timer.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. /*
  2. * linux/arch/arm/mach-omap2/timer.c
  3. *
  4. * OMAP2 GP timer support.
  5. *
  6. * Copyright (C) 2009 Nokia Corporation
  7. *
  8. * Update to use new clocksource/clockevent layers
  9. * Author: Kevin Hilman, MontaVista Software, Inc. <source@mvista.com>
  10. * Copyright (C) 2007 MontaVista Software, Inc.
  11. *
  12. * Original driver:
  13. * Copyright (C) 2005 Nokia Corporation
  14. * Author: Paul Mundt <paul.mundt@nokia.com>
  15. * Juha Yrjölä <juha.yrjola@nokia.com>
  16. * OMAP Dual-mode timer framework support by Timo Teras
  17. *
  18. * Some parts based off of TI's 24xx code:
  19. *
  20. * Copyright (C) 2004-2009 Texas Instruments, Inc.
  21. *
  22. * Roughly modelled after the OMAP1 MPU timer code.
  23. * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
  24. *
  25. * This file is subject to the terms and conditions of the GNU General Public
  26. * License. See the file "COPYING" in the main directory of this archive
  27. * for more details.
  28. */
  29. #include <linux/init.h>
  30. #include <linux/time.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/err.h>
  33. #include <linux/clk.h>
  34. #include <linux/delay.h>
  35. #include <linux/irq.h>
  36. #include <linux/irqchip/arm-gic.h>
  37. #include <linux/clocksource.h>
  38. #include <linux/clockchips.h>
  39. #include <linux/slab.h>
  40. #include <linux/of.h>
  41. #include <linux/of_address.h>
  42. #include <linux/of_irq.h>
  43. #include <linux/platform_device.h>
  44. #include <linux/platform_data/dmtimer-omap.h>
  45. #include <linux/sched_clock.h>
  46. #include <asm/mach/time.h>
  47. #include <asm/smp_twd.h>
  48. #include "omap_hwmod.h"
  49. #include "omap_device.h"
  50. #include <plat/counter-32k.h>
  51. #include <plat/dmtimer.h>
  52. #include "omap-pm.h"
  53. #include "soc.h"
  54. #include "common.h"
  55. #include "control.h"
  56. #include "powerdomain.h"
  57. #include "omap-secure.h"
  58. #define REALTIME_COUNTER_BASE 0x48243200
  59. #define INCREMENTER_NUMERATOR_OFFSET 0x10
  60. #define INCREMENTER_DENUMERATOR_RELOAD_OFFSET 0x14
  61. #define NUMERATOR_DENUMERATOR_MASK 0xfffff000
  62. #define AM43XX_GIC_CPU_BASE 0x48240100
  63. static void __iomem *gic_cpu_base;
  64. /* Clockevent code */
  65. static struct omap_dm_timer clkev;
  66. static struct clock_event_device clockevent_gpt;
  67. /* Clockevent hwmod for am335x and am437x suspend */
  68. struct omap_hwmod *clockevent_gpt_hwmod;
  69. static struct irq_chip *clkev_irq_chip;
  70. static struct irq_desc *clkev_irq_desc;
  71. #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER
  72. static unsigned long arch_timer_freq;
  73. void set_cntfreq(void)
  74. {
  75. omap_smc1(OMAP5_DRA7_MON_SET_CNTFRQ_INDEX, arch_timer_freq);
  76. }
  77. #endif
  78. static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id)
  79. {
  80. struct clock_event_device *evt = &clockevent_gpt;
  81. __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW);
  82. evt->event_handler(evt);
  83. return IRQ_HANDLED;
  84. }
  85. static struct irqaction omap2_gp_timer_irq = {
  86. .name = "gp_timer",
  87. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  88. .handler = omap2_gp_timer_interrupt,
  89. };
  90. static int omap2_gp_timer_set_next_event(unsigned long cycles,
  91. struct clock_event_device *evt)
  92. {
  93. __omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST,
  94. 0xffffffff - cycles, OMAP_TIMER_POSTED);
  95. return 0;
  96. }
  97. static int omap2_gp_timer_shutdown(struct clock_event_device *evt)
  98. {
  99. __omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate);
  100. return 0;
  101. }
  102. static int omap2_gp_timer_set_periodic(struct clock_event_device *evt)
  103. {
  104. u32 period;
  105. __omap_dm_timer_stop(&clkev, OMAP_TIMER_POSTED, clkev.rate);
  106. period = clkev.rate / HZ;
  107. period -= 1;
  108. /* Looks like we need to first set the load value separately */
  109. __omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG, 0xffffffff - period,
  110. OMAP_TIMER_POSTED);
  111. __omap_dm_timer_load_start(&clkev,
  112. OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST,
  113. 0xffffffff - period, OMAP_TIMER_POSTED);
  114. return 0;
  115. }
  116. static int omap_clkevt_late_ack_init(void)
  117. {
  118. gic_cpu_base = ioremap(AM43XX_GIC_CPU_BASE, SZ_4K);
  119. if (!gic_cpu_base)
  120. return -ENOMEM;
  121. return 0;
  122. }
  123. static void omap_clkevt_late_ack(void)
  124. {
  125. u32 val;
  126. if (!clkev_irq_chip)
  127. return;
  128. /*
  129. * For the gic to properly clear an interrupt it must be read
  130. * from INTACK register
  131. */
  132. if (gic_cpu_base)
  133. val = readl_relaxed(gic_cpu_base + GIC_CPU_INTACK);
  134. if (clkev_irq_chip->irq_ack)
  135. clkev_irq_chip->irq_ack(&clkev_irq_desc->irq_data);
  136. if (clkev_irq_chip->irq_eoi)
  137. clkev_irq_chip->irq_eoi(&clkev_irq_desc->irq_data);
  138. clkev_irq_chip->irq_unmask(&clkev_irq_desc->irq_data);
  139. }
  140. static void omap_clkevt_idle(struct clock_event_device *unused)
  141. {
  142. if (!clockevent_gpt_hwmod)
  143. return;
  144. /*
  145. * It is possible for a late interrupt to be generated which will
  146. * cause a suspend failure. Let's ack it here both in the timer
  147. * and the interrupt controller to avoid this.
  148. */
  149. __omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW);
  150. omap_clkevt_late_ack();
  151. omap_hwmod_idle(clockevent_gpt_hwmod);
  152. }
  153. static void omap_clkevt_unidle(struct clock_event_device *unused)
  154. {
  155. if (!clockevent_gpt_hwmod)
  156. return;
  157. omap_hwmod_enable(clockevent_gpt_hwmod);
  158. __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW);
  159. }
  160. static struct clock_event_device clockevent_gpt = {
  161. .features = CLOCK_EVT_FEAT_PERIODIC |
  162. CLOCK_EVT_FEAT_ONESHOT,
  163. .rating = 300,
  164. .set_next_event = omap2_gp_timer_set_next_event,
  165. .set_state_shutdown = omap2_gp_timer_shutdown,
  166. .set_state_periodic = omap2_gp_timer_set_periodic,
  167. .set_state_oneshot = omap2_gp_timer_shutdown,
  168. .tick_resume = omap2_gp_timer_shutdown,
  169. };
  170. static struct property device_disabled = {
  171. .name = "status",
  172. .length = sizeof("disabled"),
  173. .value = "disabled",
  174. };
  175. static const struct of_device_id omap_timer_match[] __initconst = {
  176. { .compatible = "ti,omap2420-timer", },
  177. { .compatible = "ti,omap3430-timer", },
  178. { .compatible = "ti,omap4430-timer", },
  179. { .compatible = "ti,omap5430-timer", },
  180. { .compatible = "ti,dm814-timer", },
  181. { .compatible = "ti,dm816-timer", },
  182. { .compatible = "ti,am335x-timer", },
  183. { .compatible = "ti,am335x-timer-1ms", },
  184. { }
  185. };
  186. /**
  187. * omap_get_timer_dt - get a timer using device-tree
  188. * @match - device-tree match structure for matching a device type
  189. * @property - optional timer property to match
  190. *
  191. * Helper function to get a timer during early boot using device-tree for use
  192. * as kernel system timer. Optionally, the property argument can be used to
  193. * select a timer with a specific property. Once a timer is found then mark
  194. * the timer node in device-tree as disabled, to prevent the kernel from
  195. * registering this timer as a platform device and so no one else can use it.
  196. */
  197. static struct device_node * __init omap_get_timer_dt(const struct of_device_id *match,
  198. const char *property)
  199. {
  200. struct device_node *np;
  201. for_each_matching_node(np, match) {
  202. if (!of_device_is_available(np))
  203. continue;
  204. if (property && !of_get_property(np, property, NULL))
  205. continue;
  206. if (!property && (of_get_property(np, "ti,timer-alwon", NULL) ||
  207. of_get_property(np, "ti,timer-dsp", NULL) ||
  208. of_get_property(np, "ti,timer-pwm", NULL) ||
  209. of_get_property(np, "ti,timer-secure", NULL)))
  210. continue;
  211. if (!of_device_is_compatible(np, "ti,omap-counter32k"))
  212. of_add_property(np, &device_disabled);
  213. return np;
  214. }
  215. return NULL;
  216. }
  217. /**
  218. * omap_dmtimer_init - initialisation function when device tree is used
  219. *
  220. * For secure OMAP3/DRA7xx devices, timers with device type "timer-secure"
  221. * cannot be used by the kernel as they are reserved. Therefore, to prevent the
  222. * kernel registering these devices remove them dynamically from the device
  223. * tree on boot.
  224. */
  225. static void __init omap_dmtimer_init(void)
  226. {
  227. struct device_node *np;
  228. if (!cpu_is_omap34xx() && !soc_is_dra7xx())
  229. return;
  230. /* If we are a secure device, remove any secure timer nodes */
  231. if ((omap_type() != OMAP2_DEVICE_TYPE_GP)) {
  232. np = omap_get_timer_dt(omap_timer_match, "ti,timer-secure");
  233. of_node_put(np);
  234. }
  235. }
  236. /**
  237. * omap_dm_timer_get_errata - get errata flags for a timer
  238. *
  239. * Get the timer errata flags that are specific to the OMAP device being used.
  240. */
  241. static u32 __init omap_dm_timer_get_errata(void)
  242. {
  243. if (cpu_is_omap24xx())
  244. return 0;
  245. return OMAP_TIMER_ERRATA_I103_I767;
  246. }
  247. static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer,
  248. const char *fck_source,
  249. const char *property,
  250. const char **timer_name,
  251. int posted)
  252. {
  253. char name[10]; /* 10 = sizeof("gptXX_Xck0") */
  254. const char *oh_name = NULL;
  255. struct device_node *np;
  256. struct omap_hwmod *oh;
  257. struct resource irq, mem;
  258. struct clk *src;
  259. int r = 0;
  260. if (of_have_populated_dt()) {
  261. np = omap_get_timer_dt(omap_timer_match, property);
  262. if (!np)
  263. return -ENODEV;
  264. of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
  265. if (!oh_name)
  266. return -ENODEV;
  267. timer->irq = irq_of_parse_and_map(np, 0);
  268. if (!timer->irq)
  269. return -ENXIO;
  270. timer->io_base = of_iomap(np, 0);
  271. of_node_put(np);
  272. } else {
  273. if (omap_dm_timer_reserve_systimer(timer->id))
  274. return -ENODEV;
  275. sprintf(name, "timer%d", timer->id);
  276. oh_name = name;
  277. }
  278. oh = omap_hwmod_lookup(oh_name);
  279. if (!oh)
  280. return -ENODEV;
  281. *timer_name = oh->name;
  282. if (!of_have_populated_dt()) {
  283. r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL,
  284. &irq);
  285. if (r)
  286. return -ENXIO;
  287. timer->irq = irq.start;
  288. r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL,
  289. &mem);
  290. if (r)
  291. return -ENXIO;
  292. /* Static mapping, never released */
  293. timer->io_base = ioremap(mem.start, mem.end - mem.start);
  294. }
  295. if (!timer->io_base)
  296. return -ENXIO;
  297. omap_hwmod_setup_one(oh_name);
  298. /* After the dmtimer is using hwmod these clocks won't be needed */
  299. timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh));
  300. if (IS_ERR(timer->fclk))
  301. return PTR_ERR(timer->fclk);
  302. src = clk_get(NULL, fck_source);
  303. if (IS_ERR(src))
  304. return PTR_ERR(src);
  305. WARN(clk_set_parent(timer->fclk, src) < 0,
  306. "Cannot set timer parent clock, no PLL clock driver?");
  307. clk_put(src);
  308. omap_hwmod_enable(oh);
  309. __omap_dm_timer_init_regs(timer);
  310. if (posted)
  311. __omap_dm_timer_enable_posted(timer);
  312. /* Check that the intended posted configuration matches the actual */
  313. if (posted != timer->posted)
  314. return -EINVAL;
  315. timer->rate = clk_get_rate(timer->fclk);
  316. timer->reserved = 1;
  317. return r;
  318. }
  319. #if !defined(CONFIG_SMP) && defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST)
  320. void tick_broadcast(const struct cpumask *mask)
  321. {
  322. }
  323. #endif
  324. static void __init omap2_gp_clockevent_init(int gptimer_id,
  325. const char *fck_source,
  326. const char *property)
  327. {
  328. int res;
  329. clkev.id = gptimer_id;
  330. clkev.errata = omap_dm_timer_get_errata();
  331. /*
  332. * For clock-event timers we never read the timer counter and
  333. * so we are not impacted by errata i103 and i767. Therefore,
  334. * we can safely ignore this errata for clock-event timers.
  335. */
  336. __omap_dm_timer_override_errata(&clkev, OMAP_TIMER_ERRATA_I103_I767);
  337. res = omap_dm_timer_init_one(&clkev, fck_source, property,
  338. &clockevent_gpt.name, OMAP_TIMER_POSTED);
  339. BUG_ON(res);
  340. omap2_gp_timer_irq.dev_id = &clkev;
  341. setup_irq(clkev.irq, &omap2_gp_timer_irq);
  342. __omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW);
  343. clockevent_gpt.cpumask = cpu_possible_mask;
  344. clockevent_gpt.irq = omap_dm_timer_get_irq(&clkev);
  345. clockevents_config_and_register(&clockevent_gpt, clkev.rate,
  346. 3, /* Timer internal resynch latency */
  347. 0xffffffff);
  348. if (soc_is_am33xx() || soc_is_am43xx()) {
  349. clockevent_gpt.suspend = omap_clkevt_idle;
  350. clockevent_gpt.resume = omap_clkevt_unidle;
  351. clockevent_gpt_hwmod =
  352. omap_hwmod_lookup(clockevent_gpt.name);
  353. clkev_irq_desc = irq_to_desc(clkev.irq);
  354. if (clkev_irq_desc)
  355. clkev_irq_chip = irq_desc_get_chip(clkev_irq_desc);
  356. }
  357. if (soc_is_am437x())
  358. omap_clkevt_late_ack_init();
  359. pr_info("OMAP clockevent source: %s at %lu Hz\n", clockevent_gpt.name,
  360. clkev.rate);
  361. }
  362. /* Clocksource code */
  363. static struct omap_dm_timer clksrc;
  364. static bool use_gptimer_clksrc __initdata;
  365. /*
  366. * clocksource
  367. */
  368. static cycle_t clocksource_read_cycles(struct clocksource *cs)
  369. {
  370. return (cycle_t)__omap_dm_timer_read_counter(&clksrc,
  371. OMAP_TIMER_NONPOSTED);
  372. }
  373. static struct clocksource clocksource_gpt = {
  374. .rating = 290,
  375. .read = clocksource_read_cycles,
  376. .mask = CLOCKSOURCE_MASK(32),
  377. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  378. };
  379. static u64 notrace dmtimer_read_sched_clock(void)
  380. {
  381. if (clksrc.reserved)
  382. return __omap_dm_timer_read_counter(&clksrc,
  383. OMAP_TIMER_NONPOSTED);
  384. return 0;
  385. }
  386. static const struct of_device_id omap_counter_match[] __initconst = {
  387. { .compatible = "ti,omap-counter32k", },
  388. { }
  389. };
  390. /* Setup free-running counter for clocksource */
  391. static int __init __maybe_unused omap2_sync32k_clocksource_init(void)
  392. {
  393. int ret;
  394. struct device_node *np = NULL;
  395. struct omap_hwmod *oh;
  396. const char *oh_name = "counter_32k";
  397. /*
  398. * If device-tree is present, then search the DT blob
  399. * to see if the 32kHz counter is supported.
  400. */
  401. if (of_have_populated_dt()) {
  402. np = omap_get_timer_dt(omap_counter_match, NULL);
  403. if (!np)
  404. return -ENODEV;
  405. of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
  406. if (!oh_name)
  407. return -ENODEV;
  408. }
  409. /*
  410. * First check hwmod data is available for sync32k counter
  411. */
  412. oh = omap_hwmod_lookup(oh_name);
  413. if (!oh || oh->slaves_cnt == 0)
  414. return -ENODEV;
  415. omap_hwmod_setup_one(oh_name);
  416. ret = omap_hwmod_enable(oh);
  417. if (ret) {
  418. pr_warn("%s: failed to enable counter_32k module (%d)\n",
  419. __func__, ret);
  420. return ret;
  421. }
  422. if (!of_have_populated_dt()) {
  423. void __iomem *vbase;
  424. vbase = omap_hwmod_get_mpu_rt_va(oh);
  425. ret = omap_init_clocksource_32k(vbase);
  426. if (ret) {
  427. pr_warn("%s: failed to initialize counter_32k as a clocksource (%d)\n",
  428. __func__, ret);
  429. omap_hwmod_idle(oh);
  430. }
  431. }
  432. return ret;
  433. }
  434. static unsigned int omap2_gptimer_clksrc_load;
  435. static void omap2_gptimer_clksrc_suspend(struct clocksource *unused)
  436. {
  437. struct omap_hwmod *oh;
  438. omap2_gptimer_clksrc_load =
  439. __omap_dm_timer_read_counter(&clksrc, OMAP_TIMER_NONPOSTED);
  440. oh = omap_hwmod_lookup(clocksource_gpt.name);
  441. if (!oh)
  442. return;
  443. omap_hwmod_idle(oh);
  444. }
  445. static void omap2_gptimer_clksrc_resume(struct clocksource *unused)
  446. {
  447. struct omap_hwmod *oh;
  448. oh = omap_hwmod_lookup(clocksource_gpt.name);
  449. if (!oh)
  450. return;
  451. omap_hwmod_enable(oh);
  452. __omap_dm_timer_load_start(&clksrc,
  453. OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR,
  454. omap2_gptimer_clksrc_load,
  455. OMAP_TIMER_NONPOSTED);
  456. }
  457. static void __init omap2_gptimer_clocksource_init(int gptimer_id,
  458. const char *fck_source,
  459. const char *property)
  460. {
  461. int res;
  462. clksrc.id = gptimer_id;
  463. clksrc.errata = omap_dm_timer_get_errata();
  464. if (soc_is_am43xx()) {
  465. clocksource_gpt.suspend = omap2_gptimer_clksrc_suspend;
  466. clocksource_gpt.resume = omap2_gptimer_clksrc_resume;
  467. }
  468. res = omap_dm_timer_init_one(&clksrc, fck_source, property,
  469. &clocksource_gpt.name,
  470. OMAP_TIMER_NONPOSTED);
  471. BUG_ON(res);
  472. __omap_dm_timer_load_start(&clksrc,
  473. OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0,
  474. OMAP_TIMER_NONPOSTED);
  475. sched_clock_register(dmtimer_read_sched_clock, 32, clksrc.rate);
  476. if (clocksource_register_hz(&clocksource_gpt, clksrc.rate))
  477. pr_err("Could not register clocksource %s\n",
  478. clocksource_gpt.name);
  479. else
  480. pr_info("OMAP clocksource: %s at %lu Hz\n",
  481. clocksource_gpt.name, clksrc.rate);
  482. }
  483. static void __init __omap_sync32k_timer_init(int clkev_nr, const char *clkev_src,
  484. const char *clkev_prop, int clksrc_nr, const char *clksrc_src,
  485. const char *clksrc_prop, bool gptimer)
  486. {
  487. omap_clk_init();
  488. omap_dmtimer_init();
  489. omap2_gp_clockevent_init(clkev_nr, clkev_src, clkev_prop);
  490. /* Enable the use of clocksource="gp_timer" kernel parameter */
  491. if (use_gptimer_clksrc || gptimer)
  492. omap2_gptimer_clocksource_init(clksrc_nr, clksrc_src,
  493. clksrc_prop);
  494. else
  495. omap2_sync32k_clocksource_init();
  496. }
  497. void __init omap_init_time(void)
  498. {
  499. __omap_sync32k_timer_init(1, "timer_32k_ck", "ti,timer-alwon",
  500. 2, "timer_sys_ck", NULL, false);
  501. clocksource_probe();
  502. }
  503. #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM43XX)
  504. void __init omap3_secure_sync32k_timer_init(void)
  505. {
  506. __omap_sync32k_timer_init(12, "secure_32k_fck", "ti,timer-secure",
  507. 2, "timer_sys_ck", NULL, false);
  508. clocksource_probe();
  509. }
  510. #endif /* CONFIG_ARCH_OMAP3 */
  511. #if defined(CONFIG_ARCH_OMAP3) || defined(CONFIG_SOC_AM33XX) || \
  512. defined(CONFIG_SOC_AM43XX)
  513. void __init omap3_gptimer_timer_init(void)
  514. {
  515. __omap_sync32k_timer_init(2, "timer_sys_ck", NULL,
  516. 1, "timer_sys_ck", "ti,timer-alwon", true);
  517. if (of_have_populated_dt())
  518. clocksource_probe();
  519. }
  520. #endif
  521. #if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5) || \
  522. defined(CONFIG_SOC_DRA7XX)
  523. static void __init omap4_sync32k_timer_init(void)
  524. {
  525. __omap_sync32k_timer_init(1, "timer_32k_ck", "ti,timer-alwon",
  526. 2, "sys_clkin_ck", NULL, false);
  527. }
  528. void __init omap4_local_timer_init(void)
  529. {
  530. omap4_sync32k_timer_init();
  531. clocksource_probe();
  532. }
  533. #endif
  534. #if defined(CONFIG_SOC_OMAP5) || defined(CONFIG_SOC_DRA7XX)
  535. /*
  536. * The realtime counter also called master counter, is a free-running
  537. * counter, which is related to real time. It produces the count used
  538. * by the CPU local timer peripherals in the MPU cluster. The timer counts
  539. * at a rate of 6.144 MHz. Because the device operates on different clocks
  540. * in different power modes, the master counter shifts operation between
  541. * clocks, adjusting the increment per clock in hardware accordingly to
  542. * maintain a constant count rate.
  543. */
  544. static void __init realtime_counter_init(void)
  545. {
  546. #ifdef CONFIG_SOC_HAS_REALTIME_COUNTER
  547. void __iomem *base;
  548. static struct clk *sys_clk;
  549. unsigned long rate;
  550. unsigned int reg;
  551. unsigned long long num, den;
  552. base = ioremap(REALTIME_COUNTER_BASE, SZ_32);
  553. if (!base) {
  554. pr_err("%s: ioremap failed\n", __func__);
  555. return;
  556. }
  557. sys_clk = clk_get(NULL, "sys_clkin");
  558. if (IS_ERR(sys_clk)) {
  559. pr_err("%s: failed to get system clock handle\n", __func__);
  560. iounmap(base);
  561. return;
  562. }
  563. rate = clk_get_rate(sys_clk);
  564. if (soc_is_dra7xx()) {
  565. /*
  566. * Errata i856 says the 32.768KHz crystal does not start at
  567. * power on, so the CPU falls back to an emulated 32KHz clock
  568. * based on sysclk / 610 instead. This causes the master counter
  569. * frequency to not be 6.144MHz but at sysclk / 610 * 375 / 2
  570. * (OR sysclk * 75 / 244)
  571. *
  572. * This affects at least the DRA7/AM572x 1.0, 1.1 revisions.
  573. * Of course any board built without a populated 32.768KHz
  574. * crystal would also need this fix even if the CPU is fixed
  575. * later.
  576. *
  577. * Either case can be detected by using the two speedselect bits
  578. * If they are not 0, then the 32.768KHz clock driving the
  579. * coarse counter that corrects the fine counter every time it
  580. * ticks is actually rate/610 rather than 32.768KHz and we
  581. * should compensate to avoid the 570ppm (at 20MHz, much worse
  582. * at other rates) too fast system time.
  583. */
  584. reg = omap_ctrl_readl(DRA7_CTRL_CORE_BOOTSTRAP);
  585. if (reg & DRA7_SPEEDSELECT_MASK) {
  586. num = 75;
  587. den = 244;
  588. goto sysclk1_based;
  589. }
  590. }
  591. /* Numerator/denumerator values refer TRM Realtime Counter section */
  592. switch (rate) {
  593. case 12000000:
  594. num = 64;
  595. den = 125;
  596. break;
  597. case 13000000:
  598. num = 768;
  599. den = 1625;
  600. break;
  601. case 19200000:
  602. num = 8;
  603. den = 25;
  604. break;
  605. case 20000000:
  606. num = 192;
  607. den = 625;
  608. break;
  609. case 26000000:
  610. num = 384;
  611. den = 1625;
  612. break;
  613. case 27000000:
  614. num = 256;
  615. den = 1125;
  616. break;
  617. case 38400000:
  618. default:
  619. /* Program it for 38.4 MHz */
  620. num = 4;
  621. den = 25;
  622. break;
  623. }
  624. sysclk1_based:
  625. /* Program numerator and denumerator registers */
  626. reg = readl_relaxed(base + INCREMENTER_NUMERATOR_OFFSET) &
  627. NUMERATOR_DENUMERATOR_MASK;
  628. reg |= num;
  629. writel_relaxed(reg, base + INCREMENTER_NUMERATOR_OFFSET);
  630. reg = readl_relaxed(base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET) &
  631. NUMERATOR_DENUMERATOR_MASK;
  632. reg |= den;
  633. writel_relaxed(reg, base + INCREMENTER_DENUMERATOR_RELOAD_OFFSET);
  634. arch_timer_freq = DIV_ROUND_UP_ULL(rate * num, den);
  635. set_cntfreq();
  636. iounmap(base);
  637. #endif
  638. }
  639. void __init omap5_realtime_timer_init(void)
  640. {
  641. omap4_sync32k_timer_init();
  642. realtime_counter_init();
  643. clocksource_probe();
  644. }
  645. #endif /* CONFIG_SOC_OMAP5 || CONFIG_SOC_DRA7XX */
  646. /**
  647. * omap_timer_init - build and register timer device with an
  648. * associated timer hwmod
  649. * @oh: timer hwmod pointer to be used to build timer device
  650. * @user: parameter that can be passed from calling hwmod API
  651. *
  652. * Called by omap_hwmod_for_each_by_class to register each of the timer
  653. * devices present in the system. The number of timer devices is known
  654. * by parsing through the hwmod database for a given class name. At the
  655. * end of function call memory is allocated for timer device and it is
  656. * registered to the framework ready to be proved by the driver.
  657. */
  658. static int __init omap_timer_init(struct omap_hwmod *oh, void *unused)
  659. {
  660. int id;
  661. int ret = 0;
  662. char *name = "omap_timer";
  663. struct dmtimer_platform_data *pdata;
  664. struct platform_device *pdev;
  665. struct omap_timer_capability_dev_attr *timer_dev_attr;
  666. pr_debug("%s: %s\n", __func__, oh->name);
  667. /* on secure device, do not register secure timer */
  668. timer_dev_attr = oh->dev_attr;
  669. if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr)
  670. if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE)
  671. return ret;
  672. pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
  673. if (!pdata) {
  674. pr_err("%s: No memory for [%s]\n", __func__, oh->name);
  675. return -ENOMEM;
  676. }
  677. /*
  678. * Extract the IDs from name field in hwmod database
  679. * and use the same for constructing ids' for the
  680. * timer devices. In a way, we are avoiding usage of
  681. * static variable witin the function to do the same.
  682. * CAUTION: We have to be careful and make sure the
  683. * name in hwmod database does not change in which case
  684. * we might either make corresponding change here or
  685. * switch back static variable mechanism.
  686. */
  687. sscanf(oh->name, "timer%2d", &id);
  688. if (timer_dev_attr)
  689. pdata->timer_capability = timer_dev_attr->timer_capability;
  690. pdata->timer_errata = omap_dm_timer_get_errata();
  691. pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count;
  692. pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata));
  693. if (IS_ERR(pdev)) {
  694. pr_err("%s: Can't build omap_device for %s: %s.\n",
  695. __func__, name, oh->name);
  696. ret = -EINVAL;
  697. }
  698. kfree(pdata);
  699. return ret;
  700. }
  701. /**
  702. * omap2_dm_timer_init - top level regular device initialization
  703. *
  704. * Uses dedicated hwmod api to parse through hwmod database for
  705. * given class name and then build and register the timer device.
  706. */
  707. static int __init omap2_dm_timer_init(void)
  708. {
  709. int ret;
  710. /* If dtb is there, the devices will be created dynamically */
  711. if (of_have_populated_dt())
  712. return -ENODEV;
  713. ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL);
  714. if (unlikely(ret)) {
  715. pr_err("%s: device registration failed.\n", __func__);
  716. return -EINVAL;
  717. }
  718. return 0;
  719. }
  720. omap_arch_initcall(omap2_dm_timer_init);
  721. /**
  722. * omap2_override_clocksource - clocksource override with user configuration
  723. *
  724. * Allows user to override default clocksource, using kernel parameter
  725. * clocksource="gp_timer" (For all OMAP2PLUS architectures)
  726. *
  727. * Note that, here we are using same standard kernel parameter "clocksource=",
  728. * and not introducing any OMAP specific interface.
  729. */
  730. static int __init omap2_override_clocksource(char *str)
  731. {
  732. if (!str)
  733. return 0;
  734. /*
  735. * For OMAP architecture, we only have two options
  736. * - sync_32k (default)
  737. * - gp_timer (sys_clk based)
  738. */
  739. if (!strcmp(str, "gp_timer"))
  740. use_gptimer_clksrc = true;
  741. return 0;
  742. }
  743. early_param("clocksource", omap2_override_clocksource);