acpi_pad.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. /*
  2. * acpi_pad.c ACPI Processor Aggregator Driver
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/cpumask.h>
  18. #include <linux/module.h>
  19. #include <linux/init.h>
  20. #include <linux/types.h>
  21. #include <linux/kthread.h>
  22. #include <linux/freezer.h>
  23. #include <linux/cpu.h>
  24. #include <linux/tick.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <asm/mwait.h>
  28. #include <xen/xen.h>
  29. #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
  30. #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
  31. #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
  32. static DEFINE_MUTEX(isolated_cpus_lock);
  33. static DEFINE_MUTEX(round_robin_lock);
  34. static unsigned long power_saving_mwait_eax;
  35. static unsigned char tsc_detected_unstable;
  36. static unsigned char tsc_marked_unstable;
  37. static void power_saving_mwait_init(void)
  38. {
  39. unsigned int eax, ebx, ecx, edx;
  40. unsigned int highest_cstate = 0;
  41. unsigned int highest_subcstate = 0;
  42. int i;
  43. if (!boot_cpu_has(X86_FEATURE_MWAIT))
  44. return;
  45. if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
  46. return;
  47. cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
  48. if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
  49. !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
  50. return;
  51. edx >>= MWAIT_SUBSTATE_SIZE;
  52. for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
  53. if (edx & MWAIT_SUBSTATE_MASK) {
  54. highest_cstate = i;
  55. highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
  56. }
  57. }
  58. power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
  59. (highest_subcstate - 1);
  60. #if defined(CONFIG_X86)
  61. switch (boot_cpu_data.x86_vendor) {
  62. case X86_VENDOR_AMD:
  63. case X86_VENDOR_INTEL:
  64. /*
  65. * AMD Fam10h TSC will tick in all
  66. * C/P/S0/S1 states when this bit is set.
  67. */
  68. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  69. tsc_detected_unstable = 1;
  70. break;
  71. default:
  72. /* TSC could halt in idle */
  73. tsc_detected_unstable = 1;
  74. }
  75. #endif
  76. }
  77. static unsigned long cpu_weight[NR_CPUS];
  78. static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
  79. static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
  80. static void round_robin_cpu(unsigned int tsk_index)
  81. {
  82. struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
  83. cpumask_var_t tmp;
  84. int cpu;
  85. unsigned long min_weight = -1;
  86. unsigned long uninitialized_var(preferred_cpu);
  87. if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
  88. return;
  89. mutex_lock(&round_robin_lock);
  90. cpumask_clear(tmp);
  91. for_each_cpu(cpu, pad_busy_cpus)
  92. cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
  93. cpumask_andnot(tmp, cpu_online_mask, tmp);
  94. /* avoid HT sibilings if possible */
  95. if (cpumask_empty(tmp))
  96. cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
  97. if (cpumask_empty(tmp)) {
  98. mutex_unlock(&round_robin_lock);
  99. return;
  100. }
  101. for_each_cpu(cpu, tmp) {
  102. if (cpu_weight[cpu] < min_weight) {
  103. min_weight = cpu_weight[cpu];
  104. preferred_cpu = cpu;
  105. }
  106. }
  107. if (tsk_in_cpu[tsk_index] != -1)
  108. cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
  109. tsk_in_cpu[tsk_index] = preferred_cpu;
  110. cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
  111. cpu_weight[preferred_cpu]++;
  112. mutex_unlock(&round_robin_lock);
  113. set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
  114. }
  115. static void exit_round_robin(unsigned int tsk_index)
  116. {
  117. struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
  118. cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
  119. tsk_in_cpu[tsk_index] = -1;
  120. }
  121. static unsigned int idle_pct = 5; /* percentage */
  122. static unsigned int round_robin_time = 1; /* second */
  123. static int power_saving_thread(void *data)
  124. {
  125. struct sched_param param = {.sched_priority = 1};
  126. int do_sleep;
  127. unsigned int tsk_index = (unsigned long)data;
  128. u64 last_jiffies = 0;
  129. sched_setscheduler(current, SCHED_RR, &param);
  130. while (!kthread_should_stop()) {
  131. unsigned long expire_time;
  132. /* round robin to cpus */
  133. expire_time = last_jiffies + round_robin_time * HZ;
  134. if (time_before(expire_time, jiffies)) {
  135. last_jiffies = jiffies;
  136. round_robin_cpu(tsk_index);
  137. }
  138. do_sleep = 0;
  139. expire_time = jiffies + HZ * (100 - idle_pct) / 100;
  140. while (!need_resched()) {
  141. if (tsc_detected_unstable && !tsc_marked_unstable) {
  142. /* TSC could halt in idle, so notify users */
  143. mark_tsc_unstable("TSC halts in idle");
  144. tsc_marked_unstable = 1;
  145. }
  146. local_irq_disable();
  147. tick_broadcast_enable();
  148. tick_broadcast_enter();
  149. stop_critical_timings();
  150. mwait_idle_with_hints(power_saving_mwait_eax, 1);
  151. start_critical_timings();
  152. tick_broadcast_exit();
  153. local_irq_enable();
  154. if (time_before(expire_time, jiffies)) {
  155. do_sleep = 1;
  156. break;
  157. }
  158. }
  159. /*
  160. * current sched_rt has threshold for rt task running time.
  161. * When a rt task uses 95% CPU time, the rt thread will be
  162. * scheduled out for 5% CPU time to not starve other tasks. But
  163. * the mechanism only works when all CPUs have RT task running,
  164. * as if one CPU hasn't RT task, RT task from other CPUs will
  165. * borrow CPU time from this CPU and cause RT task use > 95%
  166. * CPU time. To make 'avoid starvation' work, takes a nap here.
  167. */
  168. if (unlikely(do_sleep))
  169. schedule_timeout_killable(HZ * idle_pct / 100);
  170. /* If an external event has set the need_resched flag, then
  171. * we need to deal with it, or this loop will continue to
  172. * spin without calling __mwait().
  173. */
  174. if (unlikely(need_resched()))
  175. schedule();
  176. }
  177. exit_round_robin(tsk_index);
  178. return 0;
  179. }
  180. static struct task_struct *ps_tsks[NR_CPUS];
  181. static unsigned int ps_tsk_num;
  182. static int create_power_saving_task(void)
  183. {
  184. int rc;
  185. ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
  186. (void *)(unsigned long)ps_tsk_num,
  187. "acpi_pad/%d", ps_tsk_num);
  188. if (IS_ERR(ps_tsks[ps_tsk_num])) {
  189. rc = PTR_ERR(ps_tsks[ps_tsk_num]);
  190. ps_tsks[ps_tsk_num] = NULL;
  191. } else {
  192. rc = 0;
  193. ps_tsk_num++;
  194. }
  195. return rc;
  196. }
  197. static void destroy_power_saving_task(void)
  198. {
  199. if (ps_tsk_num > 0) {
  200. ps_tsk_num--;
  201. kthread_stop(ps_tsks[ps_tsk_num]);
  202. ps_tsks[ps_tsk_num] = NULL;
  203. }
  204. }
  205. static void set_power_saving_task_num(unsigned int num)
  206. {
  207. if (num > ps_tsk_num) {
  208. while (ps_tsk_num < num) {
  209. if (create_power_saving_task())
  210. return;
  211. }
  212. } else if (num < ps_tsk_num) {
  213. while (ps_tsk_num > num)
  214. destroy_power_saving_task();
  215. }
  216. }
  217. static void acpi_pad_idle_cpus(unsigned int num_cpus)
  218. {
  219. get_online_cpus();
  220. num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
  221. set_power_saving_task_num(num_cpus);
  222. put_online_cpus();
  223. }
  224. static uint32_t acpi_pad_idle_cpus_num(void)
  225. {
  226. return ps_tsk_num;
  227. }
  228. static ssize_t acpi_pad_rrtime_store(struct device *dev,
  229. struct device_attribute *attr, const char *buf, size_t count)
  230. {
  231. unsigned long num;
  232. if (kstrtoul(buf, 0, &num))
  233. return -EINVAL;
  234. if (num < 1 || num >= 100)
  235. return -EINVAL;
  236. mutex_lock(&isolated_cpus_lock);
  237. round_robin_time = num;
  238. mutex_unlock(&isolated_cpus_lock);
  239. return count;
  240. }
  241. static ssize_t acpi_pad_rrtime_show(struct device *dev,
  242. struct device_attribute *attr, char *buf)
  243. {
  244. return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
  245. }
  246. static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
  247. acpi_pad_rrtime_show,
  248. acpi_pad_rrtime_store);
  249. static ssize_t acpi_pad_idlepct_store(struct device *dev,
  250. struct device_attribute *attr, const char *buf, size_t count)
  251. {
  252. unsigned long num;
  253. if (kstrtoul(buf, 0, &num))
  254. return -EINVAL;
  255. if (num < 1 || num >= 100)
  256. return -EINVAL;
  257. mutex_lock(&isolated_cpus_lock);
  258. idle_pct = num;
  259. mutex_unlock(&isolated_cpus_lock);
  260. return count;
  261. }
  262. static ssize_t acpi_pad_idlepct_show(struct device *dev,
  263. struct device_attribute *attr, char *buf)
  264. {
  265. return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
  266. }
  267. static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
  268. acpi_pad_idlepct_show,
  269. acpi_pad_idlepct_store);
  270. static ssize_t acpi_pad_idlecpus_store(struct device *dev,
  271. struct device_attribute *attr, const char *buf, size_t count)
  272. {
  273. unsigned long num;
  274. if (kstrtoul(buf, 0, &num))
  275. return -EINVAL;
  276. mutex_lock(&isolated_cpus_lock);
  277. acpi_pad_idle_cpus(num);
  278. mutex_unlock(&isolated_cpus_lock);
  279. return count;
  280. }
  281. static ssize_t acpi_pad_idlecpus_show(struct device *dev,
  282. struct device_attribute *attr, char *buf)
  283. {
  284. return cpumap_print_to_pagebuf(false, buf,
  285. to_cpumask(pad_busy_cpus_bits));
  286. }
  287. static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
  288. acpi_pad_idlecpus_show,
  289. acpi_pad_idlecpus_store);
  290. static int acpi_pad_add_sysfs(struct acpi_device *device)
  291. {
  292. int result;
  293. result = device_create_file(&device->dev, &dev_attr_idlecpus);
  294. if (result)
  295. return -ENODEV;
  296. result = device_create_file(&device->dev, &dev_attr_idlepct);
  297. if (result) {
  298. device_remove_file(&device->dev, &dev_attr_idlecpus);
  299. return -ENODEV;
  300. }
  301. result = device_create_file(&device->dev, &dev_attr_rrtime);
  302. if (result) {
  303. device_remove_file(&device->dev, &dev_attr_idlecpus);
  304. device_remove_file(&device->dev, &dev_attr_idlepct);
  305. return -ENODEV;
  306. }
  307. return 0;
  308. }
  309. static void acpi_pad_remove_sysfs(struct acpi_device *device)
  310. {
  311. device_remove_file(&device->dev, &dev_attr_idlecpus);
  312. device_remove_file(&device->dev, &dev_attr_idlepct);
  313. device_remove_file(&device->dev, &dev_attr_rrtime);
  314. }
  315. /*
  316. * Query firmware how many CPUs should be idle
  317. * return -1 on failure
  318. */
  319. static int acpi_pad_pur(acpi_handle handle)
  320. {
  321. struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
  322. union acpi_object *package;
  323. int num = -1;
  324. if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
  325. return num;
  326. if (!buffer.length || !buffer.pointer)
  327. return num;
  328. package = buffer.pointer;
  329. if (package->type == ACPI_TYPE_PACKAGE &&
  330. package->package.count == 2 &&
  331. package->package.elements[0].integer.value == 1) /* rev 1 */
  332. num = package->package.elements[1].integer.value;
  333. kfree(buffer.pointer);
  334. return num;
  335. }
  336. static void acpi_pad_handle_notify(acpi_handle handle)
  337. {
  338. int num_cpus;
  339. uint32_t idle_cpus;
  340. struct acpi_buffer param = {
  341. .length = 4,
  342. .pointer = (void *)&idle_cpus,
  343. };
  344. mutex_lock(&isolated_cpus_lock);
  345. num_cpus = acpi_pad_pur(handle);
  346. if (num_cpus < 0) {
  347. mutex_unlock(&isolated_cpus_lock);
  348. return;
  349. }
  350. acpi_pad_idle_cpus(num_cpus);
  351. idle_cpus = acpi_pad_idle_cpus_num();
  352. acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
  353. mutex_unlock(&isolated_cpus_lock);
  354. }
  355. static void acpi_pad_notify(acpi_handle handle, u32 event,
  356. void *data)
  357. {
  358. struct acpi_device *device = data;
  359. switch (event) {
  360. case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
  361. acpi_pad_handle_notify(handle);
  362. acpi_bus_generate_netlink_event(device->pnp.device_class,
  363. dev_name(&device->dev), event, 0);
  364. break;
  365. default:
  366. pr_warn("Unsupported event [0x%x]\n", event);
  367. break;
  368. }
  369. }
  370. static int acpi_pad_add(struct acpi_device *device)
  371. {
  372. acpi_status status;
  373. strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
  374. strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
  375. if (acpi_pad_add_sysfs(device))
  376. return -ENODEV;
  377. status = acpi_install_notify_handler(device->handle,
  378. ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
  379. if (ACPI_FAILURE(status)) {
  380. acpi_pad_remove_sysfs(device);
  381. return -ENODEV;
  382. }
  383. return 0;
  384. }
  385. static int acpi_pad_remove(struct acpi_device *device)
  386. {
  387. mutex_lock(&isolated_cpus_lock);
  388. acpi_pad_idle_cpus(0);
  389. mutex_unlock(&isolated_cpus_lock);
  390. acpi_remove_notify_handler(device->handle,
  391. ACPI_DEVICE_NOTIFY, acpi_pad_notify);
  392. acpi_pad_remove_sysfs(device);
  393. return 0;
  394. }
  395. static const struct acpi_device_id pad_device_ids[] = {
  396. {"ACPI000C", 0},
  397. {"", 0},
  398. };
  399. MODULE_DEVICE_TABLE(acpi, pad_device_ids);
  400. static struct acpi_driver acpi_pad_driver = {
  401. .name = "processor_aggregator",
  402. .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
  403. .ids = pad_device_ids,
  404. .ops = {
  405. .add = acpi_pad_add,
  406. .remove = acpi_pad_remove,
  407. },
  408. };
  409. static int __init acpi_pad_init(void)
  410. {
  411. /* Xen ACPI PAD is used when running as Xen Dom0. */
  412. if (xen_initial_domain())
  413. return -ENODEV;
  414. power_saving_mwait_init();
  415. if (power_saving_mwait_eax == 0)
  416. return -EINVAL;
  417. return acpi_bus_register_driver(&acpi_pad_driver);
  418. }
  419. static void __exit acpi_pad_exit(void)
  420. {
  421. acpi_bus_unregister_driver(&acpi_pad_driver);
  422. }
  423. module_init(acpi_pad_init);
  424. module_exit(acpi_pad_exit);
  425. MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
  426. MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
  427. MODULE_LICENSE("GPL");