree,
  708. * because we'd run out of bits in a 32-bit unsigned long).
  709. */
  710. struct bcm2835_clock {
  711. struct clk_hw hw;
  712. struct bcm2835_cprman *cprman;
  713. const struct bcm2835_clock_data *data;
  714. };
  715. static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
  716. {
  717. return container_of(hw, struct bcm2835_clock, hw);
  718. }
  719. static int bcm2835_clock_is_on(struct clk_hw *hw)
  720. {
  721. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  722. struct bcm2835_cprman *cprman = clock->cprman;
  723. const struct bcm2835_clock_data *data = clock->data;
  724. return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
  725. }
  726. static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
  727. unsigned long rate,
  728. unsigned long parent_rate,
  729. bool round_up)
  730. {
  731. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  732. const struct bcm2835_clock_data *data = clock->data;
  733. u32 unused_frac_mask =
  734. GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
  735. u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
  736. u64 rem;
  737. u32 div, mindiv, maxdiv;
  738. rem = do_div(temp, rate);
  739. div = temp;
  740. /* Round up and mask off the unused bits */
  741. if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
  742. div += unused_frac_mask + 1;
  743. div &= ~unused_frac_mask;
  744. /* different clamping limits apply for a mash clock */
  745. if (data->is_mash_clock) {
  746. /* clamp to min divider of 2 */
  747. mindiv = 2 << CM_DIV_FRAC_BITS;
  748. /* clamp to the highest possible integer divider */
  749. maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
  750. } else {
  751. /* clamp to min divider of 1 */
  752. mindiv = 1 << CM_DIV_FRAC_BITS;
  753. /* clamp to the highest possible fractional divider */
  754. maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
  755. CM_DIV_FRAC_BITS - data->frac_bits);
  756. }
  757. /* apply the clamping limits */
  758. div = max_t(u32, div, mindiv);
  759. div = min_t(u32, div, maxdiv);
  760. return div;
  761. }
  762. static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
  763. unsigned long parent_rate,
  764. u32 div)
  765. {
  766. const struct bcm2835_clock_data *data = clock->data;
  767. u64 temp;
  768. /*
  769. * The divisor is a 12.12 fixed point field, but only some of
  770. * the bits are populated in any given clock.
  771. */
  772. div >>= CM_DIV_FRAC_BITS - data->frac_bits;
  773. div &= (1 << (data->int_bits + data->frac_bits)) - 1;
  774. if (div == 0)
  775. return 0;
  776. temp = (u64)parent_rate << data->frac_bits;
  777. do_div(temp, div);
  778. return temp;
  779. }
  780. static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
  781. unsigned long parent_rate)
  782. {
  783. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  784. struct bcm2835_cprman *cprman = clock->cprman;
  785. const struct bcm2835_clock_data *data = clock->data;
  786. u32 div = cprman_read(cprman, data->div_reg);
  787. return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
  788. }
  789. static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
  790. {
  791. struct bcm2835_cprman *cprman = clock->cprman;
  792. const struct bcm2835_clock_data *data = clock->data;
  793. ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
  794. while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
  795. if (ktime_after(ktime_get(), timeout)) {
  796. dev_err(cprman->dev, "%s: couldn't lock PLL\n",
  797. clk_hw_get_name(&clock->hw));
  798. return;
  799. }
  800. cpu_relax();
  801. }
  802. }
  803. static void bcm2835_clock_off(struct clk_hw *hw)
  804. {
  805. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  806. struct bcm2835_cprman *cprman = clock->cprman;
  807. const struct bcm2835_clock_data *data = clock->data;
  808. spin_lock(&cprman->regs_lock);
  809. cprman_write(cprman, data->ctl_reg,
  810. cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
  811. spin_unlock(&cprman->regs_lock);
  812. /* BUSY will remain high until the divider completes its cycle. */
  813. bcm2835_clock_wait_busy(clock);
  814. }
  815. static int bcm2835_clock_on(struct clk_hw *hw)
  816. {
  817. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  818. struct bcm2835_cprman *cprman = clock->cprman;
  819. const struct bcm2835_clock_data *data = clock->data;
  820. spin_lock(&cprman->regs_lock);
  821. cprman_write(cprman, data->ctl_reg,
  822. cprman_read(cprman, data->ctl_reg) |
  823. CM_ENABLE |
  824. CM_GATE);
  825. spin_unlock(&cprman->regs_lock);
  826. return 0;
  827. }
  828. static int bcm2835_clock_set_rate(struct clk_hw *hw,
  829. unsigned long rate, unsigned long parent_rate)
  830. {
  831. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  832. struct bcm2835_cprman *cprman = clock->cprman;
  833. const struct bcm2835_clock_data *data = clock->data;
  834. u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
  835. u32 ctl;
  836. spin_lock(&cprman->regs_lock);
  837. /*
  838. * Setting up frac support
  839. *
  840. * In principle it is recommended to stop/start the clock first,
  841. * but as we set CLK_SET_RATE_GATE during registration of the
  842. * clock this requirement should be take care of by the
  843. * clk-framework.
  844. */
  845. ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
  846. ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
  847. cprman_write(cprman, data->ctl_reg, ctl);
  848. cprman_write(cprman, data->div_reg, div);
  849. spin_unlock(&cprman->regs_lock);
  850. return 0;
  851. }
  852. static bool
  853. bcm2835_clk_is_pllc(struct clk_hw *hw)
  854. {
  855. if (!hw)
  856. return false;
  857. return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
  858. }
  859. static int bcm2835_clock_determine_rate(struct clk_hw *hw,
  860. struct clk_rate_request *req)
  861. {
  862. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  863. struct clk_hw *parent, *best_parent = NULL;
  864. bool current_parent_is_pllc;
  865. unsigned long rate, best_rate = 0;
  866. unsigned long prate, best_prate = 0;
  867. size_t i;
  868. u32 div;
  869. current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
  870. /*
  871. * Select parent clock that results in the closest but lower rate
  872. */
  873. for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
  874. parent = clk_hw_get_parent_by_index(hw, i);
  875. if (!parent)
  876. continue;
  877. /*
  878. * Don't choose a PLLC-derived clock as our parent
  879. * unless it had been manually set that way. PLLC's
  880. * frequency gets adjusted by the firmware due to
  881. * over-temp or under-voltage conditions, without
  882. * prior notification to our clock consumer.
  883. */
  884. if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
  885. continue;
  886. prate = clk_hw_get_rate(parent);
  887. div = bcm2835_clock_choose_div(hw, req->rate, prate, true);
  888. rate = bcm2835_clock_rate_from_divisor(clock, prate, div);
  889. if (rate > best_rate && rate <= req->rate) {
  890. best_parent = parent;
  891. best_prate = prate;
  892. best_rate = rate;
  893. }
  894. }
  895. if (!best_parent)
  896. return -EINVAL;
  897. req->best_parent_hw = best_parent;
  898. req->best_parent_rate = best_prate;
  899. req->rate = best_rate;
  900. return 0;
  901. }
  902. static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
  903. {
  904. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  905. struct bcm2835_cprman *cprman = clock->cprman;
  906. const struct bcm2835_clock_data *data = clock->data;
  907. u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
  908. cprman_write(cprman, data->ctl_reg, src);
  909. return 0;
  910. }
  911. static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
  912. {
  913. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  914. struct bcm2835_cprman *cprman = clock->cprman;
  915. const struct bcm2835_clock_data *data = clock->data;
  916. u32 src = cprman_read(cprman, data->ctl_reg);
  917. return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
  918. }
  919. static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
  920. {
  921. .name = "ctl",
  922. .offset = 0,
  923. },
  924. {
  925. .name = "div",
  926. .offset = 4,
  927. },
  928. };
  929. static int bcm2835_clock_debug_init(struct clk_hw *hw,
  930. struct dentry *dentry)
  931. {
  932. struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
  933. struct bcm2835_cprman *cprman = clock->cprman;
  934. const struct bcm2835_clock_data *data = clock->data;
  935. return bcm2835_debugfs_regset(
  936. cprman, data->ctl_reg,
  937. bcm2835_debugfs_clock_reg32,
  938. ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
  939. dentry);
  940. }
  941. static const struct clk_ops bcm2835_clock_clk_ops = {
  942. .is_prepared = bcm2835_clock_is_on,
  943. .prepare = bcm2835_clock_on,
  944. .unprepare = bcm2835_clock_off,
  945. .recalc_rate = bcm2835_clock_get_rate,
  946. .set_rate = bcm2835_clock_set_rate,
  947. .determine_rate = bcm2835_clock_determine_rate,
  948. .set_parent = bcm2835_clock_set_parent,
  949. .get_parent = bcm2835_clock_get_parent,
  950. .debug_init = bcm2835_clock_debug_init,
  951. };
  952. static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
  953. {
  954. return true;
  955. }
  956. /*
  957. * The VPU clock can never be disabled (it doesn't have an ENABLE
  958. * bit), so it gets its own set of clock ops.
  959. */
  960. static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
  961. .is_prepared = bcm2835_vpu_clock_is_on,
  962. .recalc_rate = bcm2835_clock_get_rate,
  963. .set_rate = bcm2835_clock_set_rate,
  964. .determine_rate = bcm2835_clock_determine_rate,
  965. .set_parent = bcm2835_clock_set_parent,
  966. .get_parent = bcm2835_clock_get_parent,
  967. .debug_init = bcm2835_clock_debug_init,
  968. };
  969. static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
  970. const struct bcm2835_pll_data *data)
  971. {
  972. struct bcm2835_pll *pll;
  973. struct clk_init_data init;
  974. int ret;
  975. memset(&init, 0, sizeof(init));
  976. /* All of the PLLs derive from the external oscillator. */
  977. init.parent_names = &cprman->osc_name;
  978. init.num_parents = 1;
  979. init.name = data->name;
  980. init.ops = &bcm2835_pll_clk_ops;
  981. init.flags = CLK_IGNORE_UNUSED;
  982. pll = kzalloc(sizeof(*pll), GFP_KERNEL);
  983. if (!pll)
  984. return NULL;
  985. pll->cprman = cprman;
  986. pll->data = data;
  987. pll->hw.init = &init;
  988. ret = devm_clk_hw_register(cprman->dev, &pll->hw);
  989. if (ret)
  990. return NULL;
  991. return &pll->hw;
  992. }
  993. static struct clk_hw *
  994. bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
  995. const struct bcm2835_pll_divider_data *data)
  996. {
  997. struct bcm2835_pll_divider *divider;
  998. struct clk_init_data init;
  999. const char *divider_name;
  1000. int ret;
  1001. if (data->fixed_divider != 1) {
  1002. divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
  1003. "%s_prediv", data->name);
  1004. if (!divider_name)
  1005. return NULL;
  1006. } else {
  1007. divider_name = data->name;
  1008. }
  1009. memset(&init, 0, sizeof(init));
  1010. init.parent_names = &data->source_pll;
  1011. init.num_parents = 1;
  1012. init.name = divider_name;
  1013. init.ops = &bcm2835_pll_divider_clk_ops;
  1014. init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
  1015. divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
  1016. if (!divider)
  1017. return NULL;
  1018. divider->div.reg = cprman->regs + data->a2w_reg;
  1019. divider->div.shift = A2W_PLL_DIV_SHIFT;
  1020. divider->div.width = A2W_PLL_DIV_BITS;
  1021. divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
  1022. divider->div.lock = &cprman->regs_lock;
  1023. divider->div.hw.init = &init;
  1024. divider->div.table = NULL;
  1025. divider->cprman = cprman;
  1026. divider->data = data;
  1027. ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
  1028. if (ret)
  1029. return ERR_PTR(ret);
  1030. /*
  1031. * PLLH's channels have a fixed divide by 10 afterwards, which
  1032. * is what our consumers are actually using.
  1033. */
  1034. if (data->fixed_divider != 1) {
  1035. return clk_hw_register_fixed_factor(cprman->dev, data->name,
  1036. divider_name,
  1037. CLK_SET_RATE_PARENT,
  1038. 1,
  1039. data->fixed_divider);
  1040. }
  1041. return &divider->div.hw;
  1042. }
  1043. static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
  1044. const struct bcm2835_clock_data *data)
  1045. {
  1046. struct bcm2835_clock *clock;
  1047. struct clk_init_data init;
  1048. const char *parents[1 << CM_SRC_BITS];
  1049. size_t i;
  1050. int ret;
  1051. /*
  1052. * Replace our "xosc" references with the oscillator's
  1053. * actual name.
  1054. */
  1055. for (i = 0; i < data->num_mux_parents; i++) {
  1056. if (strcmp(data->parents[i], "xosc") == 0)
  1057. parents[i] = cprman->osc_name;
  1058. else
  1059. parents[i] = data->parents[i];
  1060. }
  1061. memset(&init, 0, sizeof(init));
  1062. init.parent_names = parents;
  1063. init.num_parents = data->num_mux_parents;
  1064. init.name = data->name;
  1065. init.flags = data->flags | CLK_IGNORE_UNUSED;
  1066. if (data->is_vpu_clock) {
  1067. init.ops = &bcm2835_vpu_clock_clk_ops;
  1068. } else {
  1069. init.ops = &bcm2835_clock_clk_ops;
  1070. init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
  1071. /* If the clock wasn't actually enabled at boot, it's not
  1072. * critical.
  1073. */
  1074. if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
  1075. init.flags &= ~CLK_IS_CRITICAL;
  1076. }
  1077. clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
  1078. if (!clock)
  1079. return NULL;
  1080. clock->cprman = cprman;
  1081. clock->data = data;
  1082. clock->hw.init = &init;
  1083. ret = devm_clk_hw_register(cprman->dev, &clock->hw);
  1084. if (ret)
  1085. return ERR_PTR(ret);
  1086. return &clock->hw;
  1087. }
  1088. static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
  1089. const struct bcm2835_gate_data *data)
  1090. {
  1091. return clk_register_gate(cprman->dev, data->name, data->parent,
  1092. CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
  1093. cprman->regs + data->ctl_reg,
  1094. CM_GATE_BIT, 0, &cprman->regs_lock);
  1095. }
  1096. typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
  1097. const void *data);
  1098. struct bcm2835_clk_desc {
  1099. bcm2835_clk_register clk_register;
  1100. const void *data;
  1101. };
  1102. /* assignment helper macros for different clock types */
  1103. #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
  1104. .data = __VA_ARGS__ }
  1105. #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
  1106. &(struct bcm2835_pll_data) \
  1107. {__VA_ARGS__})
  1108. #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
  1109. &(struct bcm2835_pll_divider_data) \
  1110. {__VA_ARGS__})
  1111. #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
  1112. &(struct bcm2835_clock_data) \
  1113. {__VA_ARGS__})
  1114. #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
  1115. &(struct bcm2835_gate_data) \
  1116. {__VA_ARGS__})
  1117. /* parent mux arrays plus helper macros */
  1118. /* main oscillator parent mux */
  1119. static const char *const bcm2835_clock_osc_parents[] = {
  1120. "gnd",
  1121. "xosc",
  1122. "testdebug0",
  1123. "testdebug1"
  1124. };
  1125. #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
  1126. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
  1127. .parents = bcm2835_clock_osc_parents, \
  1128. __VA_ARGS__)
  1129. /* main peripherial parent mux */
  1130. static const char *const bcm2835_clock_per_parents[] = {
  1131. "gnd",
  1132. "xosc",
  1133. "testdebug0",
  1134. "testdebug1",
  1135. "plla_per",
  1136. "pllc_per",
  1137. "plld_per",
  1138. "pllh_aux",
  1139. };
  1140. #define REGISTER_PER_CLK(...) REGISTER_CLK( \
  1141. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
  1142. .parents = bcm2835_clock_per_parents, \
  1143. __VA_ARGS__)
  1144. /* main vpu parent mux */
  1145. static const char *const bcm2835_clock_vpu_parents[] = {
  1146. "gnd",
  1147. "xosc",
  1148. "testdebug0",
  1149. "testdebug1",
  1150. "plla_core",
  1151. "pllc_core0",
  1152. "plld_core",
  1153. "pllh_aux",
  1154. "pllc_core1",
  1155. "pllc_core2",
  1156. };
  1157. #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
  1158. .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
  1159. .parents = bcm2835_clock_vpu_parents, \
  1160. __VA_ARGS__)
  1161. /*
  1162. * the real definition of all the pll, pll_dividers and clocks
  1163. * these make use of the above REGISTER_* macros
  1164. */
  1165. static const struct bcm2835_clk_desc clk_desc_array[] = {
  1166. /* the PLL + PLL dividers */
  1167. /*
  1168. * PLLA is the auxiliary PLL, used to drive the CCP2
  1169. * (Compact Camera Port 2) transmitter clock.
  1170. *
  1171. * It is in the PX LDO power domain, which is on when the
  1172. * AUDIO domain is on.
  1173. */
  1174. [BCM2835_PLLA] = REGISTER_PLL(
  1175. .name = "plla",
  1176. .cm_ctrl_reg = CM_PLLA,
  1177. .a2w_ctrl_reg = A2W_PLLA_CTRL,
  1178. .frac_reg = A2W_PLLA_FRAC,
  1179. .ana_reg_base = A2W_PLLA_ANA0,
  1180. .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
  1181. .lock_mask = CM_LOCK_FLOCKA,
  1182. .ana = &bcm2835_ana_default,
  1183. .min_rate = 600000000u,
  1184. .max_rate = 2400000000u,
  1185. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1186. [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
  1187. .name = "plla_core",
  1188. .source_pll = "plla",
  1189. .cm_reg = CM_PLLA,
  1190. .a2w_reg = A2W_PLLA_CORE,
  1191. .load_mask = CM_PLLA_LOADCORE,
  1192. .hold_mask = CM_PLLA_HOLDCORE,
  1193. .fixed_divider = 1),
  1194. [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
  1195. .name = "plla_per",
  1196. .source_pll = "plla",
  1197. .cm_reg = CM_PLLA,
  1198. .a2w_reg = A2W_PLLA_PER,
  1199. .load_mask = CM_PLLA_LOADPER,
  1200. .hold_mask = CM_PLLA_HOLDPER,
  1201. .fixed_divider = 1),
  1202. [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
  1203. .name = "plla_dsi0",
  1204. .source_pll = "plla",
  1205. .cm_reg = CM_PLLA,
  1206. .a2w_reg = A2W_PLLA_DSI0,
  1207. .load_mask = CM_PLLA_LOADDSI0,
  1208. .hold_mask = CM_PLLA_HOLDDSI0,
  1209. .fixed_divider = 1),
  1210. [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
  1211. .name = "plla_ccp2",
  1212. .source_pll = "plla",
  1213. .cm_reg = CM_PLLA,
  1214. .a2w_reg = A2W_PLLA_CCP2,
  1215. .load_mask = CM_PLLA_LOADCCP2,
  1216. .hold_mask = CM_PLLA_HOLDCCP2,
  1217. .fixed_divider = 1),
  1218. /* PLLB is used for the ARM's clock. */
  1219. [BCM2835_PLLB] = REGISTER_PLL(
  1220. .name = "pllb",
  1221. .cm_ctrl_reg = CM_PLLB,
  1222. .a2w_ctrl_reg = A2W_PLLB_CTRL,
  1223. .frac_reg = A2W_PLLB_FRAC,
  1224. .ana_reg_base = A2W_PLLB_ANA0,
  1225. .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
  1226. .lock_mask = CM_LOCK_FLOCKB,
  1227. .ana = &bcm2835_ana_default,
  1228. .min_rate = 600000000u,
  1229. .max_rate = 3000000000u,
  1230. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1231. [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
  1232. .name = "pllb_arm",
  1233. .source_pll = "pllb",
  1234. .cm_reg = CM_PLLB,
  1235. .a2w_reg = A2W_PLLB_ARM,
  1236. .load_mask = CM_PLLB_LOADARM,
  1237. .hold_mask = CM_PLLB_HOLDARM,
  1238. .fixed_divider = 1),
  1239. /*
  1240. * PLLC is the core PLL, used to drive the core VPU clock.
  1241. *
  1242. * It is in the PX LDO power domain, which is on when the
  1243. * AUDIO domain is on.
  1244. */
  1245. [BCM2835_PLLC] = REGISTER_PLL(
  1246. .name = "pllc",
  1247. .cm_ctrl_reg = CM_PLLC,
  1248. .a2w_ctrl_reg = A2W_PLLC_CTRL,
  1249. .frac_reg = A2W_PLLC_FRAC,
  1250. .ana_reg_base = A2W_PLLC_ANA0,
  1251. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1252. .lock_mask = CM_LOCK_FLOCKC,
  1253. .ana = &bcm2835_ana_default,
  1254. .min_rate = 600000000u,
  1255. .max_rate = 3000000000u,
  1256. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1257. [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
  1258. .name = "pllc_core0",
  1259. .source_pll = "pllc",
  1260. .cm_reg = CM_PLLC,
  1261. .a2w_reg = A2W_PLLC_CORE0,
  1262. .load_mask = CM_PLLC_LOADCORE0,
  1263. .hold_mask = CM_PLLC_HOLDCORE0,
  1264. .fixed_divider = 1),
  1265. [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
  1266. .name = "pllc_core1",
  1267. .source_pll = "pllc",
  1268. .cm_reg = CM_PLLC,
  1269. .a2w_reg = A2W_PLLC_CORE1,
  1270. .load_mask = CM_PLLC_LOADCORE1,
  1271. .hold_mask = CM_PLLC_HOLDCORE1,
  1272. .fixed_divider = 1),
  1273. [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
  1274. .name = "pllc_core2",
  1275. .source_pll = "pllc",
  1276. .cm_reg = CM_PLLC,
  1277. .a2w_reg = A2W_PLLC_CORE2,
  1278. .load_mask = CM_PLLC_LOADCORE2,
  1279. .hold_mask = CM_PLLC_HOLDCORE2,
  1280. .fixed_divider = 1),
  1281. [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
  1282. .name = "pllc_per",
  1283. .source_pll = "pllc",
  1284. .cm_reg = CM_PLLC,
  1285. .a2w_reg = A2W_PLLC_PER,
  1286. .load_mask = CM_PLLC_LOADPER,
  1287. .hold_mask = CM_PLLC_HOLDPER,
  1288. .fixed_divider = 1),
  1289. /*
  1290. * PLLD is the display PLL, used to drive DSI display panels.
  1291. *
  1292. * It is in the PX LDO power domain, which is on when the
  1293. * AUDIO domain is on.
  1294. */
  1295. [BCM2835_PLLD] = REGISTER_PLL(
  1296. .name = "plld",
  1297. .cm_ctrl_reg = CM_PLLD,
  1298. .a2w_ctrl_reg = A2W_PLLD_CTRL,
  1299. .frac_reg = A2W_PLLD_FRAC,
  1300. .ana_reg_base = A2W_PLLD_ANA0,
  1301. .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
  1302. .lock_mask = CM_LOCK_FLOCKD,
  1303. .ana = &bcm2835_ana_default,
  1304. .min_rate = 600000000u,
  1305. .max_rate = 2400000000u,
  1306. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1307. [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
  1308. .name = "plld_core",
  1309. .source_pll = "plld",
  1310. .cm_reg = CM_PLLD,
  1311. .a2w_reg = A2W_PLLD_CORE,
  1312. .load_mask = CM_PLLD_LOADCORE,
  1313. .hold_mask = CM_PLLD_HOLDCORE,
  1314. .fixed_divider = 1),
  1315. [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
  1316. .name = "plld_per",
  1317. .source_pll = "plld",
  1318. .cm_reg = CM_PLLD,
  1319. .a2w_reg = A2W_PLLD_PER,
  1320. .load_mask = CM_PLLD_LOADPER,
  1321. .hold_mask = CM_PLLD_HOLDPER,
  1322. .fixed_divider = 1),
  1323. [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
  1324. .name = "plld_dsi0",
  1325. .source_pll = "plld",
  1326. .cm_reg = CM_PLLD,
  1327. .a2w_reg = A2W_PLLD_DSI0,
  1328. .load_mask = CM_PLLD_LOADDSI0,
  1329. .hold_mask = CM_PLLD_HOLDDSI0,
  1330. .fixed_divider = 1),
  1331. [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
  1332. .name = "plld_dsi1",
  1333. .source_pll = "plld",
  1334. .cm_reg = CM_PLLD,
  1335. .a2w_reg = A2W_PLLD_DSI1,
  1336. .load_mask = CM_PLLD_LOADDSI1,
  1337. .hold_mask = CM_PLLD_HOLDDSI1,
  1338. .fixed_divider = 1),
  1339. /*
  1340. * PLLH is used to supply the pixel clock or the AUX clock for the
  1341. * TV encoder.
  1342. *
  1343. * It is in the HDMI power domain.
  1344. */
  1345. [BCM2835_PLLH] = REGISTER_PLL(
  1346. "pllh",
  1347. .cm_ctrl_reg = CM_PLLH,
  1348. .a2w_ctrl_reg = A2W_PLLH_CTRL,
  1349. .frac_reg = A2W_PLLH_FRAC,
  1350. .ana_reg_base = A2W_PLLH_ANA0,
  1351. .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
  1352. .lock_mask = CM_LOCK_FLOCKH,
  1353. .ana = &bcm2835_ana_pllh,
  1354. .min_rate = 600000000u,
  1355. .max_rate = 3000000000u,
  1356. .max_fb_rate = BCM2835_MAX_FB_RATE),
  1357. [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
  1358. .name = "pllh_rcal",
  1359. .source_pll = "pllh",
  1360. .cm_reg = CM_PLLH,
  1361. .a2w_reg = A2W_PLLH_RCAL,
  1362. .load_mask = CM_PLLH_LOADRCAL,
  1363. .hold_mask = 0,
  1364. .fixed_divider = 10),
  1365. [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
  1366. .name = "pllh_aux",
  1367. .source_pll = "pllh",
  1368. .cm_reg = CM_PLLH,
  1369. .a2w_reg = A2W_PLLH_AUX,
  1370. .load_mask = CM_PLLH_LOADAUX,
  1371. .hold_mask = 0,
  1372. .fixed_divider = 1),
  1373. [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
  1374. .name = "pllh_pix",
  1375. .source_pll = "pllh",
  1376. .cm_reg = CM_PLLH,
  1377. .a2w_reg = A2W_PLLH_PIX,
  1378. .load_mask = CM_PLLH_LOADPIX,
  1379. .hold_mask = 0,
  1380. .fixed_divider = 10),
  1381. /* the clocks */
  1382. /* clocks with oscillator parent mux */
  1383. /* One Time Programmable Memory clock. Maximum 10Mhz. */
  1384. [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
  1385. .name = "otp",
  1386. .ctl_reg = CM_OTPCTL,
  1387. .div_reg = CM_OTPDIV,
  1388. .int_bits = 4,
  1389. .frac_bits = 0),
  1390. /*
  1391. * Used for a 1Mhz clock for the system clocksource, and also used
  1392. * bythe watchdog timer and the camera pulse generator.
  1393. */
  1394. [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
  1395. .name = "timer",
  1396. .ctl_reg = CM_TIMERCTL,
  1397. .div_reg = CM_TIMERDIV,
  1398. .int_bits = 6,
  1399. .frac_bits = 12),
  1400. /*
  1401. * Clock for the temperature sensor.
  1402. * Generally run at 2Mhz, max 5Mhz.
  1403. */
  1404. [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
  1405. .name = "tsens",
  1406. .ctl_reg = CM_TSENSCTL,
  1407. .div_reg = CM_TSENSDIV,
  1408. .int_bits = 5,
  1409. .frac_bits = 0),
  1410. [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
  1411. .name = "tec",
  1412. .ctl_reg = CM_TECCTL,
  1413. .div_reg = CM_TECDIV,
  1414. .int_bits = 6,
  1415. .frac_bits = 0),
  1416. /* clocks with vpu parent mux */
  1417. [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
  1418. .name = "h264",
  1419. .ctl_reg = CM_H264CTL,
  1420. .div_reg = CM_H264DIV,
  1421. .int_bits = 4,
  1422. .frac_bits = 8),
  1423. [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
  1424. .name = "isp",
  1425. .ctl_reg = CM_ISPCTL,
  1426. .div_reg = CM_ISPDIV,
  1427. .int_bits = 4,
  1428. .frac_bits = 8),
  1429. /*
  1430. * Secondary SDRAM clock. Used for low-voltage modes when the PLL
  1431. * in the SDRAM controller can't be used.
  1432. */
  1433. [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
  1434. .name = "sdram",
  1435. .ctl_reg = CM_SDCCTL,
  1436. .div_reg = CM_SDCDIV,
  1437. .int_bits = 6,
  1438. .frac_bits = 0),
  1439. [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
  1440. .name = "v3d",
  1441. .ctl_reg = CM_V3DCTL,
  1442. .div_reg = CM_V3DDIV,
  1443. .int_bits = 4,
  1444. .frac_bits = 8),
  1445. /*
  1446. * VPU clock. This doesn't have an enable bit, since it drives
  1447. * the bus for everything else, and is special so it doesn't need
  1448. * to be gated for rate changes. It is also known as "clk_audio"
  1449. * in various hardware documentation.
  1450. */
  1451. [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
  1452. .name = "vpu",
  1453. .ctl_reg = CM_VPUCTL,
  1454. .div_reg = CM_VPUDIV,
  1455. .int_bits = 12,
  1456. .frac_bits = 8,
  1457. .flags = CLK_IS_CRITICAL,
  1458. .is_vpu_clock = true),
  1459. /* clocks with per parent mux */
  1460. [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
  1461. .name = "aveo",
  1462. .ctl_reg = CM_AVEOCTL,
  1463. .div_reg = CM_AVEODIV,
  1464. .int_bits = 4,
  1465. .frac_bits = 0),
  1466. [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
  1467. .name = "cam0",
  1468. .ctl_reg = CM_CAM0CTL,
  1469. .div_reg = CM_CAM0DIV,
  1470. .int_bits = 4,
  1471. .frac_bits = 8),
  1472. [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
  1473. .name = "cam1",
  1474. .ctl_reg = CM_CAM1CTL,
  1475. .div_reg = CM_CAM1DIV,
  1476. .int_bits = 4,
  1477. .frac_bits = 8),
  1478. [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
  1479. .name = "dft",
  1480. .ctl_reg = CM_DFTCTL,
  1481. .div_reg = CM_DFTDIV,
  1482. .int_bits = 5,
  1483. .frac_bits = 0),
  1484. [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
  1485. .name = "dpi",
  1486. .ctl_reg = CM_DPICTL,
  1487. .div_reg = CM_DPIDIV,
  1488. .int_bits = 4,
  1489. .frac_bits = 8),
  1490. /* Arasan EMMC clock */
  1491. [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
  1492. .name = "emmc",
  1493. .ctl_reg = CM_EMMCCTL,
  1494. .div_reg = CM_EMMCDIV,
  1495. .int_bits = 4,
  1496. .frac_bits = 8),
  1497. /* General purpose (GPIO) clocks */
  1498. [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
  1499. .name = "gp0",
  1500. .ctl_reg = CM_GP0CTL,
  1501. .div_reg = CM_GP0DIV,
  1502. .int_bits = 12,
  1503. .frac_bits = 12,
  1504. .is_mash_clock = true),
  1505. [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
  1506. .name = "gp1",
  1507. .ctl_reg = CM_GP1CTL,
  1508. .div_reg = CM_GP1DIV,
  1509. .int_bits = 12,
  1510. .frac_bits = 12,
  1511. .flags = CLK_IS_CRITICAL,
  1512. .is_mash_clock = true),
  1513. [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
  1514. .name = "gp2",
  1515. .ctl_reg = CM_GP2CTL,
  1516. .div_reg = CM_GP2DIV,
  1517. .int_bits = 12,
  1518. .frac_bits = 12,
  1519. .flags = CLK_IS_CRITICAL),
  1520. /* HDMI state machine */
  1521. [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
  1522. .name = "hsm",
  1523. .ctl_reg = CM_HSMCTL,
  1524. .div_reg = CM_HSMDIV,
  1525. .int_bits = 4,
  1526. .frac_bits = 8),
  1527. [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
  1528. .name = "pcm",
  1529. .ctl_reg = CM_PCMCTL,
  1530. .div_reg = CM_PCMDIV,
  1531. .int_bits = 12,
  1532. .frac_bits = 12,
  1533. .is_mash_clock = true),
  1534. [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
  1535. .name = "pwm",
  1536. .ctl_reg = CM_PWMCTL,
  1537. .div_reg = CM_PWMDIV,
  1538. .int_bits = 12,
  1539. .frac_bits = 12,
  1540. .is_mash_clock = true),
  1541. [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
  1542. .name = "slim",
  1543. .ctl_reg = CM_SLIMCTL,
  1544. .div_reg = CM_SLIMDIV,
  1545. .int_bits = 12,
  1546. .frac_bits = 12,
  1547. .is_mash_clock = true),
  1548. [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
  1549. .name = "smi",
  1550. .ctl_reg = CM_SMICTL,
  1551. .div_reg = CM_SMIDIV,
  1552. .int_bits = 4,
  1553. .frac_bits = 8),
  1554. [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
  1555. .name = "uart",
  1556. .ctl_reg = CM_UARTCTL,
  1557. .div_reg = CM_UARTDIV,
  1558. .int_bits = 10,
  1559. .frac_bits = 12),
  1560. /* TV encoder clock. Only operating frequency is 108Mhz. */
  1561. [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
  1562. .name = "vec",
  1563. .ctl_reg = CM_VECCTL,
  1564. .div_reg = CM_VECDIV,
  1565. .int_bits = 4,
  1566. .frac_bits = 0),
  1567. /* dsi clocks */
  1568. [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
  1569. .name = "dsi0e",
  1570. .ctl_reg = CM_DSI0ECTL,
  1571. .div_reg = CM_DSI0EDIV,
  1572. .int_bits = 4,
  1573. .frac_bits = 8),
  1574. [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
  1575. .name = "dsi1e",
  1576. .ctl_reg = CM_DSI1ECTL,
  1577. .div_reg = CM_DSI1EDIV,
  1578. .int_bits = 4,
  1579. .frac_bits = 8),
  1580. /* the gates */
  1581. /*
  1582. * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
  1583. * you have the debug bit set in the power manager, which we
  1584. * don't bother exposing) are individual gates off of the
  1585. * non-stop vpu clock.
  1586. */
  1587. [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
  1588. .name = "peri_image",
  1589. .parent = "vpu",
  1590. .ctl_reg = CM_PERIICTL),
  1591. };
  1592. /*
  1593. * Permanently take a reference on the parent of the SDRAM clock.
  1594. *
  1595. * While the SDRAM is being driven by its dedicated PLL most of the
  1596. * time, there is a little loop running in the firmware that
  1597. * periodically switches the SDRAM to using our CM clock to do PVT
  1598. * recalibration, with the assumption that the previously configured
  1599. * SDRAM parent is still enabled and running.
  1600. */
  1601. static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
  1602. {
  1603. struct clk *parent = clk_get_parent(sdc);
  1604. if (IS_ERR(parent))
  1605. return PTR_ERR(parent);
  1606. return clk_prepare_enable(parent);
  1607. }
  1608. static int bcm2835_clk_probe(struct platform_device *pdev)
  1609. {
  1610. struct device *dev = &pdev->dev;
  1611. struct clk_hw **hws;
  1612. struct bcm2835_cprman *cprman;
  1613. struct resource *res;
  1614. const struct bcm2835_clk_desc *desc;
  1615. const size_t asize = ARRAY_SIZE(clk_desc_array);
  1616. size_t i;
  1617. int ret;
  1618. cprman = devm_kzalloc(dev, sizeof(*cprman) +
  1619. sizeof(*cprman->onecell.hws) * asize,
  1620. GFP_KERNEL);
  1621. if (!cprman)
  1622. return -ENOMEM;
  1623. spin_lock_init(&cprman->regs_lock);
  1624. cprman->dev = dev;
  1625. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1626. cprman->regs = devm_ioremap_resource(dev, res);
  1627. if (IS_ERR(cprman->regs))
  1628. return PTR_ERR(cprman->regs);
  1629. cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
  1630. if (!cprman->osc_name)
  1631. return -ENODEV;
  1632. platform_set_drvdata(pdev, cprman);
  1633. cprman->onecell.num = asize;
  1634. hws = cprman->onecell.hws;
  1635. for (i = 0; i < asize; i++) {
  1636. desc = &clk_desc_array[i];
  1637. if (desc->clk_register && desc->data)
  1638. hws[i] = desc->clk_register(cprman, desc->data);
  1639. }
  1640. ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
  1641. if (ret)
  1642. return ret;
  1643. return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
  1644. &cprman->onecell);
  1645. }
  1646. static const struct of_device_id bcm2835_clk_of_match[] = {
  1647. { .compatible = "brcm,bcm2835-cprman", },
  1648. {}
  1649. };
  1650. MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
  1651. static struct platform_driver bcm2835_clk_driver = {
  1652. .driver = {
  1653. .name = "bcm2835-clk",
  1654. .of_match_table = bcm2835_clk_of_match,
  1655. },
  1656. .probe = bcm2835_clk_probe,
  1657. };
  1658. builtin_platform_driver(bcm2835_clk_driver);
  1659. MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
  1660. MODULE_DESCRIPTION("BCM2835 clock driver");
  1661. MODULE_LICENSE("GPL v2");