md5.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. /*
  2. * $Id$
  3. *
  4. * This code implements the MD5 message-digest algorithm.
  5. * The algorithm is due to Ron Rivest. This code was
  6. * written by Colin Plumb in 1993, no copyright is claimed.
  7. * This code is in the public domain; do with it what you wish.
  8. *
  9. * Equivalent code is available from RSA Data Security, Inc.
  10. * This code has been tested against that, and is equivalent,
  11. * except that you don't need to include two pages of legalese
  12. * with every copy.
  13. *
  14. * To compute the message digest of a chunk of bytes, declare an
  15. * MD5Context structure, pass it to MD5Init, call MD5Update as
  16. * needed on buffers full of bytes, and then call MD5Final, which
  17. * will fill a supplied 16-byte array with the digest.
  18. *
  19. */
  20. #include "md5.h"
  21. #include <string.h>
  22. #define MD5Name(x) x
  23. #ifdef WORDS_BIGENDIAN
  24. typedef unsigned char PAM_ATTRIBUTE_ALIGNED(4) uint8_aligned;
  25. static void byteReverse(uint8_aligned *buf, unsigned longs);
  26. /*
  27. * Note: this code is harmless on little-endian machines.
  28. */
  29. static void byteReverse(uint8_aligned *buf, unsigned longs)
  30. {
  31. uint32 t;
  32. do {
  33. t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
  34. ((unsigned) buf[1] << 8 | buf[0]);
  35. *(uint32 *) buf = t;
  36. buf += 4;
  37. } while (--longs);
  38. }
  39. #else
  40. #define byteReverse(buf, len) /* Nothing */
  41. #endif
  42. /*
  43. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  44. * initialization constants.
  45. */
  46. void MD5Name(MD5Init)(struct MD5Context *ctx)
  47. {
  48. ctx->buf.i[0] = 0x67452301U;
  49. ctx->buf.i[1] = 0xefcdab89U;
  50. ctx->buf.i[2] = 0x98badcfeU;
  51. ctx->buf.i[3] = 0x10325476U;
  52. ctx->bits[0] = 0;
  53. ctx->bits[1] = 0;
  54. }
  55. /*
  56. * Update context to reflect the concatenation of another buffer full
  57. * of bytes.
  58. */
  59. void MD5Name(MD5Update)(struct MD5Context *ctx, unsigned const char *buf, unsigned len)
  60. {
  61. uint32 t;
  62. /* Update bitcount */
  63. t = ctx->bits[0];
  64. if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
  65. ctx->bits[1]++; /* Carry from low to high */
  66. ctx->bits[1] += len >> 29;
  67. t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
  68. /* Handle any leading odd-sized chunks */
  69. if (t) {
  70. unsigned char *p = ctx->in.c + t;
  71. t = 64 - t;
  72. if (len < t) {
  73. memcpy(p, buf, len);
  74. return;
  75. }
  76. memcpy(p, buf, t);
  77. byteReverse(ctx->in.c, 16);
  78. MD5Name(MD5Transform)(ctx->buf.i, ctx->in.i);
  79. buf += t;
  80. len -= t;
  81. }
  82. /* Process data in 64-byte chunks */
  83. while (len >= 64) {
  84. memcpy(ctx->in.c, buf, 64);
  85. byteReverse(ctx->in.c, 16);
  86. MD5Name(MD5Transform)(ctx->buf.i, ctx->in.i);
  87. buf += 64;
  88. len -= 64;
  89. }
  90. /* Handle any remaining bytes of data. */
  91. memcpy(ctx->in.c, buf, len);
  92. }
  93. /*
  94. * Final wrapup - pad to 64-byte boundary with the bit pattern
  95. * 1 0* (64-bit count of bits processed, MSB-first)
  96. */
  97. void MD5Name(MD5Final)(unsigned char digest[16], struct MD5Context *ctx)
  98. {
  99. unsigned count;
  100. unsigned char *p;
  101. /* Compute number of bytes mod 64 */
  102. count = (ctx->bits[0] >> 3) & 0x3F;
  103. /* Set the first char of padding to 0x80. This is safe since there is
  104. always at least one byte free */
  105. p = ctx->in.c + count;
  106. *p++ = 0x80;
  107. /* Bytes of padding needed to make 64 bytes */
  108. count = 64 - 1 - count;
  109. /* Pad out to 56 mod 64 */
  110. if (count < 8) {
  111. /* Two lots of padding: Pad the first block to 64 bytes */
  112. memset(p, 0, count);
  113. byteReverse(ctx->in.c, 16);
  114. MD5Name(MD5Transform)(ctx->buf.i, ctx->in.i);
  115. /* Now fill the next block with 56 bytes */
  116. memset(ctx->in.c, 0, 56);
  117. } else {
  118. /* Pad block to 56 bytes */
  119. memset(p, 0, count - 8);
  120. }
  121. byteReverse(ctx->in.c, 14);
  122. /* Append length in bits and transform */
  123. memcpy(ctx->in.i + 14, ctx->bits, 2*sizeof(uint32));
  124. MD5Name(MD5Transform)(ctx->buf.i, ctx->in.i);
  125. byteReverse(ctx->buf.c, 4);
  126. memcpy(digest, ctx->buf.c, 16);
  127. memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
  128. }
  129. /* The four core functions - F1 is optimized somewhat */
  130. /* #define F1(x, y, z) (x & y | ~x & z) */
  131. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  132. #define F2(x, y, z) F1(z, x, y)
  133. #define F3(x, y, z) (x ^ y ^ z)
  134. #define F4(x, y, z) (y ^ (x | ~z))
  135. /* This is the central step in the MD5 algorithm. */
  136. #define MD5STEP(f, w, x, y, z, data, s) \
  137. ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
  138. /*
  139. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  140. * reflect the addition of 16 longwords of new data. MD5Update blocks
  141. * the data and converts bytes into longwords for this routine.
  142. */
  143. void MD5Name(MD5Transform)(uint32 buf[4], uint32 const in[16])
  144. {
  145. register uint32 a, b, c, d;
  146. a = buf[0];
  147. b = buf[1];
  148. c = buf[2];
  149. d = buf[3];
  150. MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478U, 7);
  151. MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756U, 12);
  152. MD5STEP(F1, c, d, a, b, in[2] + 0x242070dbU, 17);
  153. MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceeeU, 22);
  154. MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0fafU, 7);
  155. MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62aU, 12);
  156. MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613U, 17);
  157. MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501U, 22);
  158. MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8U, 7);
  159. MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7afU, 12);
  160. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1U, 17);
  161. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7beU, 22);
  162. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122U, 7);
  163. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193U, 12);
  164. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438eU, 17);
  165. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821U, 22);
  166. MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562U, 5);
  167. MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340U, 9);
  168. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51U, 14);
  169. MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aaU, 20);
  170. MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105dU, 5);
  171. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453U, 9);
  172. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681U, 14);
  173. MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8U, 20);
  174. MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6U, 5);
  175. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6U, 9);
  176. MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87U, 14);
  177. MD5STEP(F2, b, c, d, a, in[8] + 0x455a14edU, 20);
  178. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905U, 5);
  179. MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8U, 9);
  180. MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9U, 14);
  181. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8aU, 20);
  182. MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942U, 4);
  183. MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681U, 11);
  184. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122U, 16);
  185. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380cU, 23);
  186. MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44U, 4);
  187. MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9U, 11);
  188. MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60U, 16);
  189. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70U, 23);
  190. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6U, 4);
  191. MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127faU, 11);
  192. MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085U, 16);
  193. MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05U, 23);
  194. MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039U, 4);
  195. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5U, 11);
  196. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8U, 16);
  197. MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665U, 23);
  198. MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244U, 6);
  199. MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97U, 10);
  200. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7U, 15);
  201. MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039U, 21);
  202. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3U, 6);
  203. MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92U, 10);
  204. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47dU, 15);
  205. MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1U, 21);
  206. MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4fU, 6);
  207. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0U, 10);
  208. MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314U, 15);
  209. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1U, 21);
  210. MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82U, 6);
  211. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235U, 10);
  212. MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bbU, 15);
  213. MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391U, 21);
  214. buf[0] += a;
  215. buf[1] += b;
  216. buf[2] += c;
  217. buf[3] += d;
  218. }
  219. void MD5Name(MD5)(unsigned const char *buf, unsigned len, unsigned char digest[16])
  220. {
  221. struct MD5Context ctx;
  222. MD5Name(MD5Init)(&ctx);
  223. MD5Name(MD5Update)(&ctx, buf, len);
  224. MD5Name(MD5Final)(digest, &ctx);
  225. }