123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- .\" Automatically generated by Pod::Man 4.11 (Pod::Simple 3.35)
- .\"
- .\" Standard preamble:
- .\" ========================================================================
- .de Sp \" Vertical space (when we can't use .PP)
- .if t .sp .5v
- .if n .sp
- ..
- .de Vb \" Begin verbatim text
- .ft CW
- .nf
- .ne \\$1
- ..
- .de Ve \" End verbatim text
- .ft R
- .fi
- ..
- .\" Set up some character translations and predefined strings. \*(-- will
- .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
- .\" double quote, and \*(R" will give a right double quote. \*(C+ will
- .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
- .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
- .\" nothing in troff, for use with C<>.
- .tr \(*W-
- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
- .ie n \{\
- . ds -- \(*W-
- . ds PI pi
- . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
- . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
- . ds L" ""
- . ds R" ""
- . ds C` ""
- . ds C' ""
- 'br\}
- .el\{\
- . ds -- \|\(em\|
- . ds PI \(*p
- . ds L" ``
- . ds R" ''
- . ds C`
- . ds C'
- 'br\}
- .\"
- .\" Escape single quotes in literal strings from groff's Unicode transform.
- .ie \n(.g .ds Aq \(aq
- .el .ds Aq '
- .\"
- .\" If the F register is >0, we'll generate index entries on stderr for
- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
- .\" entries marked with X<> in POD. Of course, you'll have to process the
- .\" output yourself in some meaningful fashion.
- .\"
- .\" Avoid warning from groff about undefined register 'F'.
- .de IX
- ..
- .nr rF 0
- .if \n(.g .if rF .nr rF 1
- .if (\n(rF:(\n(.g==0)) \{\
- . if \nF \{\
- . de IX
- . tm Index:\\$1\t\\n%\t"\\$2"
- ..
- . if !\nF==2 \{\
- . nr % 0
- . nr F 2
- . \}
- . \}
- .\}
- .rr rF
- .\"
- .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
- .\" Fear. Run. Save yourself. No user-serviceable parts.
- . \" fudge factors for nroff and troff
- .if n \{\
- . ds #H 0
- . ds #V .8m
- . ds #F .3m
- . ds #[ \f1
- . ds #] \fP
- .\}
- .if t \{\
- . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
- . ds #V .6m
- . ds #F 0
- . ds #[ \&
- . ds #] \&
- .\}
- . \" simple accents for nroff and troff
- .if n \{\
- . ds ' \&
- . ds ` \&
- . ds ^ \&
- . ds , \&
- . ds ~ ~
- . ds /
- .\}
- .if t \{\
- . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
- . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
- . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
- . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
- . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
- . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
- .\}
- . \" troff and (daisy-wheel) nroff accents
- .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
- .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
- .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
- .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
- .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
- .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
- .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
- .ds ae a\h'-(\w'a'u*4/10)'e
- .ds Ae A\h'-(\w'A'u*4/10)'E
- . \" corrections for vroff
- .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
- .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
- . \" for low resolution devices (crt and lpr)
- .if \n(.H>23 .if \n(.V>19 \
- \{\
- . ds : e
- . ds 8 ss
- . ds o a
- . ds d- d\h'-1'\(ga
- . ds D- D\h'-1'\(hy
- . ds th \o'bp'
- . ds Th \o'LP'
- . ds ae ae
- . ds Ae AE
- .\}
- .rm #[ #] #H #V #F C
- .\" ========================================================================
- .\"
- .IX Title "DES_MODES 7"
- .TH DES_MODES 7 "2022-03-15" "1.1.1n" "OpenSSL"
- .\" For nroff, turn off justification. Always turn off hyphenation; it makes
- .\" way too many mistakes in technical documents.
- .if n .ad l
- .nh
- .SH "NAME"
- des_modes \- the variants of DES and other crypto algorithms of OpenSSL
- .SH "DESCRIPTION"
- .IX Header "DESCRIPTION"
- Several crypto algorithms for OpenSSL can be used in a number of modes. Those
- are used for using block ciphers in a way similar to stream ciphers, among
- other things.
- .SH "OVERVIEW"
- .IX Header "OVERVIEW"
- .SS "Electronic Codebook Mode (\s-1ECB\s0)"
- .IX Subsection "Electronic Codebook Mode (ECB)"
- Normally, this is found as the function \fIalgorithm\fR\fB_ecb_encrypt()\fR.
- .IP "\(bu" 2
- 64 bits are enciphered at a time.
- .IP "\(bu" 2
- The order of the blocks can be rearranged without detection.
- .IP "\(bu" 2
- The same plaintext block always produces the same ciphertext block
- (for the same key) making it vulnerable to a 'dictionary attack'.
- .IP "\(bu" 2
- An error will only affect one ciphertext block.
- .SS "Cipher Block Chaining Mode (\s-1CBC\s0)"
- .IX Subsection "Cipher Block Chaining Mode (CBC)"
- Normally, this is found as the function \fIalgorithm\fR\fB_cbc_encrypt()\fR.
- Be aware that \fBdes_cbc_encrypt()\fR is not really \s-1DES CBC\s0 (it does
- not update the \s-1IV\s0); use \fBdes_ncbc_encrypt()\fR instead.
- .IP "\(bu" 2
- a multiple of 64 bits are enciphered at a time.
- .IP "\(bu" 2
- The \s-1CBC\s0 mode produces the same ciphertext whenever the same
- plaintext is encrypted using the same key and starting variable.
- .IP "\(bu" 2
- The chaining operation makes the ciphertext blocks dependent on the
- current and all preceding plaintext blocks and therefore blocks can not
- be rearranged.
- .IP "\(bu" 2
- The use of different starting variables prevents the same plaintext
- enciphering to the same ciphertext.
- .IP "\(bu" 2
- An error will affect the current and the following ciphertext blocks.
- .SS "Cipher Feedback Mode (\s-1CFB\s0)"
- .IX Subsection "Cipher Feedback Mode (CFB)"
- Normally, this is found as the function \fIalgorithm\fR\fB_cfb_encrypt()\fR.
- .IP "\(bu" 2
- a number of bits (j) <= 64 are enciphered at a time.
- .IP "\(bu" 2
- The \s-1CFB\s0 mode produces the same ciphertext whenever the same
- plaintext is encrypted using the same key and starting variable.
- .IP "\(bu" 2
- The chaining operation makes the ciphertext variables dependent on the
- current and all preceding variables and therefore j\-bit variables are
- chained together and can not be rearranged.
- .IP "\(bu" 2
- The use of different starting variables prevents the same plaintext
- enciphering to the same ciphertext.
- .IP "\(bu" 2
- The strength of the \s-1CFB\s0 mode depends on the size of k (maximal if
- j == k). In my implementation this is always the case.
- .IP "\(bu" 2
- Selection of a small value for j will require more cycles through
- the encipherment algorithm per unit of plaintext and thus cause
- greater processing overheads.
- .IP "\(bu" 2
- Only multiples of j bits can be enciphered.
- .IP "\(bu" 2
- An error will affect the current and the following ciphertext variables.
- .SS "Output Feedback Mode (\s-1OFB\s0)"
- .IX Subsection "Output Feedback Mode (OFB)"
- Normally, this is found as the function \fIalgorithm\fR\fB_ofb_encrypt()\fR.
- .IP "\(bu" 2
- a number of bits (j) <= 64 are enciphered at a time.
- .IP "\(bu" 2
- The \s-1OFB\s0 mode produces the same ciphertext whenever the same
- plaintext enciphered using the same key and starting variable. More
- over, in the \s-1OFB\s0 mode the same key stream is produced when the same
- key and start variable are used. Consequently, for security reasons
- a specific start variable should be used only once for a given key.
- .IP "\(bu" 2
- The absence of chaining makes the \s-1OFB\s0 more vulnerable to specific attacks.
- .IP "\(bu" 2
- The use of different start variables values prevents the same
- plaintext enciphering to the same ciphertext, by producing different
- key streams.
- .IP "\(bu" 2
- Selection of a small value for j will require more cycles through
- the encipherment algorithm per unit of plaintext and thus cause
- greater processing overheads.
- .IP "\(bu" 2
- Only multiples of j bits can be enciphered.
- .IP "\(bu" 2
- \&\s-1OFB\s0 mode of operation does not extend ciphertext errors in the
- resultant plaintext output. Every bit error in the ciphertext causes
- only one bit to be in error in the deciphered plaintext.
- .IP "\(bu" 2
- \&\s-1OFB\s0 mode is not self-synchronizing. If the two operation of
- encipherment and decipherment get out of synchronism, the system needs
- to be re-initialized.
- .IP "\(bu" 2
- Each re-initialization should use a value of the start variable
- different from the start variable values used before with the same
- key. The reason for this is that an identical bit stream would be
- produced each time from the same parameters. This would be
- susceptible to a 'known plaintext' attack.
- .SS "Triple \s-1ECB\s0 Mode"
- .IX Subsection "Triple ECB Mode"
- Normally, this is found as the function \fIalgorithm\fR\fB_ecb3_encrypt()\fR.
- .IP "\(bu" 2
- Encrypt with key1, decrypt with key2 and encrypt with key3 again.
- .IP "\(bu" 2
- As for \s-1ECB\s0 encryption but increases the key length to 168 bits.
- There are theoretic attacks that can be used that make the effective
- key length 112 bits, but this attack also requires 2^56 blocks of
- memory, not very likely, even for the \s-1NSA.\s0
- .IP "\(bu" 2
- If both keys are the same it is equivalent to encrypting once with
- just one key.
- .IP "\(bu" 2
- If the first and last key are the same, the key length is 112 bits.
- There are attacks that could reduce the effective key strength
- to only slightly more than 56 bits, but these require a lot of memory.
- .IP "\(bu" 2
- If all 3 keys are the same, this is effectively the same as normal
- ecb mode.
- .SS "Triple \s-1CBC\s0 Mode"
- .IX Subsection "Triple CBC Mode"
- Normally, this is found as the function \fIalgorithm\fR\fB_ede3_cbc_encrypt()\fR.
- .IP "\(bu" 2
- Encrypt with key1, decrypt with key2 and then encrypt with key3.
- .IP "\(bu" 2
- As for \s-1CBC\s0 encryption but increases the key length to 168 bits with
- the same restrictions as for triple ecb mode.
- .SH "NOTES"
- .IX Header "NOTES"
- This text was been written in large parts by Eric Young in his original
- documentation for SSLeay, the predecessor of OpenSSL. In turn, he attributed
- it to:
- .PP
- .Vb 5
- \& AS 2805.5.2
- \& Australian Standard
- \& Electronic funds transfer \- Requirements for interfaces,
- \& Part 5.2: Modes of operation for an n\-bit block cipher algorithm
- \& Appendix A
- .Ve
- .SH "SEE ALSO"
- .IX Header "SEE ALSO"
- \&\fBBF_encrypt\fR\|(3), \fBDES_crypt\fR\|(3)
- .SH "COPYRIGHT"
- .IX Header "COPYRIGHT"
- Copyright 2000\-2017 The OpenSSL Project Authors. All Rights Reserved.
- .PP
- Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file \s-1LICENSE\s0 in the source distribution or at
- <https://www.openssl.org/source/license.html>.
|