time.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <linux/suspend.h>
  58. #include <linux/rtc.h>
  59. #include <asm/trace.h>
  60. #include <asm/io.h>
  61. #include <asm/processor.h>
  62. #include <asm/nvram.h>
  63. #include <asm/cache.h>
  64. #include <asm/machdep.h>
  65. #include <asm/uaccess.h>
  66. #include <asm/time.h>
  67. #include <asm/prom.h>
  68. #include <asm/irq.h>
  69. #include <asm/div64.h>
  70. #include <asm/smp.h>
  71. #include <asm/vdso_datapage.h>
  72. #include <asm/firmware.h>
  73. #include <asm/cputime.h>
  74. #include <asm/asm-prototypes.h>
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/timekeeper_internal.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static cycle_t timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  95. u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  96. static int decrementer_set_next_event(unsigned long evt,
  97. struct clock_event_device *dev);
  98. static int decrementer_shutdown(struct clock_event_device *evt);
  99. struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_state_shutdown = decrementer_shutdown,
  105. .tick_resume = decrementer_shutdown,
  106. .features = CLOCK_EVT_FEAT_ONESHOT |
  107. CLOCK_EVT_FEAT_C3STOP,
  108. };
  109. EXPORT_SYMBOL(decrementer_clockevent);
  110. DEFINE_PER_CPU(u64, decrementers_next_tb);
  111. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  112. #define XSEC_PER_SEC (1024*1024)
  113. #ifdef CONFIG_PPC64
  114. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  115. #else
  116. /* compute ((xsec << 12) * max) >> 32 */
  117. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  118. #endif
  119. unsigned long tb_ticks_per_jiffy;
  120. unsigned long tb_ticks_per_usec = 100; /* sane default */
  121. EXPORT_SYMBOL(tb_ticks_per_usec);
  122. unsigned long tb_ticks_per_sec;
  123. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  124. DEFINE_SPINLOCK(rtc_lock);
  125. EXPORT_SYMBOL_GPL(rtc_lock);
  126. static u64 tb_to_ns_scale __read_mostly;
  127. static unsigned tb_to_ns_shift __read_mostly;
  128. static u64 boot_tb __read_mostly;
  129. extern struct timezone sys_tz;
  130. static long timezone_offset;
  131. unsigned long ppc_proc_freq;
  132. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  133. unsigned long ppc_tb_freq;
  134. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  135. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  136. /*
  137. * Factors for converting from cputime_t (timebase ticks) to
  138. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  139. * These are all stored as 0.64 fixed-point binary fractions.
  140. */
  141. u64 __cputime_jiffies_factor;
  142. EXPORT_SYMBOL(__cputime_jiffies_factor);
  143. u64 __cputime_usec_factor;
  144. EXPORT_SYMBOL(__cputime_usec_factor);
  145. u64 __cputime_sec_factor;
  146. EXPORT_SYMBOL(__cputime_sec_factor);
  147. u64 __cputime_clockt_factor;
  148. EXPORT_SYMBOL(__cputime_clockt_factor);
  149. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  150. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  151. cputime_t cputime_one_jiffy;
  152. #ifdef CONFIG_PPC_SPLPAR
  153. void (*dtl_consumer)(struct dtl_entry *, u64);
  154. #endif
  155. #ifdef CONFIG_PPC64
  156. #define get_accounting(tsk) (&get_paca()->accounting)
  157. #else
  158. #define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
  159. #endif
  160. static void calc_cputime_factors(void)
  161. {
  162. struct div_result res;
  163. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  164. __cputime_jiffies_factor = res.result_low;
  165. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  166. __cputime_usec_factor = res.result_low;
  167. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  168. __cputime_sec_factor = res.result_low;
  169. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  170. __cputime_clockt_factor = res.result_low;
  171. }
  172. /*
  173. * Read the SPURR on systems that have it, otherwise the PURR,
  174. * or if that doesn't exist return the timebase value passed in.
  175. */
  176. static unsigned long read_spurr(unsigned long tb)
  177. {
  178. if (cpu_has_feature(CPU_FTR_SPURR))
  179. return mfspr(SPRN_SPURR);
  180. if (cpu_has_feature(CPU_FTR_PURR))
  181. return mfspr(SPRN_PURR);
  182. return tb;
  183. }
  184. #ifdef CONFIG_PPC_SPLPAR
  185. /*
  186. * Scan the dispatch trace log and count up the stolen time.
  187. * Should be called with interrupts disabled.
  188. */
  189. static u64 scan_dispatch_log(u64 stop_tb)
  190. {
  191. u64 i = local_paca->dtl_ridx;
  192. struct dtl_entry *dtl = local_paca->dtl_curr;
  193. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  194. struct lppaca *vpa = local_paca->lppaca_ptr;
  195. u64 tb_delta;
  196. u64 stolen = 0;
  197. u64 dtb;
  198. if (!dtl)
  199. return 0;
  200. if (i == be64_to_cpu(vpa->dtl_idx))
  201. return 0;
  202. while (i < be64_to_cpu(vpa->dtl_idx)) {
  203. dtb = be64_to_cpu(dtl->timebase);
  204. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  205. be32_to_cpu(dtl->ready_to_enqueue_time);
  206. barrier();
  207. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  208. /* buffer has overflowed */
  209. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  210. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  211. continue;
  212. }
  213. if (dtb > stop_tb)
  214. break;
  215. if (dtl_consumer)
  216. dtl_consumer(dtl, i);
  217. stolen += tb_delta;
  218. ++i;
  219. ++dtl;
  220. if (dtl == dtl_end)
  221. dtl = local_paca->dispatch_log;
  222. }
  223. local_paca->dtl_ridx = i;
  224. local_paca->dtl_curr = dtl;
  225. return stolen;
  226. }
  227. /*
  228. * Accumulate stolen time by scanning the dispatch trace log.
  229. * Called on entry from user mode.
  230. */
  231. void accumulate_stolen_time(void)
  232. {
  233. u64 sst, ust;
  234. u8 save_soft_enabled = local_paca->soft_enabled;
  235. struct cpu_accounting_data *acct = &local_paca->accounting;
  236. /* We are called early in the exception entry, before
  237. * soft/hard_enabled are sync'ed to the expected state
  238. * for the exception. We are hard disabled but the PACA
  239. * needs to reflect that so various debug stuff doesn't
  240. * complain
  241. */
  242. local_paca->soft_enabled = 0;
  243. sst = scan_dispatch_log(acct->starttime_user);
  244. ust = scan_dispatch_log(acct->starttime);
  245. acct->system_time -= sst;
  246. acct->user_time -= ust;
  247. local_paca->stolen_time += ust + sst;
  248. local_paca->soft_enabled = save_soft_enabled;
  249. }
  250. static inline u64 calculate_stolen_time(u64 stop_tb)
  251. {
  252. u64 stolen = 0;
  253. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  254. stolen = scan_dispatch_log(stop_tb);
  255. get_paca()->accounting.system_time -= stolen;
  256. }
  257. stolen += get_paca()->stolen_time;
  258. get_paca()->stolen_time = 0;
  259. return stolen;
  260. }
  261. #else /* CONFIG_PPC_SPLPAR */
  262. static inline u64 calculate_stolen_time(u64 stop_tb)
  263. {
  264. return 0;
  265. }
  266. #endif /* CONFIG_PPC_SPLPAR */
  267. /*
  268. * Account time for a transition between system, hard irq
  269. * or soft irq state.
  270. */
  271. static unsigned long vtime_delta(struct task_struct *tsk,
  272. unsigned long *sys_scaled,
  273. unsigned long *stolen)
  274. {
  275. unsigned long now, nowscaled, deltascaled;
  276. unsigned long udelta, delta, user_scaled;
  277. struct cpu_accounting_data *acct = get_accounting(tsk);
  278. WARN_ON_ONCE(!irqs_disabled());
  279. now = mftb();
  280. nowscaled = read_spurr(now);
  281. acct->system_time += now - acct->starttime;
  282. acct->starttime = now;
  283. deltascaled = nowscaled - acct->startspurr;
  284. acct->startspurr = nowscaled;
  285. *stolen = calculate_stolen_time(now);
  286. delta = acct->system_time;
  287. acct->system_time = 0;
  288. udelta = acct->user_time - acct->utime_sspurr;
  289. acct->utime_sspurr = acct->user_time;
  290. /*
  291. * Because we don't read the SPURR on every kernel entry/exit,
  292. * deltascaled includes both user and system SPURR ticks.
  293. * Apportion these ticks to system SPURR ticks and user
  294. * SPURR ticks in the same ratio as the system time (delta)
  295. * and user time (udelta) values obtained from the timebase
  296. * over the same interval. The system ticks get accounted here;
  297. * the user ticks get saved up in paca->user_time_scaled to be
  298. * used by account_process_tick.
  299. */
  300. *sys_scaled = delta;
  301. user_scaled = udelta;
  302. if (deltascaled != delta + udelta) {
  303. if (udelta) {
  304. *sys_scaled = deltascaled * delta / (delta + udelta);
  305. user_scaled = deltascaled - *sys_scaled;
  306. } else {
  307. *sys_scaled = deltascaled;
  308. }
  309. }
  310. acct->user_time_scaled += user_scaled;
  311. return delta;
  312. }
  313. void vtime_account_system(struct task_struct *tsk)
  314. {
  315. unsigned long delta, sys_scaled, stolen;
  316. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  317. account_system_time(tsk, 0, delta, sys_scaled);
  318. if (stolen)
  319. account_steal_time(stolen);
  320. }
  321. EXPORT_SYMBOL_GPL(vtime_account_system);
  322. void vtime_account_idle(struct task_struct *tsk)
  323. {
  324. unsigned long delta, sys_scaled, stolen;
  325. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  326. account_idle_time(delta + stolen);
  327. }
  328. /*
  329. * Transfer the user time accumulated in the paca
  330. * by the exception entry and exit code to the generic
  331. * process user time records.
  332. * Must be called with interrupts disabled.
  333. * Assumes that vtime_account_system/idle() has been called
  334. * recently (i.e. since the last entry from usermode) so that
  335. * get_paca()->user_time_scaled is up to date.
  336. */
  337. void vtime_account_user(struct task_struct *tsk)
  338. {
  339. cputime_t utime, utimescaled;
  340. struct cpu_accounting_data *acct = get_accounting(tsk);
  341. utime = acct->user_time;
  342. utimescaled = acct->user_time_scaled;
  343. acct->user_time = 0;
  344. acct->user_time_scaled = 0;
  345. acct->utime_sspurr = 0;
  346. account_user_time(tsk, utime, utimescaled);
  347. }
  348. #ifdef CONFIG_PPC32
  349. /*
  350. * Called from the context switch with interrupts disabled, to charge all
  351. * accumulated times to the current process, and to prepare accounting on
  352. * the next process.
  353. */
  354. void arch_vtime_task_switch(struct task_struct *prev)
  355. {
  356. struct cpu_accounting_data *acct = get_accounting(current);
  357. acct->starttime = get_accounting(prev)->starttime;
  358. acct->system_time = 0;
  359. acct->user_time = 0;
  360. }
  361. #endif /* CONFIG_PPC32 */
  362. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  363. #define calc_cputime_factors()
  364. #endif
  365. void __delay(unsigned long loops)
  366. {
  367. unsigned long start;
  368. int diff;
  369. if (__USE_RTC()) {
  370. start = get_rtcl();
  371. do {
  372. /* the RTCL register wraps at 1000000000 */
  373. diff = get_rtcl() - start;
  374. if (diff < 0)
  375. diff += 1000000000;
  376. } while (diff < loops);
  377. } else {
  378. start = get_tbl();
  379. while (get_tbl() - start < loops)
  380. HMT_low();
  381. HMT_medium();
  382. }
  383. }
  384. EXPORT_SYMBOL(__delay);
  385. void udelay(unsigned long usecs)
  386. {
  387. __delay(tb_ticks_per_usec * usecs);
  388. }
  389. EXPORT_SYMBOL(udelay);
  390. #ifdef CONFIG_SMP
  391. unsigned long profile_pc(struct pt_regs *regs)
  392. {
  393. unsigned long pc = instruction_pointer(regs);
  394. if (in_lock_functions(pc))
  395. return regs->link;
  396. return pc;
  397. }
  398. EXPORT_SYMBOL(profile_pc);
  399. #endif
  400. #ifdef CONFIG_IRQ_WORK
  401. /*
  402. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  403. */
  404. #ifdef CONFIG_PPC64
  405. static inline unsigned long test_irq_work_pending(void)
  406. {
  407. unsigned long x;
  408. asm volatile("lbz %0,%1(13)"
  409. : "=r" (x)
  410. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  411. return x;
  412. }
  413. static inline void set_irq_work_pending_flag(void)
  414. {
  415. asm volatile("stb %0,%1(13)" : :
  416. "r" (1),
  417. "i" (offsetof(struct paca_struct, irq_work_pending)));
  418. }
  419. static inline void clear_irq_work_pending(void)
  420. {
  421. asm volatile("stb %0,%1(13)" : :
  422. "r" (0),
  423. "i" (offsetof(struct paca_struct, irq_work_pending)));
  424. }
  425. #else /* 32-bit */
  426. DEFINE_PER_CPU(u8, irq_work_pending);
  427. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  428. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  429. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  430. #endif /* 32 vs 64 bit */
  431. void arch_irq_work_raise(void)
  432. {
  433. preempt_disable();
  434. set_irq_work_pending_flag();
  435. set_dec(1);
  436. preempt_enable();
  437. }
  438. #else /* CONFIG_IRQ_WORK */
  439. #define test_irq_work_pending() 0
  440. #define clear_irq_work_pending()
  441. #endif /* CONFIG_IRQ_WORK */
  442. static void __timer_interrupt(void)
  443. {
  444. struct pt_regs *regs = get_irq_regs();
  445. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  446. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  447. u64 now;
  448. trace_timer_interrupt_entry(regs);
  449. if (test_irq_work_pending()) {
  450. clear_irq_work_pending();
  451. irq_work_run();
  452. }
  453. now = get_tb_or_rtc();
  454. if (now >= *next_tb) {
  455. *next_tb = ~(u64)0;
  456. if (evt->event_handler)
  457. evt->event_handler(evt);
  458. __this_cpu_inc(irq_stat.timer_irqs_event);
  459. } else {
  460. now = *next_tb - now;
  461. if (now <= decrementer_max)
  462. set_dec(now);
  463. /* We may have raced with new irq work */
  464. if (test_irq_work_pending())
  465. set_dec(1);
  466. __this_cpu_inc(irq_stat.timer_irqs_others);
  467. }
  468. #ifdef CONFIG_PPC64
  469. /* collect purr register values often, for accurate calculations */
  470. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  471. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  472. cu->current_tb = mfspr(SPRN_PURR);
  473. }
  474. #endif
  475. trace_timer_interrupt_exit(regs);
  476. }
  477. /*
  478. * timer_interrupt - gets called when the decrementer overflows,
  479. * with interrupts disabled.
  480. */
  481. void timer_interrupt(struct pt_regs * regs)
  482. {
  483. struct pt_regs *old_regs;
  484. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  485. /* Ensure a positive value is written to the decrementer, or else
  486. * some CPUs will continue to take decrementer exceptions.
  487. */
  488. set_dec(decrementer_max);
  489. /* Some implementations of hotplug will get timer interrupts while
  490. * offline, just ignore these and we also need to set
  491. * decrementers_next_tb as MAX to make sure __check_irq_replay
  492. * don't replay timer interrupt when return, otherwise we'll trap
  493. * here infinitely :(
  494. */
  495. if (!cpu_online(smp_processor_id())) {
  496. *next_tb = ~(u64)0;
  497. return;
  498. }
  499. /* Conditionally hard-enable interrupts now that the DEC has been
  500. * bumped to its maximum value
  501. */
  502. may_hard_irq_enable();
  503. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  504. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  505. do_IRQ(regs);
  506. #endif
  507. old_regs = set_irq_regs(regs);
  508. irq_enter();
  509. __timer_interrupt();
  510. irq_exit();
  511. set_irq_regs(old_regs);
  512. }
  513. EXPORT_SYMBOL(timer_interrupt);
  514. /*
  515. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  516. * left pending on exit from a KVM guest. We don't need to do anything
  517. * to clear them, as they are edge-triggered.
  518. */
  519. void hdec_interrupt(struct pt_regs *regs)
  520. {
  521. }
  522. #ifdef CONFIG_SUSPEND
  523. static void generic_suspend_disable_irqs(void)
  524. {
  525. /* Disable the decrementer, so that it doesn't interfere
  526. * with suspending.
  527. */
  528. set_dec(decrementer_max);
  529. local_irq_disable();
  530. set_dec(decrementer_max);
  531. }
  532. static void generic_suspend_enable_irqs(void)
  533. {
  534. local_irq_enable();
  535. }
  536. /* Overrides the weak version in kernel/power/main.c */
  537. void arch_suspend_disable_irqs(void)
  538. {
  539. if (ppc_md.suspend_disable_irqs)
  540. ppc_md.suspend_disable_irqs();
  541. generic_suspend_disable_irqs();
  542. }
  543. /* Overrides the weak version in kernel/power/main.c */
  544. void arch_suspend_enable_irqs(void)
  545. {
  546. generic_suspend_enable_irqs();
  547. if (ppc_md.suspend_enable_irqs)
  548. ppc_md.suspend_enable_irqs();
  549. }
  550. #endif
  551. unsigned long long tb_to_ns(unsigned long long ticks)
  552. {
  553. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  554. }
  555. EXPORT_SYMBOL_GPL(tb_to_ns);
  556. /*
  557. * Scheduler clock - returns current time in nanosec units.
  558. *
  559. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  560. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  561. * are 64-bit unsigned numbers.
  562. */
  563. unsigned long long sched_clock(void)
  564. {
  565. if (__USE_RTC())
  566. return get_rtc();
  567. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  568. }
  569. #ifdef CONFIG_PPC_PSERIES
  570. /*
  571. * Running clock - attempts to give a view of time passing for a virtualised
  572. * kernels.
  573. * Uses the VTB register if available otherwise a next best guess.
  574. */
  575. unsigned long long running_clock(void)
  576. {
  577. /*
  578. * Don't read the VTB as a host since KVM does not switch in host
  579. * timebase into the VTB when it takes a guest off the CPU, reading the
  580. * VTB would result in reading 'last switched out' guest VTB.
  581. *
  582. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  583. * would be unsafe to rely only on the #ifdef above.
  584. */
  585. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  586. cpu_has_feature(CPU_FTR_ARCH_207S))
  587. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  588. /*
  589. * This is a next best approximation without a VTB.
  590. * On a host which is running bare metal there should never be any stolen
  591. * time and on a host which doesn't do any virtualisation TB *should* equal
  592. * VTB so it makes no difference anyway.
  593. */
  594. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  595. }
  596. #endif
  597. static int __init get_freq(char *name, int cells, unsigned long *val)
  598. {
  599. struct device_node *cpu;
  600. const __be32 *fp;
  601. int found = 0;
  602. /* The cpu node should have timebase and clock frequency properties */
  603. cpu = of_find_node_by_type(NULL, "cpu");
  604. if (cpu) {
  605. fp = of_get_property(cpu, name, NULL);
  606. if (fp) {
  607. found = 1;
  608. *val = of_read_ulong(fp, cells);
  609. }
  610. of_node_put(cpu);
  611. }
  612. return found;
  613. }
  614. static void start_cpu_decrementer(void)
  615. {
  616. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  617. /* Clear any pending timer interrupts */
  618. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  619. /* Enable decrementer interrupt */
  620. mtspr(SPRN_TCR, TCR_DIE);
  621. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  622. }
  623. void __init generic_calibrate_decr(void)
  624. {
  625. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  626. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  627. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  628. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  629. "(not found)\n");
  630. }
  631. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  632. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  633. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  634. printk(KERN_ERR "WARNING: Estimating processor frequency "
  635. "(not found)\n");
  636. }
  637. }
  638. int update_persistent_clock(struct timespec now)
  639. {
  640. struct rtc_time tm;
  641. if (!ppc_md.set_rtc_time)
  642. return -ENODEV;
  643. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  644. tm.tm_year -= 1900;
  645. tm.tm_mon -= 1;
  646. return ppc_md.set_rtc_time(&tm);
  647. }
  648. static void __read_persistent_clock(struct timespec *ts)
  649. {
  650. struct rtc_time tm;
  651. static int first = 1;
  652. ts->tv_nsec = 0;
  653. /* XXX this is a litle fragile but will work okay in the short term */
  654. if (first) {
  655. first = 0;
  656. if (ppc_md.time_init)
  657. timezone_offset = ppc_md.time_init();
  658. /* get_boot_time() isn't guaranteed to be safe to call late */
  659. if (ppc_md.get_boot_time) {
  660. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  661. return;
  662. }
  663. }
  664. if (!ppc_md.get_rtc_time) {
  665. ts->tv_sec = 0;
  666. return;
  667. }
  668. ppc_md.get_rtc_time(&tm);
  669. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  670. tm.tm_hour, tm.tm_min, tm.tm_sec);
  671. }
  672. void read_persistent_clock(struct timespec *ts)
  673. {
  674. __read_persistent_clock(ts);
  675. /* Sanitize it in case real time clock is set below EPOCH */
  676. if (ts->tv_sec < 0) {
  677. ts->tv_sec = 0;
  678. ts->tv_nsec = 0;
  679. }
  680. }
  681. /* clocksource code */
  682. static cycle_t rtc_read(struct clocksource *cs)
  683. {
  684. return (cycle_t)get_rtc();
  685. }
  686. static cycle_t timebase_read(struct clocksource *cs)
  687. {
  688. return (cycle_t)get_tb();
  689. }
  690. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  691. struct clocksource *clock, u32 mult, cycle_t cycle_last)
  692. {
  693. u64 new_tb_to_xs, new_stamp_xsec;
  694. u32 frac_sec;
  695. if (clock != &clocksource_timebase)
  696. return;
  697. /* Make userspace gettimeofday spin until we're done. */
  698. ++vdso_data->tb_update_count;
  699. smp_mb();
  700. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  701. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  702. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  703. do_div(new_stamp_xsec, 1000000000);
  704. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  705. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  706. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  707. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  708. /*
  709. * tb_update_count is used to allow the userspace gettimeofday code
  710. * to assure itself that it sees a consistent view of the tb_to_xs and
  711. * stamp_xsec variables. It reads the tb_update_count, then reads
  712. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  713. * the two values of tb_update_count match and are even then the
  714. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  715. * loops back and reads them again until this criteria is met.
  716. * We expect the caller to have done the first increment of
  717. * vdso_data->tb_update_count already.
  718. */
  719. vdso_data->tb_orig_stamp = cycle_last;
  720. vdso_data->stamp_xsec = new_stamp_xsec;
  721. vdso_data->tb_to_xs = new_tb_to_xs;
  722. vdso_data->wtom_clock_sec = wtm->tv_sec;
  723. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  724. vdso_data->stamp_xtime = *wall_time;
  725. vdso_data->stamp_sec_fraction = frac_sec;
  726. smp_wmb();
  727. ++(vdso_data->tb_update_count);
  728. }
  729. void update_vsyscall_tz(void)
  730. {
  731. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  732. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  733. }
  734. static void __init clocksource_init(void)
  735. {
  736. struct clocksource *clock;
  737. if (__USE_RTC())
  738. clock = &clocksource_rtc;
  739. else
  740. clock = &clocksource_timebase;
  741. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  742. printk(KERN_ERR "clocksource: %s is already registered\n",
  743. clock->name);
  744. return;
  745. }
  746. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  747. clock->name, clock->mult, clock->shift);
  748. }
  749. static int decrementer_set_next_event(unsigned long evt,
  750. struct clock_event_device *dev)
  751. {
  752. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  753. set_dec(evt);
  754. /* We may have raced with new irq work */
  755. if (test_irq_work_pending())
  756. set_dec(1);
  757. return 0;
  758. }
  759. static int decrementer_shutdown(struct clock_event_device *dev)
  760. {
  761. decrementer_set_next_event(decrementer_max, dev);
  762. return 0;
  763. }
  764. /* Interrupt handler for the timer broadcast IPI */
  765. void tick_broadcast_ipi_handler(void)
  766. {
  767. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  768. *next_tb = get_tb_or_rtc();
  769. __timer_interrupt();
  770. }
  771. static void register_decrementer_clockevent(int cpu)
  772. {
  773. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  774. *dec = decrementer_clockevent;
  775. dec->cpumask = cpumask_of(cpu);
  776. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  777. dec->name, dec->mult, dec->shift, cpu);
  778. clockevents_register_device(dec);
  779. }
  780. static void enable_large_decrementer(void)
  781. {
  782. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  783. return;
  784. if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
  785. return;
  786. /*
  787. * If we're running as the hypervisor we need to enable the LD manually
  788. * otherwise firmware should have done it for us.
  789. */
  790. if (cpu_has_feature(CPU_FTR_HVMODE))
  791. mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
  792. }
  793. static void __init set_decrementer_max(void)
  794. {
  795. struct device_node *cpu;
  796. u32 bits = 32;
  797. /* Prior to ISAv3 the decrementer is always 32 bit */
  798. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  799. return;
  800. cpu = of_find_node_by_type(NULL, "cpu");
  801. if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
  802. if (bits > 64 || bits < 32) {
  803. pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
  804. bits = 32;
  805. }
  806. /* calculate the signed maximum given this many bits */
  807. decrementer_max = (1ul << (bits - 1)) - 1;
  808. }
  809. of_node_put(cpu);
  810. pr_info("time_init: %u bit decrementer (max: %llx)\n",
  811. bits, decrementer_max);
  812. }
  813. static void __init init_decrementer_clockevent(void)
  814. {
  815. int cpu = smp_processor_id();
  816. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  817. decrementer_clockevent.max_delta_ns =
  818. clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
  819. decrementer_clockevent.min_delta_ns =
  820. clockevent_delta2ns(2, &decrementer_clockevent);
  821. register_decrementer_clockevent(cpu);
  822. }
  823. void secondary_cpu_time_init(void)
  824. {
  825. /* Enable and test the large decrementer for this cpu */
  826. enable_large_decrementer();
  827. /* Start the decrementer on CPUs that have manual control
  828. * such as BookE
  829. */
  830. start_cpu_decrementer();
  831. /* FIME: Should make unrelatred change to move snapshot_timebase
  832. * call here ! */
  833. register_decrementer_clockevent(smp_processor_id());
  834. }
  835. /* This function is only called on the boot processor */
  836. void __init time_init(void)
  837. {
  838. struct div_result res;
  839. u64 scale;
  840. unsigned shift;
  841. if (__USE_RTC()) {
  842. /* 601 processor: dec counts down by 128 every 128ns */
  843. ppc_tb_freq = 1000000000;
  844. } else {
  845. /* Normal PowerPC with timebase register */
  846. ppc_md.calibrate_decr();
  847. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  848. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  849. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  850. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  851. }
  852. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  853. tb_ticks_per_sec = ppc_tb_freq;
  854. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  855. calc_cputime_factors();
  856. setup_cputime_one_jiffy();
  857. /*
  858. * Compute scale factor for sched_clock.
  859. * The calibrate_decr() function has set tb_ticks_per_sec,
  860. * which is the timebase frequency.
  861. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  862. * the 128-bit result as a 64.64 fixed-point number.
  863. * We then shift that number right until it is less than 1.0,
  864. * giving us the scale factor and shift count to use in
  865. * sched_clock().
  866. */
  867. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  868. scale = res.result_low;
  869. for (shift = 0; res.result_high != 0; ++shift) {
  870. scale = (scale >> 1) | (res.result_high << 63);
  871. res.result_high >>= 1;
  872. }
  873. tb_to_ns_scale = scale;
  874. tb_to_ns_shift = shift;
  875. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  876. boot_tb = get_tb_or_rtc();
  877. /* If platform provided a timezone (pmac), we correct the time */
  878. if (timezone_offset) {
  879. sys_tz.tz_minuteswest = -timezone_offset / 60;
  880. sys_tz.tz_dsttime = 0;
  881. }
  882. vdso_data->tb_update_count = 0;
  883. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  884. /* initialise and enable the large decrementer (if we have one) */
  885. set_decrementer_max();
  886. enable_large_decrementer();
  887. /* Start the decrementer on CPUs that have manual control
  888. * such as BookE
  889. */
  890. start_cpu_decrementer();
  891. /* Register the clocksource */
  892. clocksource_init();
  893. init_decrementer_clockevent();
  894. tick_setup_hrtimer_broadcast();
  895. #ifdef CONFIG_COMMON_CLK
  896. of_clk_init(NULL);
  897. #endif
  898. }
  899. #define FEBRUARY 2
  900. #define STARTOFTIME 1970
  901. #define SECDAY 86400L
  902. #define SECYR (SECDAY * 365)
  903. #define leapyear(year) ((year) % 4 == 0 && \
  904. ((year) % 100 != 0 || (year) % 400 == 0))
  905. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  906. #define days_in_month(a) (month_days[(a) - 1])
  907. static int month_days[12] = {
  908. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  909. };
  910. void to_tm(int tim, struct rtc_time * tm)
  911. {
  912. register int i;
  913. register long hms, day;
  914. day = tim / SECDAY;
  915. hms = tim % SECDAY;
  916. /* Hours, minutes, seconds are easy */
  917. tm->tm_hour = hms / 3600;
  918. tm->tm_min = (hms % 3600) / 60;
  919. tm->tm_sec = (hms % 3600) % 60;
  920. /* Number of years in days */
  921. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  922. day -= days_in_year(i);
  923. tm->tm_year = i;
  924. /* Number of months in days left */
  925. if (leapyear(tm->tm_year))
  926. days_in_month(FEBRUARY) = 29;
  927. for (i = 1; day >= days_in_month(i); i++)
  928. day -= days_in_month(i);
  929. days_in_month(FEBRUARY) = 28;
  930. tm->tm_mon = i;
  931. /* Days are what is left over (+1) from all that. */
  932. tm->tm_mday = day + 1;
  933. /*
  934. * No-one uses the day of the week.
  935. */
  936. tm->tm_wday = -1;
  937. }
  938. EXPORT_SYMBOL(to_tm);
  939. /*
  940. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  941. * result.
  942. */
  943. void div128_by_32(u64 dividend_high, u64 dividend_low,
  944. unsigned divisor, struct div_result *dr)
  945. {
  946. unsigned long a, b, c, d;
  947. unsigned long w, x, y, z;
  948. u64 ra, rb, rc;
  949. a = dividend_high >> 32;
  950. b = dividend_high & 0xffffffff;
  951. c = dividend_low >> 32;
  952. d = dividend_low & 0xffffffff;
  953. w = a / divisor;
  954. ra = ((u64)(a - (w * divisor)) << 32) + b;
  955. rb = ((u64) do_div(ra, divisor) << 32) + c;
  956. x = ra;
  957. rc = ((u64) do_div(rb, divisor) << 32) + d;
  958. y = rb;
  959. do_div(rc, divisor);
  960. z = rc;
  961. dr->result_high = ((u64)w << 32) + x;
  962. dr->result_low = ((u64)y << 32) + z;
  963. }
  964. /* We don't need to calibrate delay, we use the CPU timebase for that */
  965. void calibrate_delay(void)
  966. {
  967. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  968. * as the number of __delay(1) in a jiffy, so make it so
  969. */
  970. loops_per_jiffy = tb_ticks_per_jiffy;
  971. }
  972. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  973. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  974. {
  975. ppc_md.get_rtc_time(tm);
  976. return rtc_valid_tm(tm);
  977. }
  978. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  979. {
  980. if (!ppc_md.set_rtc_time)
  981. return -EOPNOTSUPP;
  982. if (ppc_md.set_rtc_time(tm) < 0)
  983. return -EOPNOTSUPP;
  984. return 0;
  985. }
  986. static const struct rtc_class_ops rtc_generic_ops = {
  987. .read_time = rtc_generic_get_time,
  988. .set_time = rtc_generic_set_time,
  989. };
  990. static int __init rtc_init(void)
  991. {
  992. struct platform_device *pdev;
  993. if (!ppc_md.get_rtc_time)
  994. return -ENODEV;
  995. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  996. &rtc_generic_ops,
  997. sizeof(rtc_generic_ops));
  998. return PTR_ERR_OR_ZERO(pdev);
  999. }
  1000. device_initcall(rtc_init);
  1001. #endif