numa.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629
  1. /*
  2. * pSeries NUMA support
  3. *
  4. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #define pr_fmt(fmt) "numa: " fmt
  12. #include <linux/threads.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/init.h>
  15. #include <linux/mm.h>
  16. #include <linux/mmzone.h>
  17. #include <linux/export.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/notifier.h>
  21. #include <linux/memblock.h>
  22. #include <linux/of.h>
  23. #include <linux/pfn.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/node.h>
  26. #include <linux/stop_machine.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/seq_file.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/slab.h>
  31. #include <asm/cputhreads.h>
  32. #include <asm/sparsemem.h>
  33. #include <asm/prom.h>
  34. #include <asm/smp.h>
  35. #include <asm/cputhreads.h>
  36. #include <asm/topology.h>
  37. #include <asm/firmware.h>
  38. #include <asm/paca.h>
  39. #include <asm/hvcall.h>
  40. #include <asm/setup.h>
  41. #include <asm/vdso.h>
  42. static int numa_enabled = 1;
  43. static char *cmdline __initdata;
  44. static int numa_debug;
  45. #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  46. int numa_cpu_lookup_table[NR_CPUS];
  47. cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  48. struct pglist_data *node_data[MAX_NUMNODES];
  49. EXPORT_SYMBOL(numa_cpu_lookup_table);
  50. EXPORT_SYMBOL(node_to_cpumask_map);
  51. EXPORT_SYMBOL(node_data);
  52. static int min_common_depth;
  53. static int n_mem_addr_cells, n_mem_size_cells;
  54. static int form1_affinity;
  55. #define MAX_DISTANCE_REF_POINTS 4
  56. static int distance_ref_points_depth;
  57. static const __be32 *distance_ref_points;
  58. static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  59. /*
  60. * Allocate node_to_cpumask_map based on number of available nodes
  61. * Requires node_possible_map to be valid.
  62. *
  63. * Note: cpumask_of_node() is not valid until after this is done.
  64. */
  65. static void __init setup_node_to_cpumask_map(void)
  66. {
  67. unsigned int node;
  68. /* setup nr_node_ids if not done yet */
  69. if (nr_node_ids == MAX_NUMNODES)
  70. setup_nr_node_ids();
  71. /* allocate the map */
  72. for_each_node(node)
  73. alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  74. /* cpumask_of_node() will now work */
  75. dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
  76. }
  77. static int __init fake_numa_create_new_node(unsigned long end_pfn,
  78. unsigned int *nid)
  79. {
  80. unsigned long long mem;
  81. char *p = cmdline;
  82. static unsigned int fake_nid;
  83. static unsigned long long curr_boundary;
  84. /*
  85. * Modify node id, iff we started creating NUMA nodes
  86. * We want to continue from where we left of the last time
  87. */
  88. if (fake_nid)
  89. *nid = fake_nid;
  90. /*
  91. * In case there are no more arguments to parse, the
  92. * node_id should be the same as the last fake node id
  93. * (we've handled this above).
  94. */
  95. if (!p)
  96. return 0;
  97. mem = memparse(p, &p);
  98. if (!mem)
  99. return 0;
  100. if (mem < curr_boundary)
  101. return 0;
  102. curr_boundary = mem;
  103. if ((end_pfn << PAGE_SHIFT) > mem) {
  104. /*
  105. * Skip commas and spaces
  106. */
  107. while (*p == ',' || *p == ' ' || *p == '\t')
  108. p++;
  109. cmdline = p;
  110. fake_nid++;
  111. *nid = fake_nid;
  112. dbg("created new fake_node with id %d\n", fake_nid);
  113. return 1;
  114. }
  115. return 0;
  116. }
  117. static void reset_numa_cpu_lookup_table(void)
  118. {
  119. unsigned int cpu;
  120. for_each_possible_cpu(cpu)
  121. numa_cpu_lookup_table[cpu] = -1;
  122. }
  123. static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
  124. {
  125. numa_cpu_lookup_table[cpu] = node;
  126. }
  127. static void map_cpu_to_node(int cpu, int node)
  128. {
  129. update_numa_cpu_lookup_table(cpu, node);
  130. dbg("adding cpu %d to node %d\n", cpu, node);
  131. if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
  132. cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
  133. }
  134. #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
  135. static void unmap_cpu_from_node(unsigned long cpu)
  136. {
  137. int node = numa_cpu_lookup_table[cpu];
  138. dbg("removing cpu %lu from node %d\n", cpu, node);
  139. if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
  140. cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
  141. } else {
  142. printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
  143. cpu, node);
  144. }
  145. }
  146. #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
  147. /* must hold reference to node during call */
  148. static const __be32 *of_get_associativity(struct device_node *dev)
  149. {
  150. return of_get_property(dev, "ibm,associativity", NULL);
  151. }
  152. /*
  153. * Returns the property linux,drconf-usable-memory if
  154. * it exists (the property exists only in kexec/kdump kernels,
  155. * added by kexec-tools)
  156. */
  157. static const __be32 *of_get_usable_memory(struct device_node *memory)
  158. {
  159. const __be32 *prop;
  160. u32 len;
  161. prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
  162. if (!prop || len < sizeof(unsigned int))
  163. return NULL;
  164. return prop;
  165. }
  166. int __node_distance(int a, int b)
  167. {
  168. int i;
  169. int distance = LOCAL_DISTANCE;
  170. if (!form1_affinity)
  171. return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
  172. for (i = 0; i < distance_ref_points_depth; i++) {
  173. if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
  174. break;
  175. /* Double the distance for each NUMA level */
  176. distance *= 2;
  177. }
  178. return distance;
  179. }
  180. EXPORT_SYMBOL(__node_distance);
  181. static void initialize_distance_lookup_table(int nid,
  182. const __be32 *associativity)
  183. {
  184. int i;
  185. if (!form1_affinity)
  186. return;
  187. for (i = 0; i < distance_ref_points_depth; i++) {
  188. const __be32 *entry;
  189. entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
  190. distance_lookup_table[nid][i] = of_read_number(entry, 1);
  191. }
  192. }
  193. /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
  194. * info is found.
  195. */
  196. static int associativity_to_nid(const __be32 *associativity)
  197. {
  198. int nid = -1;
  199. if (min_common_depth == -1)
  200. goto out;
  201. if (of_read_number(associativity, 1) >= min_common_depth)
  202. nid = of_read_number(&associativity[min_common_depth], 1);
  203. /* POWER4 LPAR uses 0xffff as invalid node */
  204. if (nid == 0xffff || nid >= MAX_NUMNODES)
  205. nid = -1;
  206. if (nid > 0 &&
  207. of_read_number(associativity, 1) >= distance_ref_points_depth) {
  208. /*
  209. * Skip the length field and send start of associativity array
  210. */
  211. initialize_distance_lookup_table(nid, associativity + 1);
  212. }
  213. out:
  214. return nid;
  215. }
  216. /* Returns the nid associated with the given device tree node,
  217. * or -1 if not found.
  218. */
  219. static int of_node_to_nid_single(struct device_node *device)
  220. {
  221. int nid = -1;
  222. const __be32 *tmp;
  223. tmp = of_get_associativity(device);
  224. if (tmp)
  225. nid = associativity_to_nid(tmp);
  226. return nid;
  227. }
  228. /* Walk the device tree upwards, looking for an associativity id */
  229. int of_node_to_nid(struct device_node *device)
  230. {
  231. int nid = -1;
  232. of_node_get(device);
  233. while (device) {
  234. nid = of_node_to_nid_single(device);
  235. if (nid != -1)
  236. break;
  237. device = of_get_next_parent(device);
  238. }
  239. of_node_put(device);
  240. return nid;
  241. }
  242. EXPORT_SYMBOL_GPL(of_node_to_nid);
  243. static int __init find_min_common_depth(void)
  244. {
  245. int depth;
  246. struct device_node *root;
  247. if (firmware_has_feature(FW_FEATURE_OPAL))
  248. root = of_find_node_by_path("/ibm,opal");
  249. else
  250. root = of_find_node_by_path("/rtas");
  251. if (!root)
  252. root = of_find_node_by_path("/");
  253. /*
  254. * This property is a set of 32-bit integers, each representing
  255. * an index into the ibm,associativity nodes.
  256. *
  257. * With form 0 affinity the first integer is for an SMP configuration
  258. * (should be all 0's) and the second is for a normal NUMA
  259. * configuration. We have only one level of NUMA.
  260. *
  261. * With form 1 affinity the first integer is the most significant
  262. * NUMA boundary and the following are progressively less significant
  263. * boundaries. There can be more than one level of NUMA.
  264. */
  265. distance_ref_points = of_get_property(root,
  266. "ibm,associativity-reference-points",
  267. &distance_ref_points_depth);
  268. if (!distance_ref_points) {
  269. dbg("NUMA: ibm,associativity-reference-points not found.\n");
  270. goto err;
  271. }
  272. distance_ref_points_depth /= sizeof(int);
  273. if (firmware_has_feature(FW_FEATURE_OPAL) ||
  274. firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
  275. dbg("Using form 1 affinity\n");
  276. form1_affinity = 1;
  277. }
  278. if (form1_affinity) {
  279. depth = of_read_number(distance_ref_points, 1);
  280. } else {
  281. if (distance_ref_points_depth < 2) {
  282. printk(KERN_WARNING "NUMA: "
  283. "short ibm,associativity-reference-points\n");
  284. goto err;
  285. }
  286. depth = of_read_number(&distance_ref_points[1], 1);
  287. }
  288. /*
  289. * Warn and cap if the hardware supports more than
  290. * MAX_DISTANCE_REF_POINTS domains.
  291. */
  292. if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
  293. printk(KERN_WARNING "NUMA: distance array capped at "
  294. "%d entries\n", MAX_DISTANCE_REF_POINTS);
  295. distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
  296. }
  297. of_node_put(root);
  298. return depth;
  299. err:
  300. of_node_put(root);
  301. return -1;
  302. }
  303. static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
  304. {
  305. struct device_node *memory = NULL;
  306. memory = of_find_node_by_type(memory, "memory");
  307. if (!memory)
  308. panic("numa.c: No memory nodes found!");
  309. *n_addr_cells = of_n_addr_cells(memory);
  310. *n_size_cells = of_n_size_cells(memory);
  311. of_node_put(memory);
  312. }
  313. static unsigned long read_n_cells(int n, const __be32 **buf)
  314. {
  315. unsigned long result = 0;
  316. while (n--) {
  317. result = (result << 32) | of_read_number(*buf, 1);
  318. (*buf)++;
  319. }
  320. return result;
  321. }
  322. /*
  323. * Read the next memblock list entry from the ibm,dynamic-memory property
  324. * and return the information in the provided of_drconf_cell structure.
  325. */
  326. static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
  327. {
  328. const __be32 *cp;
  329. drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
  330. cp = *cellp;
  331. drmem->drc_index = of_read_number(cp, 1);
  332. drmem->reserved = of_read_number(&cp[1], 1);
  333. drmem->aa_index = of_read_number(&cp[2], 1);
  334. drmem->flags = of_read_number(&cp[3], 1);
  335. *cellp = cp + 4;
  336. }
  337. /*
  338. * Retrieve and validate the ibm,dynamic-memory property of the device tree.
  339. *
  340. * The layout of the ibm,dynamic-memory property is a number N of memblock
  341. * list entries followed by N memblock list entries. Each memblock list entry
  342. * contains information as laid out in the of_drconf_cell struct above.
  343. */
  344. static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
  345. {
  346. const __be32 *prop;
  347. u32 len, entries;
  348. prop = of_get_property(memory, "ibm,dynamic-memory", &len);
  349. if (!prop || len < sizeof(unsigned int))
  350. return 0;
  351. entries = of_read_number(prop++, 1);
  352. /* Now that we know the number of entries, revalidate the size
  353. * of the property read in to ensure we have everything
  354. */
  355. if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
  356. return 0;
  357. *dm = prop;
  358. return entries;
  359. }
  360. /*
  361. * Retrieve and validate the ibm,lmb-size property for drconf memory
  362. * from the device tree.
  363. */
  364. static u64 of_get_lmb_size(struct device_node *memory)
  365. {
  366. const __be32 *prop;
  367. u32 len;
  368. prop = of_get_property(memory, "ibm,lmb-size", &len);
  369. if (!prop || len < sizeof(unsigned int))
  370. return 0;
  371. return read_n_cells(n_mem_size_cells, &prop);
  372. }
  373. struct assoc_arrays {
  374. u32 n_arrays;
  375. u32 array_sz;
  376. const __be32 *arrays;
  377. };
  378. /*
  379. * Retrieve and validate the list of associativity arrays for drconf
  380. * memory from the ibm,associativity-lookup-arrays property of the
  381. * device tree..
  382. *
  383. * The layout of the ibm,associativity-lookup-arrays property is a number N
  384. * indicating the number of associativity arrays, followed by a number M
  385. * indicating the size of each associativity array, followed by a list
  386. * of N associativity arrays.
  387. */
  388. static int of_get_assoc_arrays(struct device_node *memory,
  389. struct assoc_arrays *aa)
  390. {
  391. const __be32 *prop;
  392. u32 len;
  393. prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
  394. if (!prop || len < 2 * sizeof(unsigned int))
  395. return -1;
  396. aa->n_arrays = of_read_number(prop++, 1);
  397. aa->array_sz = of_read_number(prop++, 1);
  398. /* Now that we know the number of arrays and size of each array,
  399. * revalidate the size of the property read in.
  400. */
  401. if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
  402. return -1;
  403. aa->arrays = prop;
  404. return 0;
  405. }
  406. /*
  407. * This is like of_node_to_nid_single() for memory represented in the
  408. * ibm,dynamic-reconfiguration-memory node.
  409. */
  410. static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
  411. struct assoc_arrays *aa)
  412. {
  413. int default_nid = 0;
  414. int nid = default_nid;
  415. int index;
  416. if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
  417. !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
  418. drmem->aa_index < aa->n_arrays) {
  419. index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
  420. nid = of_read_number(&aa->arrays[index], 1);
  421. if (nid == 0xffff || nid >= MAX_NUMNODES)
  422. nid = default_nid;
  423. if (nid > 0) {
  424. index = drmem->aa_index * aa->array_sz;
  425. initialize_distance_lookup_table(nid,
  426. &aa->arrays[index]);
  427. }
  428. }
  429. return nid;
  430. }
  431. /*
  432. * Figure out to which domain a cpu belongs and stick it there.
  433. * Return the id of the domain used.
  434. */
  435. static int numa_setup_cpu(unsigned long lcpu)
  436. {
  437. int nid = -1;
  438. struct device_node *cpu;
  439. /*
  440. * If a valid cpu-to-node mapping is already available, use it
  441. * directly instead of querying the firmware, since it represents
  442. * the most recent mapping notified to us by the platform (eg: VPHN).
  443. */
  444. if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
  445. map_cpu_to_node(lcpu, nid);
  446. return nid;
  447. }
  448. cpu = of_get_cpu_node(lcpu, NULL);
  449. if (!cpu) {
  450. WARN_ON(1);
  451. if (cpu_present(lcpu))
  452. goto out_present;
  453. else
  454. goto out;
  455. }
  456. nid = of_node_to_nid_single(cpu);
  457. out_present:
  458. if (nid < 0 || !node_online(nid))
  459. nid = first_online_node;
  460. map_cpu_to_node(lcpu, nid);
  461. of_node_put(cpu);
  462. out:
  463. return nid;
  464. }
  465. static void verify_cpu_node_mapping(int cpu, int node)
  466. {
  467. int base, sibling, i;
  468. /* Verify that all the threads in the core belong to the same node */
  469. base = cpu_first_thread_sibling(cpu);
  470. for (i = 0; i < threads_per_core; i++) {
  471. sibling = base + i;
  472. if (sibling == cpu || cpu_is_offline(sibling))
  473. continue;
  474. if (cpu_to_node(sibling) != node) {
  475. WARN(1, "CPU thread siblings %d and %d don't belong"
  476. " to the same node!\n", cpu, sibling);
  477. break;
  478. }
  479. }
  480. }
  481. /* Must run before sched domains notifier. */
  482. static int ppc_numa_cpu_prepare(unsigned int cpu)
  483. {
  484. int nid;
  485. nid = numa_setup_cpu(cpu);
  486. verify_cpu_node_mapping(cpu, nid);
  487. return 0;
  488. }
  489. static int ppc_numa_cpu_dead(unsigned int cpu)
  490. {
  491. #ifdef CONFIG_HOTPLUG_CPU
  492. unmap_cpu_from_node(cpu);
  493. #endif
  494. return 0;
  495. }
  496. /*
  497. * Check and possibly modify a memory region to enforce the memory limit.
  498. *
  499. * Returns the size the region should have to enforce the memory limit.
  500. * This will either be the original value of size, a truncated value,
  501. * or zero. If the returned value of size is 0 the region should be
  502. * discarded as it lies wholly above the memory limit.
  503. */
  504. static unsigned long __init numa_enforce_memory_limit(unsigned long start,
  505. unsigned long size)
  506. {
  507. /*
  508. * We use memblock_end_of_DRAM() in here instead of memory_limit because
  509. * we've already adjusted it for the limit and it takes care of
  510. * having memory holes below the limit. Also, in the case of
  511. * iommu_is_off, memory_limit is not set but is implicitly enforced.
  512. */
  513. if (start + size <= memblock_end_of_DRAM())
  514. return size;
  515. if (start >= memblock_end_of_DRAM())
  516. return 0;
  517. return memblock_end_of_DRAM() - start;
  518. }
  519. /*
  520. * Reads the counter for a given entry in
  521. * linux,drconf-usable-memory property
  522. */
  523. static inline int __init read_usm_ranges(const __be32 **usm)
  524. {
  525. /*
  526. * For each lmb in ibm,dynamic-memory a corresponding
  527. * entry in linux,drconf-usable-memory property contains
  528. * a counter followed by that many (base, size) duple.
  529. * read the counter from linux,drconf-usable-memory
  530. */
  531. return read_n_cells(n_mem_size_cells, usm);
  532. }
  533. /*
  534. * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
  535. * node. This assumes n_mem_{addr,size}_cells have been set.
  536. */
  537. static void __init parse_drconf_memory(struct device_node *memory)
  538. {
  539. const __be32 *uninitialized_var(dm), *usm;
  540. unsigned int n, rc, ranges, is_kexec_kdump = 0;
  541. unsigned long lmb_size, base, size, sz;
  542. int nid;
  543. struct assoc_arrays aa = { .arrays = NULL };
  544. n = of_get_drconf_memory(memory, &dm);
  545. if (!n)
  546. return;
  547. lmb_size = of_get_lmb_size(memory);
  548. if (!lmb_size)
  549. return;
  550. rc = of_get_assoc_arrays(memory, &aa);
  551. if (rc)
  552. return;
  553. /* check if this is a kexec/kdump kernel */
  554. usm = of_get_usable_memory(memory);
  555. if (usm != NULL)
  556. is_kexec_kdump = 1;
  557. for (; n != 0; --n) {
  558. struct of_drconf_cell drmem;
  559. read_drconf_cell(&drmem, &dm);
  560. /* skip this block if the reserved bit is set in flags (0x80)
  561. or if the block is not assigned to this partition (0x8) */
  562. if ((drmem.flags & DRCONF_MEM_RESERVED)
  563. || !(drmem.flags & DRCONF_MEM_ASSIGNED))
  564. continue;
  565. base = drmem.base_addr;
  566. size = lmb_size;
  567. ranges = 1;
  568. if (is_kexec_kdump) {
  569. ranges = read_usm_ranges(&usm);
  570. if (!ranges) /* there are no (base, size) duple */
  571. continue;
  572. }
  573. do {
  574. if (is_kexec_kdump) {
  575. base = read_n_cells(n_mem_addr_cells, &usm);
  576. size = read_n_cells(n_mem_size_cells, &usm);
  577. }
  578. nid = of_drconf_to_nid_single(&drmem, &aa);
  579. fake_numa_create_new_node(
  580. ((base + size) >> PAGE_SHIFT),
  581. &nid);
  582. node_set_online(nid);
  583. sz = numa_enforce_memory_limit(base, size);
  584. if (sz)
  585. memblock_set_node(base, sz,
  586. &memblock.memory, nid);
  587. } while (--ranges);
  588. }
  589. }
  590. static int __init parse_numa_properties(void)
  591. {
  592. struct device_node *memory;
  593. int default_nid = 0;
  594. unsigned long i;
  595. if (numa_enabled == 0) {
  596. printk(KERN_WARNING "NUMA disabled by user\n");
  597. return -1;
  598. }
  599. min_common_depth = find_min_common_depth();
  600. if (min_common_depth < 0)
  601. return min_common_depth;
  602. dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
  603. /*
  604. * Even though we connect cpus to numa domains later in SMP
  605. * init, we need to know the node ids now. This is because
  606. * each node to be onlined must have NODE_DATA etc backing it.
  607. */
  608. for_each_present_cpu(i) {
  609. struct device_node *cpu;
  610. int nid;
  611. cpu = of_get_cpu_node(i, NULL);
  612. BUG_ON(!cpu);
  613. nid = of_node_to_nid_single(cpu);
  614. of_node_put(cpu);
  615. /*
  616. * Don't fall back to default_nid yet -- we will plug
  617. * cpus into nodes once the memory scan has discovered
  618. * the topology.
  619. */
  620. if (nid < 0)
  621. continue;
  622. node_set_online(nid);
  623. }
  624. get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
  625. for_each_node_by_type(memory, "memory") {
  626. unsigned long start;
  627. unsigned long size;
  628. int nid;
  629. int ranges;
  630. const __be32 *memcell_buf;
  631. unsigned int len;
  632. memcell_buf = of_get_property(memory,
  633. "linux,usable-memory", &len);
  634. if (!memcell_buf || len <= 0)
  635. memcell_buf = of_get_property(memory, "reg", &len);
  636. if (!memcell_buf || len <= 0)
  637. continue;
  638. /* ranges in cell */
  639. ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
  640. new_range:
  641. /* these are order-sensitive, and modify the buffer pointer */
  642. start = read_n_cells(n_mem_addr_cells, &memcell_buf);
  643. size = read_n_cells(n_mem_size_cells, &memcell_buf);
  644. /*
  645. * Assumption: either all memory nodes or none will
  646. * have associativity properties. If none, then
  647. * everything goes to default_nid.
  648. */
  649. nid = of_node_to_nid_single(memory);
  650. if (nid < 0)
  651. nid = default_nid;
  652. fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
  653. node_set_online(nid);
  654. if (!(size = numa_enforce_memory_limit(start, size))) {
  655. if (--ranges)
  656. goto new_range;
  657. else
  658. continue;
  659. }
  660. memblock_set_node(start, size, &memblock.memory, nid);
  661. if (--ranges)
  662. goto new_range;
  663. }
  664. /*
  665. * Now do the same thing for each MEMBLOCK listed in the
  666. * ibm,dynamic-memory property in the
  667. * ibm,dynamic-reconfiguration-memory node.
  668. */
  669. memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
  670. if (memory)
  671. parse_drconf_memory(memory);
  672. return 0;
  673. }
  674. static void __init setup_nonnuma(void)
  675. {
  676. unsigned long top_of_ram = memblock_end_of_DRAM();
  677. unsigned long total_ram = memblock_phys_mem_size();
  678. unsigned long start_pfn, end_pfn;
  679. unsigned int nid = 0;
  680. struct memblock_region *reg;
  681. printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  682. top_of_ram, total_ram);
  683. printk(KERN_DEBUG "Memory hole size: %ldMB\n",
  684. (top_of_ram - total_ram) >> 20);
  685. for_each_memblock(memory, reg) {
  686. start_pfn = memblock_region_memory_base_pfn(reg);
  687. end_pfn = memblock_region_memory_end_pfn(reg);
  688. fake_numa_create_new_node(end_pfn, &nid);
  689. memblock_set_node(PFN_PHYS(start_pfn),
  690. PFN_PHYS(end_pfn - start_pfn),
  691. &memblock.memory, nid);
  692. node_set_online(nid);
  693. }
  694. }
  695. void __init dump_numa_cpu_topology(void)
  696. {
  697. unsigned int node;
  698. unsigned int cpu, count;
  699. if (min_common_depth == -1 || !numa_enabled)
  700. return;
  701. for_each_online_node(node) {
  702. pr_info("Node %d CPUs:", node);
  703. count = 0;
  704. /*
  705. * If we used a CPU iterator here we would miss printing
  706. * the holes in the cpumap.
  707. */
  708. for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
  709. if (cpumask_test_cpu(cpu,
  710. node_to_cpumask_map[node])) {
  711. if (count == 0)
  712. pr_cont(" %u", cpu);
  713. ++count;
  714. } else {
  715. if (count > 1)
  716. pr_cont("-%u", cpu - 1);
  717. count = 0;
  718. }
  719. }
  720. if (count > 1)
  721. pr_cont("-%u", nr_cpu_ids - 1);
  722. pr_cont("\n");
  723. }
  724. }
  725. /* Initialize NODE_DATA for a node on the local memory */
  726. static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
  727. {
  728. u64 spanned_pages = end_pfn - start_pfn;
  729. const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
  730. u64 nd_pa;
  731. void *nd;
  732. int tnid;
  733. if (spanned_pages)
  734. pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
  735. nid, start_pfn << PAGE_SHIFT,
  736. (end_pfn << PAGE_SHIFT) - 1);
  737. else
  738. pr_info("Initmem setup node %d\n", nid);
  739. nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
  740. nd = __va(nd_pa);
  741. /* report and initialize */
  742. pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
  743. nd_pa, nd_pa + nd_size - 1);
  744. tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
  745. if (tnid != nid)
  746. pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
  747. node_data[nid] = nd;
  748. memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
  749. NODE_DATA(nid)->node_id = nid;
  750. NODE_DATA(nid)->node_start_pfn = start_pfn;
  751. NODE_DATA(nid)->node_spanned_pages = spanned_pages;
  752. }
  753. void __init initmem_init(void)
  754. {
  755. int nid, cpu;
  756. max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
  757. max_pfn = max_low_pfn;
  758. if (parse_numa_properties())
  759. setup_nonnuma();
  760. memblock_dump_all();
  761. /*
  762. * Reduce the possible NUMA nodes to the online NUMA nodes,
  763. * since we do not support node hotplug. This ensures that we
  764. * lower the maximum NUMA node ID to what is actually present.
  765. */
  766. nodes_and(node_possible_map, node_possible_map, node_online_map);
  767. for_each_online_node(nid) {
  768. unsigned long start_pfn, end_pfn;
  769. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  770. setup_node_data(nid, start_pfn, end_pfn);
  771. sparse_memory_present_with_active_regions(nid);
  772. }
  773. sparse_init();
  774. setup_node_to_cpumask_map();
  775. reset_numa_cpu_lookup_table();
  776. /*
  777. * We need the numa_cpu_lookup_table to be accurate for all CPUs,
  778. * even before we online them, so that we can use cpu_to_{node,mem}
  779. * early in boot, cf. smp_prepare_cpus().
  780. * _nocalls() + manual invocation is used because cpuhp is not yet
  781. * initialized for the boot CPU.
  782. */
  783. cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "POWER_NUMA_PREPARE",
  784. ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
  785. for_each_present_cpu(cpu)
  786. numa_setup_cpu(cpu);
  787. }
  788. static int __init early_numa(char *p)
  789. {
  790. if (!p)
  791. return 0;
  792. if (strstr(p, "off"))
  793. numa_enabled = 0;
  794. if (strstr(p, "debug"))
  795. numa_debug = 1;
  796. p = strstr(p, "fake=");
  797. if (p)
  798. cmdline = p + strlen("fake=");
  799. return 0;
  800. }
  801. early_param("numa", early_numa);
  802. static bool topology_updates_enabled = true;
  803. static int __init early_topology_updates(char *p)
  804. {
  805. if (!p)
  806. return 0;
  807. if (!strcmp(p, "off")) {
  808. pr_info("Disabling topology updates\n");
  809. topology_updates_enabled = false;
  810. }
  811. return 0;
  812. }
  813. early_param("topology_updates", early_topology_updates);
  814. #ifdef CONFIG_MEMORY_HOTPLUG
  815. /*
  816. * Find the node associated with a hot added memory section for
  817. * memory represented in the device tree by the property
  818. * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
  819. */
  820. static int hot_add_drconf_scn_to_nid(struct device_node *memory,
  821. unsigned long scn_addr)
  822. {
  823. const __be32 *dm;
  824. unsigned int drconf_cell_cnt, rc;
  825. unsigned long lmb_size;
  826. struct assoc_arrays aa;
  827. int nid = -1;
  828. drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
  829. if (!drconf_cell_cnt)
  830. return -1;
  831. lmb_size = of_get_lmb_size(memory);
  832. if (!lmb_size)
  833. return -1;
  834. rc = of_get_assoc_arrays(memory, &aa);
  835. if (rc)
  836. return -1;
  837. for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
  838. struct of_drconf_cell drmem;
  839. read_drconf_cell(&drmem, &dm);
  840. /* skip this block if it is reserved or not assigned to
  841. * this partition */
  842. if ((drmem.flags & DRCONF_MEM_RESERVED)
  843. || !(drmem.flags & DRCONF_MEM_ASSIGNED))
  844. continue;
  845. if ((scn_addr < drmem.base_addr)
  846. || (scn_addr >= (drmem.base_addr + lmb_size)))
  847. continue;
  848. nid = of_drconf_to_nid_single(&drmem, &aa);
  849. break;
  850. }
  851. return nid;
  852. }
  853. /*
  854. * Find the node associated with a hot added memory section for memory
  855. * represented in the device tree as a node (i.e. memory@XXXX) for
  856. * each memblock.
  857. */
  858. static int hot_add_node_scn_to_nid(unsigned long scn_addr)
  859. {
  860. struct device_node *memory;
  861. int nid = -1;
  862. for_each_node_by_type(memory, "memory") {
  863. unsigned long start, size;
  864. int ranges;
  865. const __be32 *memcell_buf;
  866. unsigned int len;
  867. memcell_buf = of_get_property(memory, "reg", &len);
  868. if (!memcell_buf || len <= 0)
  869. continue;
  870. /* ranges in cell */
  871. ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
  872. while (ranges--) {
  873. start = read_n_cells(n_mem_addr_cells, &memcell_buf);
  874. size = read_n_cells(n_mem_size_cells, &memcell_buf);
  875. if ((scn_addr < start) || (scn_addr >= (start + size)))
  876. continue;
  877. nid = of_node_to_nid_single(memory);
  878. break;
  879. }
  880. if (nid >= 0)
  881. break;
  882. }
  883. of_node_put(memory);
  884. return nid;
  885. }
  886. /*
  887. * Find the node associated with a hot added memory section. Section
  888. * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
  889. * sections are fully contained within a single MEMBLOCK.
  890. */
  891. int hot_add_scn_to_nid(unsigned long scn_addr)
  892. {
  893. struct device_node *memory = NULL;
  894. int nid, found = 0;
  895. if (!numa_enabled || (min_common_depth < 0))
  896. return first_online_node;
  897. memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
  898. if (memory) {
  899. nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
  900. of_node_put(memory);
  901. } else {
  902. nid = hot_add_node_scn_to_nid(scn_addr);
  903. }
  904. if (nid < 0 || !node_online(nid))
  905. nid = first_online_node;
  906. if (NODE_DATA(nid)->node_spanned_pages)
  907. return nid;
  908. for_each_online_node(nid) {
  909. if (NODE_DATA(nid)->node_spanned_pages) {
  910. found = 1;
  911. break;
  912. }
  913. }
  914. BUG_ON(!found);
  915. return nid;
  916. }
  917. static u64 hot_add_drconf_memory_max(void)
  918. {
  919. struct device_node *memory = NULL;
  920. struct device_node *dn = NULL;
  921. unsigned int drconf_cell_cnt = 0;
  922. u64 lmb_size = 0;
  923. const __be32 *dm = NULL;
  924. const __be64 *lrdr = NULL;
  925. struct of_drconf_cell drmem;
  926. dn = of_find_node_by_path("/rtas");
  927. if (dn) {
  928. lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
  929. of_node_put(dn);
  930. if (lrdr)
  931. return be64_to_cpup(lrdr);
  932. }
  933. memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
  934. if (memory) {
  935. drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
  936. lmb_size = of_get_lmb_size(memory);
  937. /* Advance to the last cell, each cell has 6 32 bit integers */
  938. dm += (drconf_cell_cnt - 1) * 6;
  939. read_drconf_cell(&drmem, &dm);
  940. of_node_put(memory);
  941. return drmem.base_addr + lmb_size;
  942. }
  943. return 0;
  944. }
  945. /*
  946. * memory_hotplug_max - return max address of memory that may be added
  947. *
  948. * This is currently only used on systems that support drconfig memory
  949. * hotplug.
  950. */
  951. u64 memory_hotplug_max(void)
  952. {
  953. return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
  954. }
  955. #endif /* CONFIG_MEMORY_HOTPLUG */
  956. /* Virtual Processor Home Node (VPHN) support */
  957. #ifdef CONFIG_PPC_SPLPAR
  958. #include "vphn.h"
  959. struct topology_update_data {
  960. struct topology_update_data *next;
  961. unsigned int cpu;
  962. int old_nid;
  963. int new_nid;
  964. };
  965. static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
  966. static cpumask_t cpu_associativity_changes_mask;
  967. static int vphn_enabled;
  968. static int prrn_enabled;
  969. static void reset_topology_timer(void);
  970. /*
  971. * Store the current values of the associativity change counters in the
  972. * hypervisor.
  973. */
  974. static void setup_cpu_associativity_change_counters(void)
  975. {
  976. int cpu;
  977. /* The VPHN feature supports a maximum of 8 reference points */
  978. BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
  979. for_each_possible_cpu(cpu) {
  980. int i;
  981. u8 *counts = vphn_cpu_change_counts[cpu];
  982. volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
  983. for (i = 0; i < distance_ref_points_depth; i++)
  984. counts[i] = hypervisor_counts[i];
  985. }
  986. }
  987. /*
  988. * The hypervisor maintains a set of 8 associativity change counters in
  989. * the VPA of each cpu that correspond to the associativity levels in the
  990. * ibm,associativity-reference-points property. When an associativity
  991. * level changes, the corresponding counter is incremented.
  992. *
  993. * Set a bit in cpu_associativity_changes_mask for each cpu whose home
  994. * node associativity levels have changed.
  995. *
  996. * Returns the number of cpus with unhandled associativity changes.
  997. */
  998. static int update_cpu_associativity_changes_mask(void)
  999. {
  1000. int cpu;
  1001. cpumask_t *changes = &cpu_associativity_changes_mask;
  1002. for_each_possible_cpu(cpu) {
  1003. int i, changed = 0;
  1004. u8 *counts = vphn_cpu_change_counts[cpu];
  1005. volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
  1006. for (i = 0; i < distance_ref_points_depth; i++) {
  1007. if (hypervisor_counts[i] != counts[i]) {
  1008. counts[i] = hypervisor_counts[i];
  1009. changed = 1;
  1010. }
  1011. }
  1012. if (changed) {
  1013. cpumask_or(changes, changes, cpu_sibling_mask(cpu));
  1014. cpu = cpu_last_thread_sibling(cpu);
  1015. }
  1016. }
  1017. return cpumask_weight(changes);
  1018. }
  1019. /*
  1020. * Retrieve the new associativity information for a virtual processor's
  1021. * home node.
  1022. */
  1023. static long hcall_vphn(unsigned long cpu, __be32 *associativity)
  1024. {
  1025. long rc;
  1026. long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
  1027. u64 flags = 1;
  1028. int hwcpu = get_hard_smp_processor_id(cpu);
  1029. rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
  1030. vphn_unpack_associativity(retbuf, associativity);
  1031. return rc;
  1032. }
  1033. static long vphn_get_associativity(unsigned long cpu,
  1034. __be32 *associativity)
  1035. {
  1036. long rc;
  1037. rc = hcall_vphn(cpu, associativity);
  1038. switch (rc) {
  1039. case H_FUNCTION:
  1040. printk(KERN_INFO
  1041. "VPHN is not supported. Disabling polling...\n");
  1042. stop_topology_update();
  1043. break;
  1044. case H_HARDWARE:
  1045. printk(KERN_ERR
  1046. "hcall_vphn() experienced a hardware fault "
  1047. "preventing VPHN. Disabling polling...\n");
  1048. stop_topology_update();
  1049. }
  1050. return rc;
  1051. }
  1052. /*
  1053. * Update the CPU maps and sysfs entries for a single CPU when its NUMA
  1054. * characteristics change. This function doesn't perform any locking and is
  1055. * only safe to call from stop_machine().
  1056. */
  1057. static int update_cpu_topology(void *data)
  1058. {
  1059. struct topology_update_data *update;
  1060. unsigned long cpu;
  1061. if (!data)
  1062. return -EINVAL;
  1063. cpu = smp_processor_id();
  1064. for (update = data; update; update = update->next) {
  1065. int new_nid = update->new_nid;
  1066. if (cpu != update->cpu)
  1067. continue;
  1068. unmap_cpu_from_node(cpu);
  1069. map_cpu_to_node(cpu, new_nid);
  1070. set_cpu_numa_node(cpu, new_nid);
  1071. set_cpu_numa_mem(cpu, local_memory_node(new_nid));
  1072. vdso_getcpu_init();
  1073. }
  1074. return 0;
  1075. }
  1076. static int update_lookup_table(void *data)
  1077. {
  1078. struct topology_update_data *update;
  1079. if (!data)
  1080. return -EINVAL;
  1081. /*
  1082. * Upon topology update, the numa-cpu lookup table needs to be updated
  1083. * for all threads in the core, including offline CPUs, to ensure that
  1084. * future hotplug operations respect the cpu-to-node associativity
  1085. * properly.
  1086. */
  1087. for (update = data; update; update = update->next) {
  1088. int nid, base, j;
  1089. nid = update->new_nid;
  1090. base = cpu_first_thread_sibling(update->cpu);
  1091. for (j = 0; j < threads_per_core; j++) {
  1092. update_numa_cpu_lookup_table(base + j, nid);
  1093. }
  1094. }
  1095. return 0;
  1096. }
  1097. /*
  1098. * Update the node maps and sysfs entries for each cpu whose home node
  1099. * has changed. Returns 1 when the topology has changed, and 0 otherwise.
  1100. */
  1101. int arch_update_cpu_topology(void)
  1102. {
  1103. unsigned int cpu, sibling, changed = 0;
  1104. struct topology_update_data *updates, *ud;
  1105. __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
  1106. cpumask_t updated_cpus;
  1107. struct device *dev;
  1108. int weight, new_nid, i = 0;
  1109. if (!prrn_enabled && !vphn_enabled)
  1110. return 0;
  1111. weight = cpumask_weight(&cpu_associativity_changes_mask);
  1112. if (!weight)
  1113. return 0;
  1114. updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
  1115. if (!updates)
  1116. return 0;
  1117. cpumask_clear(&updated_cpus);
  1118. for_each_cpu(cpu, &cpu_associativity_changes_mask) {
  1119. /*
  1120. * If siblings aren't flagged for changes, updates list
  1121. * will be too short. Skip on this update and set for next
  1122. * update.
  1123. */
  1124. if (!cpumask_subset(cpu_sibling_mask(cpu),
  1125. &cpu_associativity_changes_mask)) {
  1126. pr_info("Sibling bits not set for associativity "
  1127. "change, cpu%d\n", cpu);
  1128. cpumask_or(&cpu_associativity_changes_mask,
  1129. &cpu_associativity_changes_mask,
  1130. cpu_sibling_mask(cpu));
  1131. cpu = cpu_last_thread_sibling(cpu);
  1132. continue;
  1133. }
  1134. /* Use associativity from first thread for all siblings */
  1135. vphn_get_associativity(cpu, associativity);
  1136. new_nid = associativity_to_nid(associativity);
  1137. if (new_nid < 0 || !node_online(new_nid))
  1138. new_nid = first_online_node;
  1139. if (new_nid == numa_cpu_lookup_table[cpu]) {
  1140. cpumask_andnot(&cpu_associativity_changes_mask,
  1141. &cpu_associativity_changes_mask,
  1142. cpu_sibling_mask(cpu));
  1143. cpu = cpu_last_thread_sibling(cpu);
  1144. continue;
  1145. }
  1146. for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
  1147. ud = &updates[i++];
  1148. ud->cpu = sibling;
  1149. ud->new_nid = new_nid;
  1150. ud->old_nid = numa_cpu_lookup_table[sibling];
  1151. cpumask_set_cpu(sibling, &updated_cpus);
  1152. if (i < weight)
  1153. ud->next = &updates[i];
  1154. }
  1155. cpu = cpu_last_thread_sibling(cpu);
  1156. }
  1157. pr_debug("Topology update for the following CPUs:\n");
  1158. if (cpumask_weight(&updated_cpus)) {
  1159. for (ud = &updates[0]; ud; ud = ud->next) {
  1160. pr_debug("cpu %d moving from node %d "
  1161. "to %d\n", ud->cpu,
  1162. ud->old_nid, ud->new_nid);
  1163. }
  1164. }
  1165. /*
  1166. * In cases where we have nothing to update (because the updates list
  1167. * is too short or because the new topology is same as the old one),
  1168. * skip invoking update_cpu_topology() via stop-machine(). This is
  1169. * necessary (and not just a fast-path optimization) since stop-machine
  1170. * can end up electing a random CPU to run update_cpu_topology(), and
  1171. * thus trick us into setting up incorrect cpu-node mappings (since
  1172. * 'updates' is kzalloc()'ed).
  1173. *
  1174. * And for the similar reason, we will skip all the following updating.
  1175. */
  1176. if (!cpumask_weight(&updated_cpus))
  1177. goto out;
  1178. stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
  1179. /*
  1180. * Update the numa-cpu lookup table with the new mappings, even for
  1181. * offline CPUs. It is best to perform this update from the stop-
  1182. * machine context.
  1183. */
  1184. stop_machine(update_lookup_table, &updates[0],
  1185. cpumask_of(raw_smp_processor_id()));
  1186. for (ud = &updates[0]; ud; ud = ud->next) {
  1187. unregister_cpu_under_node(ud->cpu, ud->old_nid);
  1188. register_cpu_under_node(ud->cpu, ud->new_nid);
  1189. dev = get_cpu_device(ud->cpu);
  1190. if (dev)
  1191. kobject_uevent(&dev->kobj, KOBJ_CHANGE);
  1192. cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
  1193. changed = 1;
  1194. }
  1195. out:
  1196. kfree(updates);
  1197. return changed;
  1198. }
  1199. static void topology_work_fn(struct work_struct *work)
  1200. {
  1201. rebuild_sched_domains();
  1202. }
  1203. static DECLARE_WORK(topology_work, topology_work_fn);
  1204. static void topology_schedule_update(void)
  1205. {
  1206. schedule_work(&topology_work);
  1207. }
  1208. static void topology_timer_fn(unsigned long ignored)
  1209. {
  1210. if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
  1211. topology_schedule_update();
  1212. else if (vphn_enabled) {
  1213. if (update_cpu_associativity_changes_mask() > 0)
  1214. topology_schedule_update();
  1215. reset_topology_timer();
  1216. }
  1217. }
  1218. static struct timer_list topology_timer =
  1219. TIMER_INITIALIZER(topology_timer_fn, 0, 0);
  1220. static void reset_topology_timer(void)
  1221. {
  1222. topology_timer.data = 0;
  1223. topology_timer.expires = jiffies + 60 * HZ;
  1224. mod_timer(&topology_timer, topology_timer.expires);
  1225. }
  1226. #ifdef CONFIG_SMP
  1227. static void stage_topology_update(int core_id)
  1228. {
  1229. cpumask_or(&cpu_associativity_changes_mask,
  1230. &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
  1231. reset_topology_timer();
  1232. }
  1233. static int dt_update_callback(struct notifier_block *nb,
  1234. unsigned long action, void *data)
  1235. {
  1236. struct of_reconfig_data *update = data;
  1237. int rc = NOTIFY_DONE;
  1238. switch (action) {
  1239. case OF_RECONFIG_UPDATE_PROPERTY:
  1240. if (!of_prop_cmp(update->dn->type, "cpu") &&
  1241. !of_prop_cmp(update->prop->name, "ibm,associativity")) {
  1242. u32 core_id;
  1243. of_property_read_u32(update->dn, "reg", &core_id);
  1244. stage_topology_update(core_id);
  1245. rc = NOTIFY_OK;
  1246. }
  1247. break;
  1248. }
  1249. return rc;
  1250. }
  1251. static struct notifier_block dt_update_nb = {
  1252. .notifier_call = dt_update_callback,
  1253. };
  1254. #endif
  1255. /*
  1256. * Start polling for associativity changes.
  1257. */
  1258. int start_topology_update(void)
  1259. {
  1260. int rc = 0;
  1261. if (firmware_has_feature(FW_FEATURE_PRRN)) {
  1262. if (!prrn_enabled) {
  1263. prrn_enabled = 1;
  1264. vphn_enabled = 0;
  1265. #ifdef CONFIG_SMP
  1266. rc = of_reconfig_notifier_register(&dt_update_nb);
  1267. #endif
  1268. }
  1269. } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
  1270. lppaca_shared_proc(get_lppaca())) {
  1271. if (!vphn_enabled) {
  1272. prrn_enabled = 0;
  1273. vphn_enabled = 1;
  1274. setup_cpu_associativity_change_counters();
  1275. init_timer_deferrable(&topology_timer);
  1276. reset_topology_timer();
  1277. }
  1278. }
  1279. return rc;
  1280. }
  1281. /*
  1282. * Disable polling for VPHN associativity changes.
  1283. */
  1284. int stop_topology_update(void)
  1285. {
  1286. int rc = 0;
  1287. if (prrn_enabled) {
  1288. prrn_enabled = 0;
  1289. #ifdef CONFIG_SMP
  1290. rc = of_reconfig_notifier_unregister(&dt_update_nb);
  1291. #endif
  1292. } else if (vphn_enabled) {
  1293. vphn_enabled = 0;
  1294. rc = del_timer_sync(&topology_timer);
  1295. }
  1296. return rc;
  1297. }
  1298. int prrn_is_enabled(void)
  1299. {
  1300. return prrn_enabled;
  1301. }
  1302. static int topology_read(struct seq_file *file, void *v)
  1303. {
  1304. if (vphn_enabled || prrn_enabled)
  1305. seq_puts(file, "on\n");
  1306. else
  1307. seq_puts(file, "off\n");
  1308. return 0;
  1309. }
  1310. static int topology_open(struct inode *inode, struct file *file)
  1311. {
  1312. return single_open(file, topology_read, NULL);
  1313. }
  1314. static ssize_t topology_write(struct file *file, const char __user *buf,
  1315. size_t count, loff_t *off)
  1316. {
  1317. char kbuf[4]; /* "on" or "off" plus null. */
  1318. int read_len;
  1319. read_len = count < 3 ? count : 3;
  1320. if (copy_from_user(kbuf, buf, read_len))
  1321. return -EINVAL;
  1322. kbuf[read_len] = '\0';
  1323. if (!strncmp(kbuf, "on", 2))
  1324. start_topology_update();
  1325. else if (!strncmp(kbuf, "off", 3))
  1326. stop_topology_update();
  1327. else
  1328. return -EINVAL;
  1329. return count;
  1330. }
  1331. static const struct file_operations topology_ops = {
  1332. .read = seq_read,
  1333. .write = topology_write,
  1334. .open = topology_open,
  1335. .release = single_release
  1336. };
  1337. static int topology_update_init(void)
  1338. {
  1339. /* Do not poll for changes if disabled at boot */
  1340. if (topology_updates_enabled)
  1341. start_topology_update();
  1342. if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
  1343. return -ENOMEM;
  1344. return 0;
  1345. }
  1346. device_initcall(topology_update_init);
  1347. #endif /* CONFIG_PPC_SPLPAR */