process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/init.h>
  10. #include <linux/export.h>
  11. #include <linux/pm.h>
  12. #include <linux/tick.h>
  13. #include <linux/random.h>
  14. #include <linux/user-return-notifier.h>
  15. #include <linux/dmi.h>
  16. #include <linux/utsname.h>
  17. #include <linux/stackprotector.h>
  18. #include <linux/tick.h>
  19. #include <linux/cpuidle.h>
  20. #include <trace/events/power.h>
  21. #include <linux/hw_breakpoint.h>
  22. #include <asm/cpu.h>
  23. #include <asm/apic.h>
  24. #include <asm/syscalls.h>
  25. #include <asm/idle.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/mwait.h>
  28. #include <asm/fpu/internal.h>
  29. #include <asm/debugreg.h>
  30. #include <asm/nmi.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mce.h>
  33. #include <asm/vm86.h>
  34. #include <asm/switch_to.h>
  35. /*
  36. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  37. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  38. * so they are allowed to end up in the .data..cacheline_aligned
  39. * section. Since TSS's are completely CPU-local, we want them
  40. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  41. */
  42. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  43. .x86_tss = {
  44. .sp0 = TOP_OF_INIT_STACK,
  45. #ifdef CONFIG_X86_32
  46. .ss0 = __KERNEL_DS,
  47. .ss1 = __KERNEL_CS,
  48. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  49. #endif
  50. },
  51. #ifdef CONFIG_X86_32
  52. /*
  53. * Note that the .io_bitmap member must be extra-big. This is because
  54. * the CPU will access an additional byte beyond the end of the IO
  55. * permission bitmap. The extra byte must be all 1 bits, and must
  56. * be within the limit.
  57. */
  58. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  59. #endif
  60. #ifdef CONFIG_X86_32
  61. .SYSENTER_stack_canary = STACK_END_MAGIC,
  62. #endif
  63. };
  64. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  65. #ifdef CONFIG_X86_64
  66. static DEFINE_PER_CPU(unsigned char, is_idle);
  67. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  68. void idle_notifier_register(struct notifier_block *n)
  69. {
  70. atomic_notifier_chain_register(&idle_notifier, n);
  71. }
  72. EXPORT_SYMBOL_GPL(idle_notifier_register);
  73. void idle_notifier_unregister(struct notifier_block *n)
  74. {
  75. atomic_notifier_chain_unregister(&idle_notifier, n);
  76. }
  77. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  78. #endif
  79. /*
  80. * this gets called so that we can store lazy state into memory and copy the
  81. * current task into the new thread.
  82. */
  83. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  84. {
  85. memcpy(dst, src, arch_task_struct_size);
  86. #ifdef CONFIG_VM86
  87. dst->thread.vm86 = NULL;
  88. #endif
  89. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  90. }
  91. /*
  92. * Free current thread data structures etc..
  93. */
  94. void exit_thread(struct task_struct *tsk)
  95. {
  96. struct thread_struct *t = &tsk->thread;
  97. unsigned long *bp = t->io_bitmap_ptr;
  98. struct fpu *fpu = &t->fpu;
  99. if (bp) {
  100. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  101. t->io_bitmap_ptr = NULL;
  102. clear_thread_flag(TIF_IO_BITMAP);
  103. /*
  104. * Careful, clear this in the TSS too:
  105. */
  106. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  107. t->io_bitmap_max = 0;
  108. put_cpu();
  109. kfree(bp);
  110. }
  111. free_vm86(t);
  112. fpu__drop(fpu);
  113. }
  114. void flush_thread(void)
  115. {
  116. struct task_struct *tsk = current;
  117. flush_ptrace_hw_breakpoint(tsk);
  118. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  119. fpu__clear(&tsk->thread.fpu);
  120. }
  121. static void hard_disable_TSC(void)
  122. {
  123. cr4_set_bits(X86_CR4_TSD);
  124. }
  125. void disable_TSC(void)
  126. {
  127. preempt_disable();
  128. if (!test_and_set_thread_flag(TIF_NOTSC))
  129. /*
  130. * Must flip the CPU state synchronously with
  131. * TIF_NOTSC in the current running context.
  132. */
  133. hard_disable_TSC();
  134. preempt_enable();
  135. }
  136. static void hard_enable_TSC(void)
  137. {
  138. cr4_clear_bits(X86_CR4_TSD);
  139. }
  140. static void enable_TSC(void)
  141. {
  142. preempt_disable();
  143. if (test_and_clear_thread_flag(TIF_NOTSC))
  144. /*
  145. * Must flip the CPU state synchronously with
  146. * TIF_NOTSC in the current running context.
  147. */
  148. hard_enable_TSC();
  149. preempt_enable();
  150. }
  151. int get_tsc_mode(unsigned long adr)
  152. {
  153. unsigned int val;
  154. if (test_thread_flag(TIF_NOTSC))
  155. val = PR_TSC_SIGSEGV;
  156. else
  157. val = PR_TSC_ENABLE;
  158. return put_user(val, (unsigned int __user *)adr);
  159. }
  160. int set_tsc_mode(unsigned int val)
  161. {
  162. if (val == PR_TSC_SIGSEGV)
  163. disable_TSC();
  164. else if (val == PR_TSC_ENABLE)
  165. enable_TSC();
  166. else
  167. return -EINVAL;
  168. return 0;
  169. }
  170. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  171. struct tss_struct *tss)
  172. {
  173. struct thread_struct *prev, *next;
  174. prev = &prev_p->thread;
  175. next = &next_p->thread;
  176. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  177. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  178. unsigned long debugctl = get_debugctlmsr();
  179. debugctl &= ~DEBUGCTLMSR_BTF;
  180. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  181. debugctl |= DEBUGCTLMSR_BTF;
  182. update_debugctlmsr(debugctl);
  183. }
  184. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  185. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  186. /* prev and next are different */
  187. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  188. hard_disable_TSC();
  189. else
  190. hard_enable_TSC();
  191. }
  192. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  193. /*
  194. * Copy the relevant range of the IO bitmap.
  195. * Normally this is 128 bytes or less:
  196. */
  197. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  198. max(prev->io_bitmap_max, next->io_bitmap_max));
  199. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  200. /*
  201. * Clear any possible leftover bits:
  202. */
  203. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  204. }
  205. propagate_user_return_notify(prev_p, next_p);
  206. }
  207. /*
  208. * Idle related variables and functions
  209. */
  210. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  211. EXPORT_SYMBOL(boot_option_idle_override);
  212. static void (*x86_idle)(void);
  213. #ifndef CONFIG_SMP
  214. static inline void play_dead(void)
  215. {
  216. BUG();
  217. }
  218. #endif
  219. #ifdef CONFIG_X86_64
  220. void enter_idle(void)
  221. {
  222. this_cpu_write(is_idle, 1);
  223. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  224. }
  225. static void __exit_idle(void)
  226. {
  227. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  228. return;
  229. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  230. }
  231. /* Called from interrupts to signify idle end */
  232. void exit_idle(void)
  233. {
  234. /* idle loop has pid 0 */
  235. if (current->pid)
  236. return;
  237. __exit_idle();
  238. }
  239. #endif
  240. void arch_cpu_idle_enter(void)
  241. {
  242. local_touch_nmi();
  243. enter_idle();
  244. }
  245. void arch_cpu_idle_exit(void)
  246. {
  247. __exit_idle();
  248. }
  249. void arch_cpu_idle_dead(void)
  250. {
  251. play_dead();
  252. }
  253. /*
  254. * Called from the generic idle code.
  255. */
  256. void arch_cpu_idle(void)
  257. {
  258. x86_idle();
  259. }
  260. /*
  261. * We use this if we don't have any better idle routine..
  262. */
  263. void __cpuidle default_idle(void)
  264. {
  265. trace_cpu_idle_rcuidle(1, smp_processor_id());
  266. safe_halt();
  267. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  268. }
  269. #ifdef CONFIG_APM_MODULE
  270. EXPORT_SYMBOL(default_idle);
  271. #endif
  272. #ifdef CONFIG_XEN
  273. bool xen_set_default_idle(void)
  274. {
  275. bool ret = !!x86_idle;
  276. x86_idle = default_idle;
  277. return ret;
  278. }
  279. #endif
  280. void stop_this_cpu(void *dummy)
  281. {
  282. local_irq_disable();
  283. /*
  284. * Remove this CPU:
  285. */
  286. set_cpu_online(smp_processor_id(), false);
  287. disable_local_APIC();
  288. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  289. for (;;)
  290. halt();
  291. }
  292. bool amd_e400_c1e_detected;
  293. EXPORT_SYMBOL(amd_e400_c1e_detected);
  294. static cpumask_var_t amd_e400_c1e_mask;
  295. void amd_e400_remove_cpu(int cpu)
  296. {
  297. if (amd_e400_c1e_mask != NULL)
  298. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  299. }
  300. /*
  301. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  302. * pending message MSR. If we detect C1E, then we handle it the same
  303. * way as C3 power states (local apic timer and TSC stop)
  304. */
  305. static void amd_e400_idle(void)
  306. {
  307. if (!amd_e400_c1e_detected) {
  308. u32 lo, hi;
  309. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  310. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  311. amd_e400_c1e_detected = true;
  312. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  313. mark_tsc_unstable("TSC halt in AMD C1E");
  314. pr_info("System has AMD C1E enabled\n");
  315. }
  316. }
  317. if (amd_e400_c1e_detected) {
  318. int cpu = smp_processor_id();
  319. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  320. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  321. /* Force broadcast so ACPI can not interfere. */
  322. tick_broadcast_force();
  323. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  324. }
  325. tick_broadcast_enter();
  326. default_idle();
  327. /*
  328. * The switch back from broadcast mode needs to be
  329. * called with interrupts disabled.
  330. */
  331. local_irq_disable();
  332. tick_broadcast_exit();
  333. local_irq_enable();
  334. } else
  335. default_idle();
  336. }
  337. /*
  338. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  339. * We can't rely on cpuidle installing MWAIT, because it will not load
  340. * on systems that support only C1 -- so the boot default must be MWAIT.
  341. *
  342. * Some AMD machines are the opposite, they depend on using HALT.
  343. *
  344. * So for default C1, which is used during boot until cpuidle loads,
  345. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  346. */
  347. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  348. {
  349. if (c->x86_vendor != X86_VENDOR_INTEL)
  350. return 0;
  351. if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
  352. return 0;
  353. return 1;
  354. }
  355. /*
  356. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  357. * with interrupts enabled and no flags, which is backwards compatible with the
  358. * original MWAIT implementation.
  359. */
  360. static __cpuidle void mwait_idle(void)
  361. {
  362. if (!current_set_polling_and_test()) {
  363. trace_cpu_idle_rcuidle(1, smp_processor_id());
  364. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  365. mb(); /* quirk */
  366. clflush((void *)&current_thread_info()->flags);
  367. mb(); /* quirk */
  368. }
  369. __monitor((void *)&current_thread_info()->flags, 0, 0);
  370. if (!need_resched())
  371. __sti_mwait(0, 0);
  372. else
  373. local_irq_enable();
  374. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  375. } else {
  376. local_irq_enable();
  377. }
  378. __current_clr_polling();
  379. }
  380. void select_idle_routine(const struct cpuinfo_x86 *c)
  381. {
  382. #ifdef CONFIG_SMP
  383. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  384. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  385. #endif
  386. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  387. return;
  388. if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
  389. pr_info("using AMD E400 aware idle routine\n");
  390. x86_idle = amd_e400_idle;
  391. } else if (prefer_mwait_c1_over_halt(c)) {
  392. pr_info("using mwait in idle threads\n");
  393. x86_idle = mwait_idle;
  394. } else
  395. x86_idle = default_idle;
  396. }
  397. void __init init_amd_e400_c1e_mask(void)
  398. {
  399. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  400. if (x86_idle == amd_e400_idle)
  401. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  402. }
  403. static int __init idle_setup(char *str)
  404. {
  405. if (!str)
  406. return -EINVAL;
  407. if (!strcmp(str, "poll")) {
  408. pr_info("using polling idle threads\n");
  409. boot_option_idle_override = IDLE_POLL;
  410. cpu_idle_poll_ctrl(true);
  411. } else if (!strcmp(str, "halt")) {
  412. /*
  413. * When the boot option of idle=halt is added, halt is
  414. * forced to be used for CPU idle. In such case CPU C2/C3
  415. * won't be used again.
  416. * To continue to load the CPU idle driver, don't touch
  417. * the boot_option_idle_override.
  418. */
  419. x86_idle = default_idle;
  420. boot_option_idle_override = IDLE_HALT;
  421. } else if (!strcmp(str, "nomwait")) {
  422. /*
  423. * If the boot option of "idle=nomwait" is added,
  424. * it means that mwait will be disabled for CPU C2/C3
  425. * states. In such case it won't touch the variable
  426. * of boot_option_idle_override.
  427. */
  428. boot_option_idle_override = IDLE_NOMWAIT;
  429. } else
  430. return -1;
  431. return 0;
  432. }
  433. early_param("idle", idle_setup);
  434. unsigned long arch_align_stack(unsigned long sp)
  435. {
  436. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  437. sp -= get_random_int() % 8192;
  438. return sp & ~0xf;
  439. }
  440. unsigned long arch_randomize_brk(struct mm_struct *mm)
  441. {
  442. return randomize_page(mm->brk, 0x02000000);
  443. }
  444. /*
  445. * Return saved PC of a blocked thread.
  446. * What is this good for? it will be always the scheduler or ret_from_fork.
  447. */
  448. unsigned long thread_saved_pc(struct task_struct *tsk)
  449. {
  450. struct inactive_task_frame *frame =
  451. (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
  452. return READ_ONCE_NOCHECK(frame->ret_addr);
  453. }
  454. /*
  455. * Called from fs/proc with a reference on @p to find the function
  456. * which called into schedule(). This needs to be done carefully
  457. * because the task might wake up and we might look at a stack
  458. * changing under us.
  459. */
  460. unsigned long get_wchan(struct task_struct *p)
  461. {
  462. unsigned long start, bottom, top, sp, fp, ip, ret = 0;
  463. int count = 0;
  464. if (!p || p == current || p->state == TASK_RUNNING)
  465. return 0;
  466. if (!try_get_task_stack(p))
  467. return 0;
  468. start = (unsigned long)task_stack_page(p);
  469. if (!start)
  470. goto out;
  471. /*
  472. * Layout of the stack page:
  473. *
  474. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  475. * PADDING
  476. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  477. * stack
  478. * ----------- bottom = start
  479. *
  480. * The tasks stack pointer points at the location where the
  481. * framepointer is stored. The data on the stack is:
  482. * ... IP FP ... IP FP
  483. *
  484. * We need to read FP and IP, so we need to adjust the upper
  485. * bound by another unsigned long.
  486. */
  487. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  488. top -= 2 * sizeof(unsigned long);
  489. bottom = start;
  490. sp = READ_ONCE(p->thread.sp);
  491. if (sp < bottom || sp > top)
  492. goto out;
  493. fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
  494. do {
  495. if (fp < bottom || fp > top)
  496. goto out;
  497. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  498. if (!in_sched_functions(ip)) {
  499. ret = ip;
  500. goto out;
  501. }
  502. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  503. } while (count++ < 16 && p->state != TASK_RUNNING);
  504. out:
  505. put_task_stack(p);
  506. return ret;
  507. }