crc32be-vx.S 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. /*
  2. * Hardware-accelerated CRC-32 variants for Linux on z Systems
  3. *
  4. * Use the z/Architecture Vector Extension Facility to accelerate the
  5. * computing of CRC-32 checksums.
  6. *
  7. * This CRC-32 implementation algorithm processes the most-significant
  8. * bit first (BE).
  9. *
  10. * Copyright IBM Corp. 2015
  11. * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  12. */
  13. #include <linux/linkage.h>
  14. #include <asm/vx-insn.h>
  15. /* Vector register range containing CRC-32 constants */
  16. #define CONST_R1R2 %v9
  17. #define CONST_R3R4 %v10
  18. #define CONST_R5 %v11
  19. #define CONST_R6 %v12
  20. #define CONST_RU_POLY %v13
  21. #define CONST_CRC_POLY %v14
  22. .data
  23. .align 8
  24. /*
  25. * The CRC-32 constant block contains reduction constants to fold and
  26. * process particular chunks of the input data stream in parallel.
  27. *
  28. * For the CRC-32 variants, the constants are precomputed according to
  29. * these defintions:
  30. *
  31. * R1 = x4*128+64 mod P(x)
  32. * R2 = x4*128 mod P(x)
  33. * R3 = x128+64 mod P(x)
  34. * R4 = x128 mod P(x)
  35. * R5 = x96 mod P(x)
  36. * R6 = x64 mod P(x)
  37. *
  38. * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
  39. *
  40. * where P(x) is the polynomial in the normal domain and the P'(x) is the
  41. * polynomial in the reversed (bitreflected) domain.
  42. *
  43. * Note that the constant definitions below are extended in order to compute
  44. * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
  45. * The righmost doubleword can be 0 to prevent contribution to the result or
  46. * can be multiplied by 1 to perform an XOR without the need for a separate
  47. * VECTOR EXCLUSIVE OR instruction.
  48. *
  49. * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
  50. *
  51. * P(x) = 0x04C11DB7
  52. * P'(x) = 0xEDB88320
  53. */
  54. .Lconstants_CRC_32_BE:
  55. .quad 0x08833794c, 0x0e6228b11 # R1, R2
  56. .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
  57. .quad 0x0f200aa66, 1 << 32 # R5, x32
  58. .quad 0x0490d678d, 1 # R6, 1
  59. .quad 0x104d101df, 0 # u
  60. .quad 0x104C11DB7, 0 # P(x)
  61. .previous
  62. .text
  63. /*
  64. * The CRC-32 function(s) use these calling conventions:
  65. *
  66. * Parameters:
  67. *
  68. * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
  69. * %r3: Input buffer pointer, performance might be improved if the
  70. * buffer is on a doubleword boundary.
  71. * %r4: Length of the buffer, must be 64 bytes or greater.
  72. *
  73. * Register usage:
  74. *
  75. * %r5: CRC-32 constant pool base pointer.
  76. * V0: Initial CRC value and intermediate constants and results.
  77. * V1..V4: Data for CRC computation.
  78. * V5..V8: Next data chunks that are fetched from the input buffer.
  79. *
  80. * V9..V14: CRC-32 constants.
  81. */
  82. ENTRY(crc32_be_vgfm_16)
  83. /* Load CRC-32 constants */
  84. larl %r5,.Lconstants_CRC_32_BE
  85. VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
  86. /* Load the initial CRC value into the leftmost word of V0. */
  87. VZERO %v0
  88. VLVGF %v0,%r2,0
  89. /* Load a 64-byte data chunk and XOR with CRC */
  90. VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
  91. VX %v1,%v0,%v1 /* V1 ^= CRC */
  92. aghi %r3,64 /* BUF = BUF + 64 */
  93. aghi %r4,-64 /* LEN = LEN - 64 */
  94. /* Check remaining buffer size and jump to proper folding method */
  95. cghi %r4,64
  96. jl .Lless_than_64bytes
  97. .Lfold_64bytes_loop:
  98. /* Load the next 64-byte data chunk into V5 to V8 */
  99. VLM %v5,%v8,0,%r3
  100. /*
  101. * Perform a GF(2) multiplication of the doublewords in V1 with
  102. * the reduction constants in V0. The intermediate result is
  103. * then folded (accumulated) with the next data chunk in V5 and
  104. * stored in V1. Repeat this step for the register contents
  105. * in V2, V3, and V4 respectively.
  106. */
  107. VGFMAG %v1,CONST_R1R2,%v1,%v5
  108. VGFMAG %v2,CONST_R1R2,%v2,%v6
  109. VGFMAG %v3,CONST_R1R2,%v3,%v7
  110. VGFMAG %v4,CONST_R1R2,%v4,%v8
  111. /* Adjust buffer pointer and length for next loop */
  112. aghi %r3,64 /* BUF = BUF + 64 */
  113. aghi %r4,-64 /* LEN = LEN - 64 */
  114. cghi %r4,64
  115. jnl .Lfold_64bytes_loop
  116. .Lless_than_64bytes:
  117. /* Fold V1 to V4 into a single 128-bit value in V1 */
  118. VGFMAG %v1,CONST_R3R4,%v1,%v2
  119. VGFMAG %v1,CONST_R3R4,%v1,%v3
  120. VGFMAG %v1,CONST_R3R4,%v1,%v4
  121. /* Check whether to continue with 64-bit folding */
  122. cghi %r4,16
  123. jl .Lfinal_fold
  124. .Lfold_16bytes_loop:
  125. VL %v2,0,,%r3 /* Load next data chunk */
  126. VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
  127. /* Adjust buffer pointer and size for folding next data chunk */
  128. aghi %r3,16
  129. aghi %r4,-16
  130. /* Process remaining data chunks */
  131. cghi %r4,16
  132. jnl .Lfold_16bytes_loop
  133. .Lfinal_fold:
  134. /*
  135. * The R5 constant is used to fold a 128-bit value into an 96-bit value
  136. * that is XORed with the next 96-bit input data chunk. To use a single
  137. * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
  138. * form an intermediate 96-bit value (with appended zeros) which is then
  139. * XORed with the intermediate reduction result.
  140. */
  141. VGFMG %v1,CONST_R5,%v1
  142. /*
  143. * Further reduce the remaining 96-bit value to a 64-bit value using a
  144. * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
  145. * intermediate result is then XORed with the product of the leftmost
  146. * doubleword with R6. The result is a 64-bit value and is subject to
  147. * the Barret reduction.
  148. */
  149. VGFMG %v1,CONST_R6,%v1
  150. /*
  151. * The input values to the Barret reduction are the degree-63 polynomial
  152. * in V1 (R(x)), degree-32 generator polynomial, and the reduction
  153. * constant u. The Barret reduction result is the CRC value of R(x) mod
  154. * P(x).
  155. *
  156. * The Barret reduction algorithm is defined as:
  157. *
  158. * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
  159. * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
  160. * 3. C(x) = R(x) XOR T2(x) mod x^32
  161. *
  162. * Note: To compensate the division by x^32, use the vector unpack
  163. * instruction to move the leftmost word into the leftmost doubleword
  164. * of the vector register. The rightmost doubleword is multiplied
  165. * with zero to not contribute to the intermedate results.
  166. */
  167. /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
  168. VUPLLF %v2,%v1
  169. VGFMG %v2,CONST_RU_POLY,%v2
  170. /*
  171. * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
  172. * V2 and XOR the intermediate result, T2(x), with the value in V1.
  173. * The final result is in the rightmost word of V2.
  174. */
  175. VUPLLF %v2,%v2
  176. VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
  177. .Ldone:
  178. VLGVF %r2,%v2,3
  179. br %r14
  180. .previous